DM5

(Extrait de E3A PSI 2009 maths 2)

 $\mathbb R$ est l'ensemble des nombres réels et n et n_0 sont des entiers naturels.

Cet exercice comporte deux parties. Dans la première partie, on établit un résultat général appelé : Règle de Raabe-Duhamel. Dans la deuxième partie on applique, sans omettre les justifications nécessaires, ce résultat à l'étude de plusieurs séries particulières.

Soit (α_n) une suite réelle.

On rappelle que la relation $\alpha = o\left(\frac{1}{n}\right)$ signifie que $\lim_{n \to +\infty} n\alpha_n = 0$.

Partie A : règle de Raabe-Duhamel.

Soit $(u_n)_{n\geq n_0}$ une suite de réels strictement positifs telle qu'il existe un réel λ vérifiant :

$$\forall n \ge n_0, \ \frac{u_{n+1}}{u_n} = 1 - \frac{\lambda}{n} + o\left(\frac{1}{n}\right)$$

- 1. Prouver que si $\lambda < 0$, alors la série $\sum u_n$ diverge.
- **2.** Soit β un réel quelconque et $v_n = \frac{1}{n^{\beta}}$. Montrer que $\frac{u_{n+1}}{u_n} \frac{v_{n+1}}{v_n} = \frac{\mu}{n} + o\left(\frac{1}{n}\right)$ où μ est un réel, indépendant de n, à déterminer.
- 3. On suppose que $\lambda > 1$. On se propose de démontrer que la série $\sum u_n$ converge. On choisit β tel que $\lambda > \beta > 1$.
 - a) Justifier l'existence d'un entier naturel N tel que, pour $n \ge N$, on ait $\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$.
 - b) Déterminer un réel positif K, indépendant de n, tel que pour $n \geq N$, on ait $u_n \leq Kv_n$.
 - c) Prouver que la série $\sum u_n$ converge.
- 4. On suppose que $0 \le \lambda < 1$. Démontrer par un raisonnement analogue à celui fait à la question précédente que la série $\sum u_n$ diverge (on choisira β de manière à ce que la série $\sum v_n$ diverge et que ceci implique la divergence de la série $\sum u_n$).
- 5. Pour $n \ge 2$, on pose $x_n = \frac{1}{n}$ et $y_n = \frac{1}{n \ln(n)^2}$. Déterminer la nature des séries $\sum x_n$ et $\sum y_n$ et en déduire que le cas $\lambda = 1$ est un cas douteux de la règle de Raabe-Duhamel.

Partie B:

Les trois questions qui suivent sont indépendantes les unes des autres et sont des applications directes ou partielles de la règle de Raabe-Duhamel.

- 1. Pour $n \ge 2$, on pose $w_n = \sqrt{(n-1)!} \prod_{k=1}^{n-1} \sin\left(\frac{1}{\sqrt{k}}\right)$. Déterminer la nature de la série $\sum w_n$.
- 2. Pour $n \geq 1$, on considère l'intégrale généralisée $\int_0^{+\infty} \frac{dt}{(t^4+1)^n}$.
 - a) Montrer que cette intégrale généralisée converge. On note I_n sa valeur.
 - b) Etablir que $I_n = 4n(I_n I_{n+1})$.
 - c) En déduire la nature de la série $\sum I_n$.
- 3. Soit α un réel donné n'appartenant pas à l'ensemble des entiers naturels. On pose

$$a_0 = 1 \; ; \; \forall n \ge 1, \; a_n = \frac{\alpha(\alpha - 1)(\alpha - 2)\dots(\alpha - n + 1)}{n!}$$

- a) Utiliser la règle de Raabe-Duhamel pour montrer que la série $\sum a_n$ est absolument convergente si et seulement si $\alpha > 0$.
- b) Montrer que si $\alpha < -1$, la série $\sum a_n$ diverge.
- c) On suppose que $-1 < \alpha < 0$.
 - i) Prouver que $\lim_{n \to +\infty} \ln(|a_n|) = -\infty$.
 - ii) Montrer que la série $\sum a_n$ converge.