Extrait de Mines-Ponts PC 2001 maths 1

Préliminaires

- a) Si $f^k(x) = 0$ alors $f^{k+1}(x) = 0$ donc $\ker(f^k) \subset \ker(f^{k+1})$
- b) On montre par récurrence sur $q \ge p$ que $\ker(f^q) = \ker(f^{q+1})$: pour q = p, évident par hypothèse. Si $\ker(f^q) = \ker(f^{q+1})$ et $x \in \ker(f^{q+2})$ alors $f(x) \in \ker(f^{q+1}) = \ker(f^q)$ donc $f^{q+1}(x) = 0$ et $\ker(f^{q+2}) = \ker(f^{q+1})$. On en déduit $\ker(f^p) = \ker(f^k)$ pour $k \ge p$

Si V est de dimension n, et si $\ker\left(f^k\right) \neq \ker\left(k^{k+1}\right)$ pour tout entier $k \leqslant n$ alors $\dim \ker\left(f^{k+1}\right) \geqslant \dim \ker\left(f^k\right) + 1$; f n'étant pas injective (sinon tous les noyaux sont égaux à $\{0\}$), on a $\dim \ker(f) \geqslant 1$ et par récurrence sur k, $\dim \ker\left(f^k\right) \geqslant k$, ce qui est absurde : pour k = n, on obtient $\dim \ker\left(f^{n+1}\right) > \dim V$. On en déduit qu'il existe $p \leqslant n$ tel que $\ker\left(f^p\right) = \ker\left(f^{p+1}\right)$ puis $\ker\left(f^k\right)$ est constant pour $k \geqslant p$. Comme $p \leqslant n$, on a en particulier $\ker\left(f^n\right) = \ker\left(f^{n+1}\right)$.

c) Il existe q tel que $\ker(u^q) = V$, donc d'après la question précédente, on a $\ker(u^n) = \ker(u^q) = V$ (car la suite des noyaux est constante à partir de $\min(q,n)$) c'est-à-dire $u^n = 0$

Première partie

- 1. a) $g \circ D_n = g^3 \lambda g = D_n \circ g$ donc g et D_n commutent g commute avec D_n donc avec D_n^{p+1} donc ker (D_n^{p+1}) est stable par g, ie E_p est stable par g La seule question était la possibilité de restraindre tous les endomorphismes : si $P \in E_p$, on a $(g_p)^2(P) = g^2(P) = \lambda P + D_n(P) = \lambda P + D(P) = \lambda P + D_p(P)$ donc $g = \lambda i d_{E_p} + D_p$
 - b) $g \circ D = g^3 \lambda g = D \circ q$ et comme $E_n = \ker(D^{n+1})$, on conclut comme à la question précédente.
 - i. Il existe un entier q tel que $V \subset E_q$ (prendre une base de V et q le maximum des degrés des n+1 vecteurs de cette base par exemple) donc $D_F^{q+1} = D_q^{q+1} = 0$ donc D_F est nilpotent. On en déduit que $D_F^{n+1} = 0$, ce qui donne $F \subset E_n$ et comme dim $f = \dim E_n = n+1$, on a $E_n = F$ On vient de voir que si F est de dimension finie et stable par D alors il existe n tel que $F = E_n$; la réciproque étant vraie $(E_n$ est stable par D), les sous-espaces de dimension finie stables par D sont les E_n Soit G un sous-espace de dimension infinie stable par D et P un polynôme de G, de degré $n \geqslant 0$. Par stabilité, G contient P, P', P'', ..., $P^{(n)}$ qui forment une base de E_n (degrés étagés) donc G contient E_n . Comme G n'est pas de dimension finie, G contient des polynômes de degré supérieur à n pour tout n, donc G contient tous les E_n puis G = E.

