Fonctions de plusieurs variables

Soient $p \in \mathbb{N}^*$ et U est un ouvert de \mathbb{R}^p non vide.

Rappels sur la continuité : soient $f:U\longrightarrow \mathbb{R},\, a$ un point de U et $\|\cdot\|$ une norme sur $\mathbb{R}^p.$

- $\diamond f$ est continue en a si et seulement si $\forall \varepsilon > 0, \exists \eta > 0, \forall x \in U, ||x a|| < \eta \Rightarrow |f(x) f(a)| < \varepsilon$.
- \diamond La continuité de f en a est indépendante de la norme que l'on choisit sur \mathbb{R}^p .
- \diamond Si f est lipschitzienne sur $B(a,r) \cap U$, pour r > 0 alors f est continue en a.
- ♦ Pour $h \in E$, l'application $\varphi_h : t \in \mathbb{R} \longmapsto f(a+th)$ est définie sur un intervalle]-r,r[et si f est continue en a, l'application φ_h est continue en 0 pour tout $h \in E$.
- \diamond Si $g: \mathbb{R}^p \longrightarrow \mathbb{R}$ est continue sur \mathbb{R}^p alors $U = \{(x_1, \dots, x_p) \in \mathbb{R}^p, g(x_1, \dots, x_p) > 0\}$ est un ouvert de \mathbb{R}^p .

Exemple(s):

(R.1) $f_1:(x,y)\in\mathbb{R}^2\setminus\{(0,0)\}\longmapsto \frac{3x^2+xy}{\sqrt{x^2+y^2}}$ est prolongeable par continuité sur \mathbb{R}^2 .

(R.2) $f_2:(x,y)\in\mathbb{R}^2\setminus\{(0,0)\}\longmapsto \frac{xy}{x^2+y^2}$ n'est pas prolongeable par continuité en (0,0).

(R.3) $f_4:(x,y)\in\mathbb{R}^2\setminus\{(0,0)\}\longmapsto \frac{xy^2}{x^2+y^6}$ n'est pas prolongeable par continuité en (0,0).

I Fonctions de classe C^1

1. Dérivées partielles d'ordre 1 et classe \mathcal{C}^1

<u>Définition</u>: Soient $f: U \longrightarrow \mathbb{R}$, $a \in U$ et (e_1, \dots, e_p) la base canonique de \mathbb{R}^p .

1. On dit que f admet une dérivée partielle d'ordre 1 d'indice i au point a si la fonction $t \mapsto f(a + te_i)$ est dérivable en 0.

Dans ce cas, on note $\frac{\partial f}{\partial x_i}(a)$ (ou $\partial_i f(a)$) la $i^{\text{ème}}$ dérivée partielle de f au point a, définie par

$$\frac{\partial f}{\partial x_i}(a) = \lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t}$$

2. Si f admet en tout point de U des dérivées partielles, on définit, pour tout $i \in [1, p]$, les applications dérivées partielles premières de f par

$$\frac{\partial f}{\partial x_i} : U \longrightarrow \mathbb{R}$$

$$a \longmapsto \frac{\partial f}{\partial x_i}(a)$$

Remarque(s):

- (1.2) Si elles existent, chaque application $\frac{\partial f}{\partial x_i}$ est une nouvelle application de p variables définie sur U.

<u>Conséquence</u> [I.1]: Si $f: U \longleftrightarrow \mathbb{R}$ est définie sur $U \subset \mathbb{R}^2$ contenant (0,0) alors, si elle existent, les dérivées partielles premières de f en (0,0) sont définies par

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{1}{t} \big[f(t,0) - f(0,0) \big] \quad \text{et} \quad \frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{1}{t} \big[f(0,t) - f(0,0) \big]$$

Exemple(s):

- (I.3) si $f: \mathbb{R}^p \to \mathbb{R}$ est une forme linéaire sur \mathbb{R}^p alors f admet en tout point a de \mathbb{R}^p des dérivées partielles et $\frac{\partial f}{\partial x_i}(a) = f(e_i)$ (les dérivées partielles sont donc indépendantes du point a).
- (I.4) $f: x \in \mathbb{R}^p \longmapsto ||x||$ admet des dérivées partielles en tout point autre que 0, si || || est une norme euclidienne sur \mathbb{R}^p .
- (I.5) Soient $A \in \mathcal{M}_p(\mathbb{R})$ symétrique et $f: X \in \mathbb{R}^p \mapsto \frac{1}{2}(AX|X)$. Montrer que f admet des dérivées partielles premières en tout point X_0 de \mathbb{R}^p et les calculer.

