Ι Limites et continuité

Exercice 1 | Solution |

Les fonctions suivantes ont-elles une limite en (0,0)?

$$f_1(x,y) = (x+y)\sin\left(\frac{1}{x^2+y^2}\right) \quad ; \quad f_2(x,y) = \frac{x^2-y^2}{x^2+y^2} \quad ; \quad f_3(x,y) = \frac{|x+y|}{x^2+y^2}$$

$$f_4(x,y) = \frac{x^3+y^3}{x^2+y^2} \quad ; \quad f_5(x,y) = \frac{x^2+y^2-1}{x}\sin x \quad ; \quad f_6(x,y) = x^y \quad ; \quad f_7(x,y) = \frac{\sin(x^2)+\sin(y^2)}{\sqrt{x^2+y^2}}$$

Exercice 2 (Mines-Ponts PSI 2016) [Solution]

Soit
$$H(x,y) = \frac{x^4y}{(x^4+y^2)\sqrt{x^2+y^2}}$$
 si $(x,y) \neq 0$ et $H(0,0) = 0$. H est-elle continue sur \mathbb{R}^2 ? indication: oui; majorer différemment selon que $|y| \leq x^2$ ou $|y| \geq x^2$.

Classe \mathcal{C}^1 et dérivées partielles TT

Exercice 3 (CCP PSI 2011) [Solution]

Soit
$$f$$
 définie sur \mathbb{R}^2 par $f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$

- 1. Montrer que f est continue sur \mathbb{R}^2 .
- **2.** Etudier le caractère \mathcal{C}^1 de f sur \mathbb{R}^2 .

Exercice 4 (Mines-Ponts PSI 2014) [Solution]

Soient
$$p \in \mathbb{N}^*$$
 et f définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$ par $f(x,y) = (x+y)^p \sin\left(\frac{1}{\sqrt{x^2+y^2}}\right)$.

- 1. La fonction f a-t-elle un prolongement continu sur \mathbb{R}^2 ?
- **2.** Pour quelles valeurs de p, f admet-elle des dérivées partielles en (0,0)?
- **3.** Pour quelle valeur de p la fonction f est-elle de classe \mathcal{C}^1 sur \mathbb{R}^2 ?

Exercice 5 (CCINP PSI 2023) [Solution]

Soient
$$F = \{(x,y) \in \mathbb{R}^2, x+y=0\}$$
 et $f:(x,y) \longmapsto \begin{cases} \frac{x^2y^2}{x+y} & \text{si } (x,y) \notin F \\ 0 & \text{si } (x,y) \in F \end{cases}$

- **1.** Justifier que $f \in \mathcal{C}^1(\mathbb{R}^2 \setminus F)$
- **2.** Montrer que, si $(x,y) \notin F$, $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = 3f(x,y)$
- **3.** Existence et valeurs de $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$?
- **4.** f est-elle continue en (0,0)?

Exercice 6 (CCP MP 2006) [Solution]

On pose
$$f(x,y) = \frac{x^2y^2}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$. Montrer que f est \mathcal{C}^1 sur \mathbb{R}^2 .

Exercice 7 (Mines-Ponts PSI 2015) [Solution]

On pose
$$H(x,y) = \frac{x^4y}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $H(0,0) = 0$. H est-elle C^1 sur \mathbb{R}^2 ?

Exercice 8 (CCINP PSI 2019) [Solution]

Soit
$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- 1. f est-elle continue sur \mathbb{R}^2 ?
- **2.** f est-elle \mathcal{C}^1 sur \mathbb{R}^2 ?

3. Étudier l'existence de
$$\frac{\partial^2 f}{\partial y \partial x}$$

Exercice 9 (CCINP PSI 2023) | Solution

Soit
$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- 1. f est-elle continue sur \mathbb{R}^2 ?
- **2.** f est-elle \mathcal{C}^1 sur \mathbb{R}^2 ?
- **3.** Calculer $\frac{\partial^2 f}{\partial u \partial x}(0,0)$ et $\frac{\partial^2 f}{\partial x \partial u}(0,0)$. Que peut-on en déduire?