 La réciproque étant évidente, le seul sous-espace de dimension infinie stable par D est E
 - ii. Si G est stable par g, G est stable par g^2 et λid donc par D. Réciproquement, si G est stable par D alors G est E ou un des E_n qui sont stables par g d'après $\mathbf{1.a}$ et $\mathbf{1.b}$. Ainsi, on obtient bien l'équivalence : G est stable par g si et seulement si G est stable par D
- **2.** a) On a dim $E_0 = 1$ et $D_0 = 0$ donc matriciellement $g^2 = \lambda i d_{E_0} + D_0$ se traduit par $a^2 = \lambda$ où a est le seul coefficient de la matrice de g. On en déduit le résultat : il existe g tel que $g^2 = \lambda i d_{E_0} + D_0$ si et seulement si $\lambda \in \mathbb{R}^+$
 - b) S'il existe g tel que $g^2 = \lambda i d_E + D$ alors E_0 est stable par g (1.b) et $g_0^2 = \lambda i d_{E_0} + D_0$ ce qui est exclu. S'il existe g tel que $g^2 = \lambda i d_{E_n} + D_n$ alors (1.a) le même argument s'applique.
- 3. a) On prend y tel que $f^n(y) \neq 0$ et on montre par l'absurde que la famille \mathcal{B} est libre : si elle est liée, il existe $(a_0,\ldots,a_n) \neq (0,\ldots,0)$ tel que $\sum_{i=0}^n a_i f^i(y) = 0$, on pose $r = \min\{k \in \llbracket 0,n \rrbracket, a_i \neq 0\}$, il reste $\sum_{i=r}^n a_i f^i(y) = 0$ et en composant par f^{n-r} (possible car $n-r \geqslant 0$, on aboutit à $a_r f^n(y) = 0$ ce qui est absurde puisque $a_r \neq 0$ par définition d'un minimum. Ainsi \mathcal{B} est une famille libre de n+1 vecteurs dans V de dimension n+1 donc $\boxed{\mathcal{B}}$ est une base de V dans laquelle $\mathrm{Mat}_{\mathcal{B}}(f) = A_0$
 - b) On a $D_n^{n+1} = 0$ et $D_n^n(X^n) = n! \neq 0$ donc $D_n^n \neq 0$ donc, d'après la question précédente, il existe une base \mathcal{B}_n de E_n dans laquelle la matrice de D_n est A_0 . La matrice de $\lambda id_{E_n} + D_n$ est alors A_n
- **4.** a) Soit h un endomorphisme de E_2 et H sa matrice dans \mathcal{B}_2 définie précédemment. h commute avec D_2 si et seulement si H commute avec A_0 . Après calcul, on trouve que H commute avec A_0 si et seulement si H est de la forme $H = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$ donc le commutant de A_0 est $\text{Vect}\{I_3, A_0, A_0^2\}$ ce qui donne bien :

h commute avec D_2 si et seulement si $h \in \text{Vect}\left\{id_{E_2}, D_2, D_2^2\right\}$

Autre méthode plus facilement généralisable (commutant d'un endomorphisme nilpotent d'indice maximal) : en reprenant les notations de 3.a, il existe a, b, c tels que $h(y) = ay + bD_2(y) + cD_2^2(y)$; on pose $g = aid_{E_2} + bD_2 + cD_2^2$ et si h commute avec D_2 , on montre que g et h coïncident sur les vecteurs $(y, D_2(y), D_2^2(y)) = \mathcal{B}$ donc les applications sont égales. Réciproquement tout polynôme en D_2 commute avec D_2 .

g commute avec D_2 donc $g = aid_{E_2} + bD_2 + cD_2^2$ et $g^2 = a^2id_{E_2} + 2abD_2 + (2ac + b^2)D_2^2$. Les applications id_{E_2} , D_2 et D_2^2 étant libres (preuve similaire à **I.3.a**), on a $g^2 = \lambda i d_{E_2} + D_2$ si et seulement si $\begin{cases} a^2 = \lambda \\ 2ab = 1 \\ 2ac + b^2 = 0 \end{cases}$ a donc des solutions si et seulement si $\lambda > 0$ qui sont : $g = \pm \left(\sqrt{\lambda} i d_{E_2} \frac{1}{2\sqrt{\lambda}} D_2 - \frac{1}{8\lambda\sqrt{\lambda}} D_2^2\right)$ On en déduit les solutions de $G^2 = A_1$: $G = \pm \left(I_3 + \frac{1}{2}A_0 - \frac{1}{8}A_0^2\right)$