TD14: Intégrales à paramètres

Exercice 1 (CCINP PSI 2023) Soit $g(x) = \int_0^{+\infty} \frac{e^{-xt} \operatorname{sh} t}{t} dt$.

- 1. Déterminer l'ensemble de définition de q.
- **2.** Montrer que g est de classe \mathcal{C}^1 et calculer g'(x).
- **3.** Déterminer la limite de q en $+\infty$.
- **4.** En déduire la valeur de q(x)

Exercice 2 (CCINP PSI 2021)

Soit $F(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^x}$

- 1. Trouver le domaine de définition D de F.
- 2. Montrer que F est \mathcal{C}^1 sur D et, à l'aide d'un changement de variable, justifier que $F'(x) = \int_{1}^{+\infty} \frac{\ln(t)t^x}{(1+t^x)^2} \left(\frac{1}{t^2}-1\right) dt$. En déduire les variations de F.
- 3. Déterminer les limites de F en $+\infty$ et en 1. (*)

Exercice 3 (CCP PSI 2013)

- 1. Justifier la convergence de $I = \int_{0}^{+\infty} e^{-t^2} dt$.
- **2.** Soient $F(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$ et $G(x) = \int_0^x e^{-t^2} dt$. Montrer que $F + G^2$ est constante.
- 3. Déterminer la limite de F en $+\infty$ et en déduire la valeur de I.

Exercice 4 (Mines-Ponts PSI 2023)

Soit
$$f(x) = \int_0^{+\infty} \cos(xt)e^{-t^2} dt$$

- **1.** Montrer que f est définie et continue sur \mathbb{R} .
 - 2. Montrer que f est dérivable et vérifie une équation différentielle du premier ordre sur \mathbb{R} . (*)
- 3. Résoudre cette équation et en déduire une expression simple de f; on donne $f(0) = \frac{1}{2}\sqrt{\pi}$.

Exercice 5 (Centrale PSI 2019)

- 1. Montrer que $f(x) = \int_0^{+\infty} \exp\left(-t^2 \frac{x^2}{t^2}\right) dt$ est définie et continue sur \mathbb{R} .
- **2.** Montrer que f est dérivable sur \mathbb{R}^* .
- 3. En déduire la valeur de f; on donne $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$. (*)

Exercice 6 (Mines-Ponts PSI 2023)

Soit
$$I = \lim_{x \to +\infty} \int_0^x \frac{\sin(t)}{t} dt$$

- 1. Montrer que I existe
- **2.** Montrer que $f: x \mapsto \int_0^{+\infty} \frac{1 e^{-xt}}{t} \sin(t) dt$ est définie et continue sur \mathbb{R}^+ (*)
- **3.** Montrer que f est \mathcal{C}^1 sur \mathbb{R}^{+*} et en déduire la valeur de I.

Indications

Exercice 2

3. la limite de F en 1 est $+\infty$; commencer par minorer F par l'intégrale sur $[1, +\infty[$

Exercice 4

2. *IPP*

Exercice 5

3. trouver une équation différentielle vérifiée par f (poser u = x/t)

2. pour C^0 , écrire $f(x) = I - \sum_{n > 0} \int_{n\pi}^{(n+1)\pi} \frac{e^{-xt}}{t} \sin(t) dt$ et vérifier la CVU de la série de fct