<u>Attention</u>: L'existence de dérivées partielles n'implique pas la continuité; c/ex: $f(x,y) = \frac{xy}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0 admet des dérivées partielles en (0,0) mais f n'est pas continue en (0,0).

 $\underline{\mathbf{et}}$ \triangleright les p dérivées partielles de $f, \frac{\partial f}{\partial x_i} : a \in U \longmapsto \frac{\partial f}{\partial x_i}(a)$ sont continues sur U (pour tout $i \in [\![1,p]\!]$).

On note $\mathcal{C}^1(U,\mathbb{R})$ l'ensemble des fonctions de classe \mathcal{C}^1 sur U et à valeurs dans \mathbb{R} .

Remarque(s):

(I.6) Pour prouver la classe C^1 d'une fonction de p variables, on doit donc prouver la continuité de p fonctions de p variables.

Exemple(s):

- (1.7) Montrer que $f:(x,y)\mapsto xy\frac{x^2-y^2}{x^2+y^2}$ si $(x,y)\neq (0,0)$ et f(0,0)=0 est de classe \mathcal{C}^1 sur \mathbb{R}^2 .
- $\overline{(I.8)}$ Toute application polynômiale est de classe \mathcal{C}^1 sur \mathbb{R}^p
- $\overline{(1.9)}$ Toute application linéaire sur \mathbb{R}^p est de classe \mathcal{C}^1 sur \mathbb{R}^p .

<u>Théorème</u> [I.2]: Soit f une application de classe C^1 sur U. Alors f admet un développement limité à l'ordre 1 en tout point de U de la forme

1. Dans le cas général $(U \subset \mathbb{R}^p)$: avec $a \in U$ et $h = (h_1, \dots, h_p) \in \mathbb{R}^p$

$$f(a+h) = \int_{h\to 0}^{\infty} f(a) + \sum_{i=1}^{p} h_i \times \frac{\partial f}{\partial x_i}(a) + o(\|h\|)$$

2. Dans le cas de deux variables $(U \subset \mathbb{R}^2)$: avec $(x_0, y_0) \in U$ et $(h, k) \in \mathbb{R}^2$

$$f(x_0 + h, y_0 + k) = \int_{(h,k) \to (0,0)} f(x_0, y_0) + h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0) + o(\|(h, k\|))$$

Remarque(s):

Conséquence [I.3]: Toute application de classe C^1 sur U est continue sur U.

<u>Définition</u> [I.4]: Soient $f: U \to \mathbb{R}$ de classe \mathcal{C}^1 sur U et $a \in U$. On appelle **différentielle de** f **en** a la forme linéaire, notée $\mathrm{d} f(a)$ (ou $\mathrm{d} f_0$), définie par

1. Dans le cas général $(U \subset \mathbb{R}^p)$:

$$\mathrm{d}f(a): \quad \mathbb{R}^p \longrightarrow \quad \mathbb{R}$$

$$(h_1, \dots, h_p) \quad \longmapsto \quad \sum_{i=1}^p h_i \times \frac{\partial f}{\partial x_i}(a)$$

L'image de $h = (h_1, \dots, h_p) \in \mathbb{R}^p$ par df(a) est notée $df(a).h = \sum_{i=1}^p h_i \times \frac{\partial f}{\partial x_i}(a)$.

2. Dans le cas de deux variables $(U \subset \mathbb{R}^2)$: avec $a = (x_0, y_0) \in U$

$$\forall (h,k) \in \mathbb{R}^2, \, \mathrm{d}f(x_0,y_0).(h,k) = h \frac{\partial f}{\partial x}(x_0,y_0) + k \frac{\partial f}{\partial y}(x_0,y_0)$$

Exemple(s):

(I.11) Si f est une forme $\underline{\text{lin\'eaire}}$ sur \mathbb{R}^p alors $\mathrm{d}f(a)=f$ pour tout $a\in\mathbb{R}^p$.

Conséquence [I.5] : Soient f de classe C^1 sur U et $a \in U$.

