Correction du DM5

(Extrait E3A PSI 2009 Maths B)

Partie A

- 1. Si $\lambda < 0$ alors $\frac{u_{n+1}}{u_n} 1 \sim \frac{-\lambda}{n} > 0$ donc $\frac{u_{n+1}}{u_n} > 1$ pour $n \ge n_0$; la suite (u_n) est donc croissante à partir d'un certain rang n_0 et $u_n \ge u_{n_0} > 0$ pour $n \ge n_0$. La suite (u_n) ne tend pas vers 0 donc $\sum u_n$ diverge grossièrement
- **2.** $\frac{v_{n+1}}{v_n} = \left(1 + \frac{1}{n}\right)^{-\beta} = 1 \frac{\beta}{n} + o\left(\frac{1}{n}\right) \operatorname{donc} \left[\frac{u_{n+1}}{u_n} \frac{v_{n+1}}{v_n} = \frac{\beta \lambda}{n} + o\left(\frac{1}{n}\right)\right]$
- **3.** a) On a $\frac{u_{n+1}}{u_n} \frac{v_{n+1}}{v_n} \sim \frac{\beta \lambda}{n} < 0$ donc $\left\lceil \frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n} \text{ pour } n \geqslant N \right\rceil$
 - b) On fait apparaître un télescopage sous forme de produit (on peut aussi s'intéresser à $\ln(u_n)$ pour faire apparaître une somme) : $u_n = u_N \prod_{k=N}^{n-1} \frac{u_{k+1}}{u_k} \leqslant u_N \prod_{k=N}^{n-1} \frac{v_{k+1}}{v_k} = \frac{u_N}{v_N} v_n \text{ donc } \boxed{u_n \leqslant \frac{u_N}{v_N} v_n \text{ pour } n \geqslant N}$
 - c) On a $\beta > 1$ donc $\sum v_n$ converge et $0 < u_n = O(v_n)$ donc $\sum u_n$ converge
- **4.** On choisit β tel que $\lambda < \beta < 1$, on a alors $\frac{u_{n+1}}{u_n} \frac{v_{n+1}}{v_n} \sim \frac{\beta \lambda}{n} > 0$ donc $\frac{u_{n+1}}{u_n} \geqslant \frac{v_{n+1}}{v_n}$ pour $n \geqslant N_1$. On en déduit $u_n \geqslant \frac{u_{N_1}}{v_{N_1}} v_n$ pour $n \geqslant N_1$. Enfin, comme $\beta < 1$, $\sum v_n$ diverge donc $\sum u_n$ diverge
- 5. On a $\frac{x_{n+1}}{x_n} = \left(1 + \frac{1}{n}\right)^{-1} = 1 \frac{1}{n} + o\left(\frac{1}{n}\right)$ donc $\lambda = 1$ et $\sum x_n$ diverge

 Puis, $\frac{y_{n+1}}{y_n} = \left(1 + \frac{1}{n}\right)^{-1} \left(\frac{\ln(n+1)}{\ln(n)}\right)^{-2} = \left(1 + \frac{1}{n}\right)^{-1} \left(1 + \frac{\ln\left(1 + \frac{1}{n}\right)}{\ln(n)}\right)^{-2}$; et $\frac{\ln\left(1 + \frac{1}{n}\right)}{\ln(n)} \sim \frac{1}{n\ln(n)} = o\left(\frac{1}{n}\right)$ donc $\frac{y_{n+1}}{y_n} = 1 \frac{1}{n} + o\left(\frac{1}{n}\right)$ donc $\lambda = 1$. On montre que $\sum y_n$ converge par comparaison à une intégrale : $t \mapsto \frac{1}{t(\ln(t))^2}$ est continue, positive et décroissante sur $[2, +\infty[$; de plus $\int_2^x \frac{\mathrm{d}t}{t(\ln(t))^2} = \left[\frac{-1}{\ln(t)}\right]_2^x \xrightarrow[x \to +\infty]{} \frac{1}{\ln(2)}$ donc $t \mapsto \frac{1}{t(\ln(t))^2}$ est intégrable sur $[2, +\infty[$ donc $\sum y_n$ converge