Exercice 10 (ENSEA PSI 2021) [Solution]

Soit
$$f(x,y) = \begin{cases} \frac{3xy^3 - x^3y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que f est C^2 sur $\mathbb{R}^2 \setminus \{(0,0)\}$
- **2.** Montrer que f est C^1 sur \mathbb{R}^2 .
- **3.** Calculer $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$; f est-elle \mathcal{C}^2 sur \mathbb{R}^2 ?

Exercice 11 |Solution|

Étudier l'existence de dérivées partielles pour les fonctions :

$$f_1(x,y) = \sup\{|x|,|y|\}$$
 ; $f_2(x,y) = |x| + |y|$;
$$\begin{cases} f_3(x,y) = \frac{\sin(x^2) + \sin(y^2)}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ f_3(0,0) = 0 \end{cases}$$

Exercice 12 | Solution |

Soit f une fonction de classe C^1 sur \mathbb{R}^2 , calculer les dérivées (ou les dérivées partielles) des fonctions suivantes en fonction des dérivées de f:

$$g_1(x,y) = f(y,x)$$
; $g_2(x) = f(x,x)$; $g_3(x,y) = f(y,f(x,x))$; $g_4(x) = f(-x,f(x,x^2))$

Exercice 13 (Mines-Ponts MP 2011) [Solution]

Soit f de classe \mathcal{C}^1 sur \mathbb{R}^2 ; déterminer $\frac{\mathrm{d}}{\mathrm{d}x}f(x,2x)$.

Exercice 14 |Solution|

Soit
$$f$$
 définie par :
$$\begin{cases} f(x,y) = \frac{x^2y}{x^4 + y^2} & \text{si } (x,y) \neq (0,0) \\ f(0,0) = 0 \end{cases}$$

Montrer que f admet des dérivées partielles en (0,0) mais qu'elle n'est pas continue en (0,0).

Exercice 15 (Mines-Ponts MP 2009) [Solution]

Montrer que $l: x \mapsto \frac{x}{\|x\|_2}$ est C^1 sur $E \setminus \{0\}$ et calculer sa différentielle en $x \neq 0$.

Exercice 16 | Solution |

Montrer que la fonction $f:(x,y)\mapsto \sum_{n=1}^{+\infty}\frac{x^n\cos(ny)}{\sqrt{n}}$ est définie et admet des dérivées partielles sur $]-1,1[\times\mathbb{R}.$

Exercice 17 (Mines-Ponts PSI 2023) [Solution]

Soit
$$f(x,y) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{1+y^{2n}}$$

- 1. Déterminer le domaine de définition D de f et le représenter.
- 2. Étudier l'existence des dérivées partielles de f

Exercice 18 (Mines-Ponts PSI 2019) [Solution]

Pour
$$a \in \mathbb{R}^{+*}$$
 on pose $u_n(a,x) = \frac{x^n}{n+a}$ et $F(a,x) = \sum_{n=1}^{+\infty} u_n(a,x)$.

- 1. Déterminer le rayon de convergence de $\sum_{n>1} \frac{x^n}{n+a}$ pour a fixé.
- **2.** Montrer que $|u_n(a,x) u_n(a',x)| \leq \frac{|(a-a')|}{n^2}$, si |x| < 1, et en déduire que F est continue. indication : majorer |F(a,x) F(a',y)| en introduisant F(a',x)
- 3. $\frac{\partial F}{\partial x}$ existe-t-elle? Est-elle continue? indication : prendre $x \in [-\alpha, \alpha] \subset]-1, 1[$
- 4. $\frac{\partial F}{\partial a}$ existe-t-elle? Est-elle continue? indication : $(a,a') \in [0,A]$ pour la continuité

Exercice 19 (CCP PSI 2007) [Solution]

Soit $f:(x,y)\mapsto \arctan x + \arctan y - \arctan\left(\frac{x+y}{1-xy}\right)$.