- 1. Les dérivées partielles de f sont $\frac{\partial f}{\partial x_i}(a) = df(a).e_i$, où e_i est le $i^{\text{ème}}$ vecteur de la base canonique de \mathbb{R}^p .
- ${\bf 2.}\,$ Le développement limité de f à l'ordre 1 en a s'écrit

$$f(a+h) = \int_{h\to 0} f(a) + df(a) \cdot h + o(\|h\|)$$

Remarque(s):

- (I.12) df(a) est la forme linéaire canoniquement associé à la matrice ligne $J_a(f) = \left(\frac{\partial f}{\partial x_1}(a) \dots \frac{\partial f}{\partial x_n}(a)\right)$.
- $\underbrace{I.13}) \ \mathrm{d}f(a) \ \mathrm{est} \ \mathrm{en} \ \mathrm{fait} \ \mathrm{l'unique} \ \mathrm{forme} \ \mathrm{lin\'eaire} \ \varphi_a \ \mathrm{sur} \ \mathbb{R}^p \ \mathrm{telle} \ \mathrm{que} \ f(a+h) \underset{h \to 0}{=} f(a) + \varphi_a(h) + o(\|h\|).$
- 2. Opérations sur les fonctions de classe \mathcal{C}^1

Propriété [I.6] : Soient $(f,g) \in C^1(U,\mathbb{R})^2$ et $a \in U$

1. Si $(\alpha, \beta) \in \mathbb{R}^2$ alors $\alpha f + \beta g \in \mathcal{C}^1(U, \mathbb{R})$ et pour tout $a \in U$, on a $\frac{\partial(\alpha f + \beta g)}{\partial x_i}(a) = \alpha \frac{\partial f}{\partial x_i}(a) + \beta \frac{\partial g}{\partial x_i}(a)$ donc, pour $h \in \mathbb{R}^p$,

$$d(\alpha f + \beta g)(a).h = \alpha df(a).h + \beta dg(a).h$$

En particulier $C^1(U,\mathbb{R})$ est un sous-espace vectoriel de $C^0(U,\mathbb{R})$.

2. On a $fg \in \mathcal{C}^1(U, \mathbb{R}), \ \frac{\partial (fg)}{\partial x_i}(a) = f(a) \frac{\partial g}{\partial x_i}(a) + g(a) \frac{\partial f}{\partial x_i}(a) \ \text{donc, pour } h \in \mathbb{R}^p,$

$$d(fg)(a).h = f(a) \times dg(a).h + g(a) \times df(a).h$$

3. Si f ne s'annule pas sur U alors $\frac{1}{f} \in \mathcal{C}^1(U,\mathbb{R})$ et $\frac{\partial (1/f)}{\partial x_i}(a) = -\frac{1}{f(a)^2} \frac{\partial f}{\partial x_i}(a)$ donc, pour $h \in \mathbb{R}^p$,

$$d\left(\frac{1}{f}\right)(a).h = -\frac{df(a).h}{f(a)^2}$$

Propriété [I.7]: (Règle de la chaîne)

1. Soient U un ouvert de \mathbb{R}^p , $f:U\to\mathbb{R}$ de classe \mathcal{C}^1 sur U et $\varphi_1,\ldots,\varphi_p$ des applications de classe \mathcal{C}^1 sur un intervalle I (de \mathbb{R}) et à valeurs dans \mathbb{R} telles que $\forall t\in I, (\varphi_1(t),\ldots,\varphi_p(t))\in U$. Soit g l'application de I dans \mathbb{R} définie par

$$\forall t \in I, g(t) = f(\varphi_1(t), \dots, \varphi_p(t)).$$

Alors g est de classe C^1 sur I et, pour tout $t \in I$,

$$g'(t) = \sum_{i=1}^{p} \varphi_i'(t) \times \partial_i f(\varphi_1(t), \dots, \varphi_p(t))$$
$$= \sum_{i=1}^{p} \varphi_i'(t) \times \frac{\partial f}{\partial x_i}(\varphi_1(t), \dots, \varphi_p(t))$$

2. Cas de deux variables : si $g(t) = f(\alpha(t), \beta(t))$ vérifie les hypothèses précédentes alors

$$\forall t \in I, g'(t) = \alpha'(t) \times \partial_1 f(\alpha(t), \beta(t)) + \beta'(t) \times \partial_2 f(\alpha(t), \beta(t))$$
$$= \alpha'(t) \times \frac{\partial f}{\partial x}(\alpha(t), \beta(t)) + \beta'(t) \times \frac{\partial f}{\partial y}(\alpha(t), \beta(t))$$

Remarque(s):

(I.14) g représente la restriction de f le long de la courbe de \mathbb{R}^p paramétrée par $(\varphi_1, \dots, \varphi_p)$, ie l'ensemble des points de \mathbb{R}^p de la forme $(\varphi_1(t), \dots, \varphi_p(t))$ avec $t \in I$.