Partie B

- 1. On a $\frac{1}{\sqrt{k}} \in]0, \pi[$ donc $w_n > 0$ et $\frac{w_{n+1}}{w_n} = \sqrt{n} \sin\left(\frac{1}{\sqrt{n}}\right) = \sqrt{n} \left(\frac{1}{\sqrt{n}} \frac{1}{6n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right)\right) = 1 \frac{1}{6n} + o\left(\frac{1}{n}\right)$ donc $\lambda = \frac{1}{6} < 1$ et $\sum w_n$ diverge
- **2.** a) La fonction $t \mapsto \frac{1}{(1+t^4)^n}$ est continue sur $[0,+\infty[$ et $\frac{1}{(1+t^4)^n} \underset{t \to +\infty}{\sim} \frac{1}{t^{4n}}$; pour $n \geqslant 1$, on a 4n > 1 donc $t \mapsto \frac{1}{(1+t^4)^n}$ est intégrable sur $[0,+\infty[$ pour $n \geqslant 1]$
 - b) On a $4n(I_n I_{n+1}) = 4n \int_0^{+\infty} t \times \frac{t^3}{(1+t^4)^{n+1}} dt$; puis on effectue une intégration par parties : les fonctions $t \mapsto t$ et $t \mapsto \frac{-1}{(1+t^4)^n}$ sont de classe \mathcal{C}^1 sur \mathbb{R}^+ et on a $\lim_{t \to +\infty} \frac{-t}{(1+t^4)^n} = 0$ donc $\int_0^{+\infty} t \times \frac{4nt^3}{(1+t^4)^{n+1}} dt = \left[t \times \frac{-1}{(1+t^4)^n}\right]_0^{+\infty} + \int_0^{+\infty} \frac{dt}{(1+t^4)^n}$, ce qui donne $4n(I_n I_{n+1}) = I_n$
 - c) La fonction $t \mapsto \frac{1}{(1+t^4)^n}$ est continue, positive, non nulle et intégrable sur $[0,+\infty[$ donc $I_n > 0$ et on a $\frac{I_{n+1}}{I_n} = 1 \frac{1}{4n}$ donc $\sum I_n$ diverge $\lambda = 1/4 < 1$
- **3.** a) $\alpha \notin \mathbb{N}$ donc $a_n \neq 0$ et $|a_n| > 0$; $\left| \frac{a_{n+1}}{a_n} \right| = \frac{n-\alpha}{n+1}$ pour $n \geqslant \alpha$, puis $\left| \frac{a_{n+1}}{a_n} \right| = \left(1 \frac{\alpha}{n} \right) \left(1 + \frac{1}{n} \right)^{-1} = 1 \frac{1+\alpha}{n} + o\left(\frac{1}{n}\right)$; $\alpha \neq 0$ donc $1 + \alpha \neq 1$, la règle de Raabe-Duhamel permet de conclure dans tous les cas :

 $\sum a_n$ est absolument convergente si et seulement si $\alpha > 0$

- b) Si $\alpha < -1$ alors $\left| \frac{a_{n+1}}{a_n} \right| = 1 \frac{1+\alpha}{n} + o\left(\frac{1}{n}\right)$ et $1+\alpha < 0$ donc on a vu que $(|a_n|)$ est croissante à partir d'un certain rang, ce qui prouve que (a_n) ne tend pas vers 0 et $\left| \sum a_n \right|$ diverge grossièrement
- c) i. $\ln |a_{n+1}| \ln |a_n| = \ln \left(1 \frac{1+\alpha}{n} + o\left(\frac{1}{n}\right)\right) \sim \frac{-(1+\alpha)}{n} \operatorname{donc} \sum_{k=0}^{\infty} (\ln |a_{n+1}| \ln |a_n|)$ est une série divergente à termes négatifs. Comme $\ln |a_n| = \ln |a_0| + \sum_{k=0}^{n-1} (\ln |a_{k+1}| \ln |a_k|)$, on a $\lim \ln |a_n| = -\infty$
 - ii. $\frac{a_{n+1}}{a_n} = \frac{\alpha n}{n+1} < 0$ (car $\alpha < 0$) donc $\sum a_n$ est une série alternée. De plus $\lim |a_n| = -\infty$ donc $\lim |a_n| = 0$. Enfin, $\left| \frac{a_{n+1}}{a_n} \right| = 1 \frac{1+\alpha}{n} + o\left(\frac{1}{n}\right)$ et $1+\alpha > 0$ donc $(|a_n|)$ est décroissante à partir d'un certain rang. D'après le CSSA, $\left| \sum a_n \right|$ converge