Correction du DM5

Inspiré de CCP PC 2002 maths 1

Partie I

- 1. On vérifie que $P = (X 1)(2X 1)^2$ est annulateur de A
- **2.** On cherche le reste de la division euclidienne de X^n par $P: X^n = PQ + aX^2 + bX + c$. Avec X = 1 et $X = \frac{1}{2}$, on obtient les équations 1 = a + b + c et $2^{-n} = \frac{a}{4} + \frac{b}{2} + c$; en dérivant, puis avec $X = \frac{1}{2}$, on obtient la troisième équation $n2^{1-n} = a + b$. On en déduit $\begin{cases} a = 4 - (n+1)2^{2-n} \\ b = 2^{2-n} - 4 + 6n2^{-n} \\ c = 1 - n2^{1-n} \end{cases}$ et $A^n = \frac{1}{2^n} \begin{pmatrix} 1 - 2n & 2n & 0 \\ -2n & 2n + 1 & 0 \\ -2n & 2n + 1 - 2^n & 2^n \end{pmatrix}$, pour $n \geqslant 1$ (cette expression n'est pas du tout utile pour calculer la limite) ou plutôt, en fonction de A^2 , A et I_3 : $A^n = (4 - (n+1)2^{2-n}) A^2 + (2^{2-n} - 4 + 6n2^{-n}) A + (1 - n2^{1-n}) I_n$, pour $n \ge 1$
- 3. On en déduit $\left|\lim_{n\to +\infty}A^n=4A^2-4A+I_n=\begin{pmatrix}0&0&0\\0&0&0\\0&-1&1\end{pmatrix}\right|$ L'endomorphisme associé est un projecteur de rang 1 : c'est le projecteur sur $Vect\{(0,0,1)\}$ parallèlement au plan $Vect\{(1,0,0),(0,1,1)\}$.
- **4.** $\left| \mathcal{X}_A(\lambda) = \left(\lambda \frac{1}{2} \right)^2 (\lambda 1) \text{ donc } \operatorname{Sp}(A) = \left\{ \frac{1}{2}, 1 \right\} \text{ et } \rho(A) = 1$

Partie II

- 1. ψ est une norme (vu en cours); on peut aussi dire que ψ est la norme N_{∞} sur \mathbb{C}^{n^2} en identifiant une matrice de $\mathcal{M}_n(\mathbb{C})$ à une vecteur de \mathbb{C}^{n^2} .
 - Si $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ alors $\psi(A) = 1$ et $\psi(A^2) = 2$ donc $\psi(A)^2 < \psi(A^2)$.
- **2.** a) θ est linéaire donc lipschitzienne et il existe C_A telle que θ soit C_A -lipschitzienne, ie $N(AX) \leqslant C_A N(X)$
 - b) L'ensemble considéré est une partie de \mathbb{R} non vide (car $\mathbb{C}^n \setminus \{0\} \neq \emptyset$) et majoré par C_A donc $|\widetilde{N}(A)|$ existe
- **3.** a) Si $\widetilde{N}(A) = 0$ alors N(AX) = 0 pour tout $X \neq 0$ donc AX = 0 pour tout X (même nul) donc A = 0; la réciproque est évidente.
 - b) Pour $X \neq 0$, on a $\frac{N(\lambda AX)}{N(X)} = |\lambda| \frac{N(AX)}{N(X)} \leqslant |\lambda| \widetilde{N}(A)$ donc $\widetilde{N}(\lambda A) \leqslant |\lambda| \widetilde{N}(A)$
 - c) On en déduit, pour $\lambda \neq 0$, $\widetilde{N}(A) = \widetilde{N}\left(\frac{1}{\lambda}(\lambda A)\right) \leqslant \frac{1}{|\lambda|}\widetilde{N}(\lambda A)$, ce qui donne $\left[\widetilde{N}(\lambda A) = |\lambda|\widetilde{N}(A)\right]$ (qui est valable aussi si $\lambda = 0$)
 - d) Pour $X \neq 0$, on a $\frac{N((A+B)X)}{N(X)} \leqslant \frac{N(AX) + N(BX)}{N(X)} \leqslant \widetilde{N}(A) + \widetilde{N}(B)$ donc $A + B \leqslant \widetilde{N}(A) + \widetilde{N}(B)$ e) Si $X \neq 0$ alors $\frac{N(AX)}{N(X)} \leqslant \widetilde{N}(A)$ donc $N(AX) \leqslant \widetilde{N}(A)N(X)$ (valable aussi si X = 0.