Conséquence [I.8]: Soient U un ouvert convexe de \mathbb{R}^p et $f \in \mathcal{C}^1(U, \mathbb{R})$. Alors f est constante sur U si et seulement si , pour tout a de U, $\mathrm{d}f(a)=0$, ie si et seulement si

$$\forall a \in U, \forall i \in [1, p] \frac{\partial f}{\partial x_i}(a) = 0$$

Remarque(s):

(I.15) rappel : C est convexe si $\forall (x,y) \in C^2, \forall t \in [0,1], tx + (1-t)y \in C$

Propriété [I.9]:

1. Soient U un ouvert de \mathbb{R}^p , $f: U \to \mathbb{R}$, de classe \mathcal{C}^1 sur U, x_1, \ldots, x_p des applications de classe \mathcal{C}^1 sur un ouvert V de \mathbb{R}^n telles que $\forall (u_1, \ldots, u_n) \in V, (x_1(u_1, \ldots, u_n), \ldots, x_p(u_1, \ldots, u_n)) \in U$. Si on pose $g(u_1, \ldots, u_n) = f(x_1(u_1, \ldots, u_n), \ldots, x_p(u_1, \ldots, u_n))$ alors f est \mathcal{C}^1 sur V et on a

$$\forall i \in [1, n], \partial_i g(u_1, \dots, u_n) = \sum_{k=1}^p \partial_i x_k(u_1, \dots, u_n) \times \partial_k f(x_1(u_1, \dots, u_n), \dots, x_p(u_1, \dots, u_n))$$
ou
$$\frac{\partial g}{\partial u_i}(u_1, \dots, u_n) = \sum_{k=1}^p \frac{\partial x_k}{\partial u_i}(u_1, \dots, u_n) \times \frac{\partial f}{\partial x_k}(x_1(u_1, \dots, u_n), \dots, x_p(u_1, \dots, u_n))$$

2. Cas de deux variables : si $g(u,v)=f(\alpha(u,v),\beta(u,v))$ vérifie les hypothèses précédentes alors

$$\begin{cases} \partial_1 g(u,v) = \partial_1 \alpha(u,v) \times \partial_1 f(\alpha(u,v),\beta(u,v)) + \partial_1 \beta(u,v) \times \partial_2 f(\alpha(u,v),\beta(u,v)) \\ \partial_2 g(u,v) = \partial_2 \alpha(u,v) \times \partial_1 f(\alpha(u,v),\beta(u,v)) + \partial_2 \beta(u,v) \times \partial_2 f(\alpha(u,v),\beta(u,v)) \\ \partial_1 g(u,v) = \frac{\partial \alpha}{\partial u}(u,v) \times \frac{\partial f}{\partial u}(\alpha(u,v),\beta(u,v)) + \frac{\partial \beta}{\partial u}(u,v) \times \frac{\partial f}{\partial y}(\alpha(u,v),\beta(u,v)) \\ \partial_1 g(u,v) = \frac{\partial \alpha}{\partial v}(u,v) \times \frac{\partial f}{\partial v}(\alpha(u,v),\beta(u,v)) + \frac{\partial \beta}{\partial v}(u,v) \times \frac{\partial f}{\partial v}(\alpha(u,v),\beta(u,v)) \end{cases}$$

PSI2 - Lycée Montaigne Page 4/9

Remarque(s):

Exemple(s):

(I.17) Soient f de classe C^1 sur \mathbb{R}^2 et $g(x,y) = f\left(y^2e^x, x\sin(y)\right)$. Calculer les dérivées partielles de g en fonction de celles de f.