- 1. Montrer que le domaine de définition D de f est la réunion de trois ouverts « simples ».
- **2.** Montrer que f est de classe \mathcal{C}^1 sur D et calculer $\frac{\partial f}{\partial x}$ puis $\frac{\partial f}{\partial y}$.
- **3.** Simplifier f.

Exercice 20 (Mines-Ponts PSI 2018) | Solution

- 1. Montrer que $f:(x,y)\mapsto \left\{\begin{array}{ll} \frac{x^3y}{x^2+y^2} & \mathrm{si}\ (x,y)\neq (0,0)\\ 0 & \mathrm{si}\ (x,y)=(0,0) \end{array}\right.$ est \mathcal{C}^1 sur \mathbb{R}^2
- **2.** Montrer que ϕ définie sur $\mathbb{R}_n[X]$ par $\phi(P) = \int_0^1 f(x, P(x)) dx$ est \mathcal{C}^1 sur $\mathbb{R}_n[X]$ et calculer sa différentielle.

III Equations aux dérivées partielles

Exercice 21 (Mines-Ponts PSI 2016) [Solution]

Trouver les $f \in \mathcal{C}^1(\mathbb{R}^{+*})$ telles que $\forall (x,y) \neq (0,0), \frac{\partial^2 g}{\partial x^2}(x,y) + \frac{\partial^2 g}{\partial y^2}(x,y) = (x^2 + y^2)^p, p \in \mathbb{N}$, où $g(x,y) = f(x^2 + y^2)$.

Exercice 22 (Centrale PC 2011) [Solution]

Soit f de classe C^2 sur \mathbb{R}^2 telle que $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial u^2} = 0$.

- 1. Montrer qu'il existe g de classe \mathcal{C}^2 sur \mathbb{R}^2 telle que $\frac{\partial f}{\partial x} = \frac{\partial g}{\partial u}$ et $\frac{\partial f}{\partial u} = -\frac{\partial g}{\partial x}$ (on pourra utiliser deux intégrales).
- **2.** Montrer que $\phi: r \mapsto \int_0^{2\pi} f(r\cos\theta, r\sin\theta) \,\mathrm{d}\theta$ est de classe \mathcal{C}^1 sur \mathbb{R} (on se placera sur [-R, R] et on utilisera $M_R = \sup_{x^2 + y^2 \leq R} \left| \frac{\partial f}{\partial x} \right| + \left| \frac{\partial f}{\partial y} \right|$
- **3.** Montrer que $r\phi'(r) = 0$ et conclure que ϕ est constante. indication: introduire g et passer en polaires.
- **4.** Que dire de $\int_{a}^{2\pi} f(a+r\cos\theta,b+r\sin\theta) d\theta$?

Exercice 23 [Solution] Résoudre en polaires $x\frac{\partial f}{\partial y} - y\frac{\partial f}{\partial x} = 0$ et $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = \sqrt{x^2 + y^2}$.

Exercice 24 (Mines-Ponts PSI 2013) [Solution]

Résoudre $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} - f = -(x^2 + y^2)$ sur $\mathbb{R}^2 \setminus \{(x,0), x \in \mathbb{R}^-\}$ (on pourra passer en coordonnées polaires).