 - f) On vient de prouver que \widetilde{N} est une norme sur $\mathcal{M}_n(\mathbb{C})$; reste à vérifier qu'elle est matricielle : pour tout $X \in \mathbb{C}^n$, on a $N(ABX) \leqslant \widetilde{N}(A)N(BX) \leqslant \widetilde{N}(A)\widetilde{N}(B)X$ donc $\widetilde{N}(AB) \leqslant \widetilde{N}(A)\widetilde{N}(B)$; ce qui justifie bien que \widetilde{N} est une norme matricielle sur $\mathcal{M}_n(\mathbb{C})$
- **4.** a) $|(AX)_i| = \left| \sum_{j=1}^n a_{i,j} x_j \right| \le N_{\infty}(X) \sum_{j=1}^n |a_{i,j}| \le M_A ||X||_{\infty} \operatorname{donc} \left[N_{\infty}(AX) \le M_A N_{\infty}(X) \right]$
 - b) Y est choisi de sorte que : $\forall i \in \llbracket 1, n \rrbracket$, $|y_i| = 1$ et $a_{i_0 j} y_j = |a_{i_0 j}|$, on a alors $N_{\infty}(Y) = 1$ et, la coordonnée d'indice i_0 de AY est $(AY)_{i_0} = \sum_{j=1}^{\infty} a_{i_0 j} y_j = M_A$ donc $N_{\infty}(AY) \geqslant M_A N_{\infty}(Y) = M_A$ ce qui donne, avec l'inégalité inverse prouvée à la question précédente, $|\widetilde{N_{\infty}}(A) = M_A$
- **5.** Si $\lambda \in \operatorname{Sp}(A)$ alors il existe $X \neq 0$ tel que $AX = \lambda X$. On en déduit $|\lambda| N(X) = N(AX) \leqslant \widetilde{N}(A) N(X)$ donc comme $X \neq 0$, on a $|\lambda| \leqslant \widetilde{N}(A)$. Ceci étant valable pour tout $\lambda \in \operatorname{Sp}(A)$, on a $|\rho(A)| = |\lambda| \leqslant \widetilde{N}(A)$
- **6.** Si $\lambda \in \operatorname{Sp}(A)$ alors il existe $X \neq O$ tel que $AX = \lambda X$ donc $A^k X = \lambda^k X$ et $\lambda^k \in \operatorname{Sp}(A^k)$ puisque $X \neq 0$. On a donc $0 \leqslant \rho(A)^k \leqslant \rho\left(A^k\right) \leqslant \widetilde{N}\left(A^k\right)$ donc si $A^k \xrightarrow[k \to \infty]{} 0$ alors $\lim \rho(A)^k = 0$ ce qui donne $\rho(A) < 1$

7. a) fait juste avant!

- b) Soit $\lambda \in \operatorname{Sp}(A)$ et $X \neq 0$ tel que $AX = \lambda X$, on a alors $\alpha AX = \alpha \lambda X$ donc $\alpha \lambda \in \operatorname{Sp}(\alpha A)$. De même, si $\alpha \neq 0$ et $\lambda \in \operatorname{Sp}(\alpha A)$, il existe $X \neq 0$ tel que $\alpha AX = \lambda X$ donc $AX = \frac{\lambda}{\alpha}X$ et $\frac{\lambda}{\alpha} \in \operatorname{Sp}(A)$. On en déduit $\operatorname{Sp}(\alpha A) = \{\alpha \lambda, \lambda \in \operatorname{Sp}(A)\}$ (ce qui est aussi vrai si $\alpha = 0$ et donc $\rho(\alpha A) = |\alpha|\rho(A)$
- c) $\rho(A_{\varepsilon}) = \frac{\rho(A)}{\rho(A) + \varepsilon} < 1 \text{ donc } A_{\varepsilon}^{k} \xrightarrow[k \to +\infty]{} 0 \text{ donc il existe } k_{\varepsilon} \text{ tel que } k \geqslant k_{\varepsilon} \Rightarrow \widetilde{N}\left(\frac{A^{k}}{(\rho(A) + \varepsilon)^{k}}\right) \leqslant 1.$
- d) On a donc pour tout $\varepsilon > 0$: $\rho(A) \leqslant \left[\widetilde{N}\left(A^k\right)\right]^{\frac{1}{k}} \leqslant \rho(A) + \varepsilon$ pour tout entier $k \geqslant k_{\varepsilon}$ ce qui signifie que $\lim_{k \to +\infty} \left[\widetilde{N}\left(A^k\right)\right]^{\frac{1}{k}} = 0$

Partie III

1. $A = (0 \ 1)$

2. a) $0 \leqslant a_{i,j} \leqslant b_{i,j}$ et $0 \leqslant a'_{i,j} \leqslant b'_{i,j}$ donc $0 \leqslant a_{i,k}b_{k,j} \leqslant a'_{i,k}b'_{k,j}$ puis $0 \leqslant \sum_{k=1}^{n} a_{i,k}b_{k,j} \leqslant \sum_{k=1}^{n} a'_{i,k}b'_{k,j}$

b) récurrence sur k

- c) Pour tout $i \in [1, n]$, $\sum_{j=1}^{n} a_{i,j} \leq \sum_{j=1}^{n} b_{i,j}$ donc $\widetilde{N_{\infty}}(A) = \max_{1 \leq i \leq n} \sum_{j=1}^{n} a_{i,j} \leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} b_{i,j} = \widetilde{N_{\infty}}(B)$
- d) Si $0 \leqslant A \leqslant B$ alors $0 \leqslant A^k \leqslant B^k$ donc $\widetilde{N_{\infty}}\left(A^k\right) \leqslant \widetilde{N_{\infty}}\left(B^k\right)$ puis $\left[\widetilde{N_{\infty}}\left(A^k\right)\right]^{\frac{1}{k}} \leqslant \left[\widetilde{N_{\infty}}\left(B^k\right)\right]^{\frac{1}{k}}$ et en faisant tendre k vers $+\infty$, on a $\rho(A) \leqslant \rho(B)$
- e) Si $A \neq 0$, il suffit de prendre $c = \max_{1 \leq i,j \leq n} \frac{a_{i,j}}{b_{i,j}}$, si A = 0, on prend $c = \frac{1}{2}$ on a alors $\rho(A) \leq \rho(cB) = c\rho(B) < \rho(B)$ car $\rho(B) \neq 0$ (en effet, comme B > 0, on a Tr(B) > 0 donc B possède une valeur propre non nulle, la justification de ce dernier point viendra dans le chapitre sur le réduction).