Conséquence [I.10]: (Cas des coordonnées polaires)

Soient $f: B(0, R) \to \mathbb{R}$, de classe \mathcal{C}^1 sur la boule ouverte de centre 0 et de rayon R, et $g(\rho, \theta) = f(\rho \cos \theta, \rho \sin \theta)$. Alors g est de classe \mathcal{C}^1 sur $[0, R] \times \mathbb{R}$ et

$$\begin{split} \frac{\partial g}{\partial \rho}(\rho,\theta) &= \cos\theta \frac{\partial f}{\partial x}(\rho\cos\theta,\rho\sin\theta) + \sin\theta \frac{\partial f}{\partial y}(\rho\cos\theta,\rho\sin\theta) \\ \frac{\partial g}{\partial \theta}(\rho,\theta) &= -\rho\sin\theta \frac{\partial f}{\partial x}(\rho\cos\theta,\rho\sin\theta) + \rho\cos\theta \frac{\partial f}{\partial y}(\rho\cos\theta,\rho\sin\theta) \end{split}$$

Remarque(s):

- (I.18) Ce changement de variable n'est pas bijectif (sur l'ensemble $]0, R[\times\mathbb{R})$ mais le devient si on se place sur $]0, R[\times] \pi, \pi[$ par exemple.
- $\overbrace{\it I.19}$ On peut inverser ce système et déterminer les dérivées partielles de f en fonction de celles de g. Exemple(s) :
 - $\overline{(1.20)}$ Trouver les fonctions f, de classe C^1 sur \mathbb{R}^2 telles que $\frac{\partial f}{\partial x} + 2\frac{\partial f}{\partial y} = 0$ en utilisant un changement de variable linéaire.
 - (I.21) Résoudre sur $\mathbb{R}^2 \setminus \{(0,0)\}, x \frac{\partial f}{\partial y} y \frac{\partial f}{\partial x} = x$ en utilisant les coordonnées polaires.

3. Vecteur gradient

Dans ce paragraphe, on note (|) le produit scalaire cononique de \mathbb{R}^p .

<u>Définition</u>: Soient $f \in \mathcal{C}^1(U, \mathbb{R})$ et $a \in U$. On appelle **vecteur gradient de** f **au point** a, le vecteur de \mathbb{R}^p , noté $\nabla f(a)$, défini par

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right)$$

Propriété [I.11] : Soient $(f,g) \in \mathcal{C}^1(U,\mathbb{R})^2$, $(\alpha,\beta) \in \mathbb{R}^2$ et $a \in U$

$$\nabla(\alpha f + \beta g)(a) = \alpha \nabla f(a) + \beta \nabla g(a)$$
$$\nabla(fg)(a) = f(a) \times \nabla g(a) + g(a) \times \nabla f(a)$$

Si f ne s'annule pas sur U alors

$$\nabla\left(\frac{1}{f}\right)(a) = -\frac{1}{f(a)^2} \times \nabla f(a)$$

Propriété [I.12] : Soient $f \in C^1(U, \mathbb{R})$, $a \in U$ et $h \in \mathbb{R}^p$. On a

$$df(a).h = (\nabla f(a)|h)$$

Remarque(s):

 $(\underline{I.22})$ Le $\mathrm{DL}_1(a)$ de f peut s'écrire $f(a+h) \underset{h\to 0}{=} f(a) + (\nabla f(a)|h) + o(\|h\|)$.

PSI2 - Lycée Montaigne Page 5/9

(1.23) Le vecteur $\nabla f(a)$ est en fait l'unique vecteur u_a de \mathbb{R}^p tel que $\forall h \in \mathbb{R}^p$, $\mathrm{d}f(a).h = (u_a|h).$

Exemple(s):

 $\overline{(I.24)}$ Déterminer l'expression du gradient en coordonnées polaires.

(I.25) Soient U un ouvert convexe de \mathbb{R}^p et $f \in \mathcal{C}^1(U,\mathbb{R})$ telle qu'il existe $k \in \mathbb{R}^+$ tel que, pour tout $a \in U, \|\nabla f(a)\| \leq k$. Montrer que f est k-lipschitzienne sur U (inégalité des accroissements finis).

II Fonctions de classe C^2

1. Dérivées partielles secondes

<u>Définition</u>:

1. Soient $f: U \longrightarrow \mathbb{R}$, $a \in U$ et $(i, j) \in [\![1, p]\!]^2$. On note $\frac{\partial^2 f}{\partial x_i \partial x_j}(a)$ (ou $\partial_{i,j}^2 f(a)$), si elle existe, la dérivée partielle première par rapport à x_i de la fonction $\frac{\partial f}{\partial x_j}$ au point a. Le réel $\frac{\partial^2 f}{\partial x_i \partial x_j}(a)$ est appelé **dérivée partielle** seconde de f par rapport à x_j puis x_i au point a.