Exercice 25 | Solution |

Trouver les fonctions f de classe C^2 sur \mathbb{R} telles que la fonction g définie sur $\mathbb{R}^{+*} \times \mathbb{R}$ par $g(x,y) = f\left(\frac{y}{x}\right)$ soit solution de l'équation aux dérivées partielles $\frac{\partial^2 g}{\partial x^2} - \frac{\partial^2 g}{\partial y^2} = \frac{y}{x^3}$

Exercice 26 (Centrale PSI 2014) [Solution]

- **1.** Montrer que $\phi:(x,y)\mapsto (x^2+y^2,x+y)$ est une bijection de classe \mathcal{C}^1 de $\Omega=\{(x,y)\in\mathbb{R}^2,x>y\}$ sur $\{(u,v)\in\mathbb{R}^2,2u-v^2>0\}$; vérifier que ϕ^{-1} est aussi de classe \mathcal{C}^1 .
- **2.** Soit f de classe C^1 sur Ω et g telle que $f = g \circ \phi$. Montrer que f vérifie $y \frac{\partial f}{\partial x}(x,y) x \frac{\partial f}{\partial y}(x,y) = 2(y^2 x^2)f(x,y)$ si et seulement si g vérifie une équation aux dérivées partielles à déterminer.
- 3. Résoudre cette dernière équation et trouver f.

Exercice 27 (CCP PC 2009) [Solution]

Déterminer toutes les fonctions de \mathbb{R}^2 dans \mathbb{R} , de classe \mathcal{C}^1 , vérifiant $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = f$. (on pourra, après en avoir justifié la légitimité, utiliser le changement de variables u = x + y, v = x - y).

Exercice 28 (CCINP PSI 2022) [Solution]

Soit $g \in \mathcal{C}^1(\mathbb{R}^2)$ telle que $\forall (x,y) \in \mathbb{R}^2$, $\partial_1 g(x,y) + \partial_2 g(x,y) = 0$. On pose $h(u,v) = g(\alpha u + \beta v, \beta u - \alpha v)$ avec $(\alpha,\beta) \neq (0,0)$.

- **1.** Calculer $\partial_1 h(u,v)$
- **2.** Trouver (α, β) tels que $h(u, v) = \varphi(v)$ avec $\varphi \in \mathcal{C}^1(\mathbb{R})$
- 3. Déterminer q

Exercice 29 (Centrale PSI 2010) [Solution]

Résoudre $2\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 0$ en utilisant un changement de variable du type u = ax + by, v = cx + dy.

Exercice 30 (ENSEA-ENSIIE MP 2014) [Solution]

Résoudre
$$\frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial y^2} = xy$$
; on pourra poser $u = x + y$, $v = x - y$.

Exercice 31 (Mines-Ponts PSI 2010) [Solution]

Trouver toutes les fonctions f de classe C^2 sur \mathbb{R}^2 et à valeurs dans \mathbb{R} telles que $\frac{\partial^2 f}{\partial x^2} - 4 \frac{\partial^2 f}{\partial x \partial y} + 3 \frac{\partial^2 f}{\partial y^2} = 0$ (on pourra utiliser un changement de variable linéaire).

Exercice 32 (Mines-Ponts PSI 2019) [Solution]

Résoudre sur \mathbb{R}^2 $\frac{\partial^2 f}{\partial x^2} - 3 \frac{\partial^2 f}{\partial x \partial y} + 2 \frac{\partial^2 f}{\partial y^2} = 0$; on pourra utiliser le changement de variable u = x + ay et v = x + by

Exercice 33 (CCP PC 2011) [Solution]

Soit E_a l'ensemble des fonctions $f \in \mathcal{C}^1(\mathbb{R}^3)$ telles que $\forall t > 0, \forall (x, y, z) \in \mathbb{R}^3, f(tx, ty, tz) = t^a f(x, y, z)$.

- 1. Montrer que E_a est un sous-espace vectoriel de \mathcal{C}^1 (\mathbb{R}^3).
- **2.** Montrer que si $f \in E_a$ est \mathcal{C}^2 sur \mathbb{R}^3 alors $\frac{\partial f}{\partial x} \in E_{a-1}$.
- **3.** Montrer que si $f \in E_0$ alors f(x, y, z) = f(0, 0, 0). Que peut-on en déduire sur E_0 ?
- **4.** Soit f de classe C^1 sur \mathbb{R}^3 telle que $x \frac{\partial f}{\partial x}(x,y,z) + y \frac{\partial f}{\partial y}(x,y,z) + z \frac{\partial f}{\partial z}(x,y,z) = af(x,y,z)$.