2. On dit que f est de classe \mathcal{C}^2 sur U si les p^2 dérivées partielles secondes de f existent et sont continues sur U. On note $\mathcal{C}^2(U,\mathbb{R})$ l'ensemble des fonctions de classe \mathcal{C}^2 sur U et à valeurs réelles.

Remarque(s):

(II.2) f est de classe C^2 sur U si et seulement si f admet des dérivées partielles premières de classe C^1 sur U.

$\underline{\text{Th\'eor\`eme}}$ [II.1] : (Th\'eor\`eme de Schwarz)

Si f est une application de classe C^2 sur un ouvert U alors pour tout $(i,j) \in [1,p]^2$, on a:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

Remarque(s):

(II.3) Le théorème de Schwarz ne peut pas servir à montrer qu'une fonction est de classe \mathcal{C}^2 .

(II.4) Pour une fonction de classe C^2 sur \mathbb{R}^p , il existe donc au plus $\frac{p(p+1)}{2}$ dérivées partielles secondes différentes.

Exemple(s):

a) Déterminer une condition nécéssaire sur $g: \mathbb{R}^{+*} \to \mathbb{R}$, de classe \mathcal{C}^1 sur \mathbb{R}^{+*} , telle que, si $V: (x,y) \in D \mapsto \left(\left(1+xy+x^2\right)g(x+y), \left(1+xy+y^2\right)g(x+y)\right)$, alors il existe $f: D \to \mathbb{R}$, de classe \mathcal{C}^2 sur D vérifiant $V = \operatorname{grad}(f)$.

b) Vérifier que cette condition est suffisante et calculer f.

Propriété [II.2]:

1. $C^2(U,\mathbb{R})$ est un sous-espace vectoriel de $C^1(U,\mathbb{R})$.

2. Si $(f,g) \in \mathcal{C}^2(U,\mathbb{R})^2$ alors $fg \in \mathcal{C}^2(U,\mathbb{R})$.

3. Si $f \in \mathcal{C}^2(U, \mathbb{R})$ ne s'annule pas sur U alors $\frac{1}{f} \in \mathcal{C}^2(U, \mathbb{R})$.

Exemple(s):

- (II.7) Soient f de classe C^2 sur \mathbb{R}^2 et $g(x,y) = f(xe^y, x+y)$. Calculer les dérivées partielles secondes de g en fonction des dérivées partielles de f.
- (II.8) Déterminer les fonctions de classe C^2 sur \mathbb{R}^2 telles que $\frac{\partial^2 f}{\partial t^2} c^2 \frac{\partial^2 f}{\partial x^2} = 0$ (équation de propagation) en utilisant le changement de variables (u,v) = (x+ct,x-ct)
- (II.9) Soient $U = \mathbb{R}^2 \setminus \{(x,0), x \in \mathbb{R}^-\}$ et $f: U \to \mathbb{R}$ de classe C^2 sur U. On pose, pour $(\rho, \theta) \in \mathbb{R}^{+*} \times] \pi, \pi[, g(\rho, \theta) = f(\rho \cos \theta, \rho \sin \theta)$. Calculer le laplacien de $f, \Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$, en fonction des dérivées partielles de g.

<u>Définition</u> [II.3] : Soient $f: U \longrightarrow \mathbb{R}$ et $a \in U$. Si f est C^2 sur U, on définit $H_f(a)$, la matrice Hessienne de f au point a, par

$$H_f(a) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(a)\right)_{1 \le i, j \le p} \in \mathcal{S}_p(\mathbb{R})$$

Propriété [II.4]: (Formule de Taylor-Young à l'ordre 2)

Soient $f: U \longrightarrow \mathbb{R}$ et $a \in U$. Si f est C^2 sur U, alors

$$f(a+h) = \int_{h\to 0}^{\infty} f(a) + \nabla f(a)^T h + \frac{1}{2} h^T H_f(a) h + o(\|h\|^2)$$

Remarque(s):

(II.10) Si $h = (h_1, \ldots, h_p)$ alors

$$\nabla f(a)^T h = (\nabla f(a)|h) = df(a).h = \sum_{i=1}^p \frac{\partial f}{\partial x_i}(a)h_i$$

et
$$h^T H_f(a) h = (H_f(a)h|h) = \sum_{i=1}^p \sum_{j=1}^p \frac{\partial^2 f}{\partial x_i \partial x_j}(a) h_i h_j$$

2. Extrema

<u>Définition</u>: Soient $f:U\longrightarrow \mathbb{R}$ et $a\in U.$ On dit que f admet en a

- un **maximum local** s'il existe r > 0 tel que $\forall x \in B(a, r), f(x) \leq f(a)$.
- un **minimum local** s'il existe r > 0 tel que $\forall x \in B(a,r), f(x) \ge f(a)$.
- un **extremum local** si f possède en a un maximum local ou un minimum local.
- un **maximum global** (ou absolu) si $\forall x \in U, f(x) \leq f(a)$.
- un **minimum global** (ou absolu) si $\forall x \in U, f(x) \ge f(a)$.
- un **extremum global** (ou absolu) si f possède en a un maximum global ou un minimum global.

Propriété [II.5]: Soient U un <u>ouvert</u> de \mathbb{R}^p , $f:U \longrightarrow \mathbb{R}$ de classe \mathcal{C}^1 sur U et $a \in U$.

 $\underline{\mathbf{Si}}\ f$ admet un extremum local en a $\underline{\mathbf{alors}}\ \nabla f(a)=0,$ ie

$$\forall i \in [1, p], \frac{\partial f}{\partial x_i}(a) = 0$$

<u>Attention</u>: Cette propriété est fausse sur un ensemble non ouvert; $c/ex : x \mapsto ||x||^2$ est constante sur S(0,1) (donc extrémale en tout point) mais son gradient ne s'annule jamais.

PSI2 - Lycée Montaigne Page 7/9

<u>Définition</u>: Un point a pour lequel on a $\nabla f(a) = 0$ est appelé un **point critique de** f.

Propriété [II.6] : Soient U un ouvert de \mathbb{R}^p , $f:U\longrightarrow\mathbb{R}$ et $a\in U$ un point critique de f.

- \triangleright Si $H_f(a) \in \mathcal{S}_p^{++}(\mathbb{R})$ alors f admet en a un minimum local strict.
- \triangleright Si $H_f(a) \notin \mathcal{S}_p^+(\mathbb{R})$ alors f n'a pas de minimum local en a.

Remarque(s):

- (II.11) Cette propriété s'adapte à l'étude des maximum locaux de f (en remplaçant f par -f):
 - ightharpoonup Si $-H_f(a) \in \mathcal{S}_p^{++}(\mathbb{R})$ alors f admet en a un maximum local strict.
 - ightharpoonup Si $-H_f(a) \notin \mathcal{S}_p^+(\mathbb{R})$ alors f n'a pas de maximum local en a.

Conséquence [II.7] : (Cas des fonctions de 2 variables) Soient U un ouvert de \mathbb{R}^2 , $f:U\longrightarrow \mathbb{R}$ et $a\in U$ in point critique de f.

- \triangleright Si det $(H_f(a)) > 0$ et Tr $(H_f(a)) > 0$ alors f admet un minimum local strict en a.
- \triangleright Si det $(H_f(a)) > 0$ et Tr $(H_f(a)) < 0$ alors f admet un maximum local strict en a.
- \triangleright Si det $(H_f(a)) < 0$ alors f n'a pas d'extremum local en a.

Remarque(s):

(II.12) On ne peut pas avoir $\det(H_f(a)) > 0$ et $\operatorname{Tr}(H_f(a)) = 0$

Exemple(s):

- (II.13) Déterminer les extremum sur \mathbb{R}^2 de $f:(x,y)\mapsto (x^2+y)e^{-(x^2+y^2)}$.
- (II.14) Soit $f:(x,y)\mapsto xy\ln(x^2+y^2)$. Montrer que f se prolonge en une fonction de classe \mathcal{C}^1 sur \mathbb{R}^2 et déterminer ses extrema locaux.
- (II.15) Déterminer les extrema de $f(x,y) = xy\sqrt{1-x-y}$ sur $T = \{(x,y) \in (\mathbb{R}^+)^2, x+y \leq 1\}$.

<u>Attention</u>: Si $det(H_f(a)) = 0$, on ne peut pas conclure: $f(x,y) = x^2y + \ln(4+y^2)$.

III Applications à la géométrie

1. Application aux courbes planes

<u>Définition</u> [III.1]: Soient U un ouvert de \mathbb{R}^2 , $f:U\longrightarrow\mathbb{R}$ une application de classe \mathcal{C}^1 sur U et la courbe plane Γ définie par une équation implicite : $\Gamma=\left\{(x,y)\in\mathbb{R}^2, f(x,y)=0\right\}$.

- 1. On dit qu'un point $M_0 = (x_0, y_0)$ de Γ est **régulier** si $\nabla f(M_0) \neq 0$.
- 2. La tangente à Γ en M_0 est alors la droite passant par M_0 et normale à $\nabla f(M_0)$. Si $M_0 = (x_0, y_0)$, l'équation cartésienne de la tangente à Γ en M_0 est donc

$$(x - x_0)\frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0)\frac{\partial f}{\partial y}(x_0, y_0) = 0$$

Exemple(s):

(III.1) Déterminer l'équation de la tangente au cercle de centre $\Omega = (a, b)$ et de rayon R > 0 en un point de coordonnées (x_0, y_0) .

PSI2 - Lycée Montaigne Page 8/9

Conséquence [III.2]: Soient $f \in \mathcal{C}^1(U,\mathbb{R})$ et $\lambda \in \mathbb{R}$. On note $\mathcal{C}_{\lambda} = \{(x,y) \in \mathbb{R}^2, f(x,y) = \lambda\}$ (une ligne de niveau def(x)). Si $f(x_0,y_0) \in \mathcal{C}_{\lambda}$ est tel que $def(x_0,y_0) \neq 0$ alors $def(x_0,y_0)$ est orthogonal à la ligne de niveau $def(x_0,y_0)$ et orienté dans le sens des valeurs croissantes de f.

2. Application aux surfaces de \mathbb{R}^3

<u>Définition</u>: Soient U un ouvert non vide de \mathbb{R}^3 , $f:U\longrightarrow\mathbb{R}$ de classe \mathcal{C}^1 sur U et $S=\left\{(x,y,z)\in\mathbb{R}^3, f(x,y,z)=0\right\}$ une surface de \mathbb{R}^3 , définie par une équation implicite.

- 1. Un point M_0 de S est régulier si $\nabla f(M_0) \neq 0$.
- 2. Si M_0 est régulier, le plan tangent à S en $M_0 = (x_0, y_0, z_0)$ est le plan passant par M_0 et normal à $\nabla f(M_0)$. C'est donc le plan d'équation

$$(x - x_0)\frac{\partial f}{\partial x}(M_0) + (y - y_0)\frac{\partial f}{\partial y}(M_0) + (z - z_0)\frac{\partial f}{\partial z}(M_0) = 0$$

Exemple(s):

<u>Définition</u>: Soient U un ouvert non vide de \mathbb{R}^3 , $f:U\longrightarrow\mathbb{R}$ de classe \mathcal{C}^1 sur U et S la surface d'équation implicite f(x,y,z)=0. Soient x,y et z trois fonctions de classe \mathcal{C}^1 sur un intervalle I telles que $\forall t\in I, f(x(t),y(t),z(t))=0$. L'ensemble $\Gamma=\{(x(t),y(t),z(t)),t\in I\}$ est une **courbe de** \mathbb{R}^3 **tracée sur la surface** S.

Exemple(s):

(III.3) Soit g de classe C^1 sur U ouvert de \mathbb{R}^2 et S la surface de \mathbb{R}^3 d'équation z = g(x,y). On appelle courbes coordonnées de S les courbes d'équations $\begin{cases} z = g(\alpha,y) \\ x = \alpha \end{cases}$ et $\begin{cases} z = g(x,\beta) \\ y = \beta \end{cases}$; ce sont les intersections de la surface S avec les plans parallèles aux plans (xOz) et (yOz).

Propriété [III.3]: Soient M_0 un point régulier d'une surface S définie par une équation implicite f(x, y, z) = 0 et $\overline{\Gamma}$ une courbe tracée sur S passant par M_0 . La tangente à la courbe Γ au point M_0 est incluse dans le plan tangent à la surface S au point M_0 .

PSI2 - Lycée Montaigne Page 9/9