Montrer que $g: t \in \mathbb{R}^{+*} \mapsto f(tx, ty, tz) - t^a f(x, y, z)$ est dérivable sur \mathbb{R}^{+*} et vérifie tg'(t) = ag(t). En déduire que $f \in E_a$.

La réciproque est-elle vraie?

IV Extrema

Exercice 34 (CCP PSI 2017) [Solution]

- 1. Montrer que $f:(x,y)\mapsto x^3+\ln(4+y^2)$ admet un unique point critique.
- **2.** Déterminer un équivalent en 0 de $f(x, x^2) f(0, 0)$; f admet-elle des extremums locaux?

Exercice 35 (CCINP PSI 2018) [Solution]

Trouver les extrema de $f:(x,y)\mapsto x^2y+\ln(4+y^2)$

Exercice 36 (EIVP PSI 2016) | Solution |

Soit $g(x,y) = (x^2 - y)(3x^2 - y)$. Montrer que $x \mapsto g(x,\lambda x)$ admet un minimum local en 0 pour tout $\lambda \in \mathbb{R}$. g admet-elle un minimum local en (0,0)?

Exercice 37 (CCP PSI 2015) [Solution]

Etudier les extrema de $f:(x,y)\mapsto x^2+xy+y^2-5x-y$.

Exercice 38 (Mines-Ponts PSI 2017) [Solution] Etudier les extrema de $f:(x,y,z)\mapsto x^2+y^2+z^2-2xyz$.

Exercice 39 (CCP MP 2015) [Solution]

Etudier les extrema de $f:(x,y)\mapsto x^2+(y^3-y)^2$.

Exercice 40 (CCINP PSI 2018) [Solution]

 $f:(x,y)\mapsto xy+\frac{4}{x}+\frac{2}{x}$ admet-elle des extrema locaux sur $(\mathbb{R}^{+*})^2$?

Exercice 41 (CCP PC 2012) |Solution|

Déterminer, s'ils existent, les extremums absolus de $f(x,y)=(x+y)^2-xy$ sur le domaine $D=\left\{(x,y)\in\left(\mathbb{R}^+\right)^2,x^2+y^2\leqslant 1\right\}$.

Exercice 42 (CCP PSI 2015) [Solution]

Extrema globaux puis locaux de $f(x,y) = x^4y^3 + \ln(1+y^4)$ sur $[-1,1]^2$.

Exercice 43 (Mines-Télécom PSI 2023) [Solution]

Soit $D = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 \le 1\}$ et g la fonction définie sur D par $g(x, y) = \begin{cases} xy \ln(x^2 + y^2) & \text{si} \quad 0 < x^2 + y^2 \le 1 \\ 0 & \text{si} \quad (x, y) = (0, 0) \end{cases}$

- **1.** Montrer que g est de classe \mathbb{C}^1 sur D.
- **2.** Montrer que g admet des extremums globaux sur D.
- 3. A-t-on extremum local en (0,0)? Donner les extremums locaux ou globaux sur le bord de D.

Exercice 44 (ENTPE-EIVP PSI 2015) [Solution]

Extrema de $f(x,y) = xy\sqrt{1-x-y}$ sur $T = \{(x,y) \in (\mathbb{R}^+)^2, x+y \le 1\}$?

Exercice 45 (Centrale PSI 2023) [Solution]

Soient $D = (\mathbb{R}^+)^2$ et f définie sur D par $f(x,y) = \frac{xy}{(1+x)(1+y)(x+y)}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0

- 1. Montrer que f est continue sur D. $indication: Distinguer \ x \geqslant y \ et \ y \geqslant x.$
- **2.** Montrer que f est majorée sur D.
- **3.** Soit $K = [0, 10]^2$. Montrer que f admet un maximum sur K puis sur D.
- **4.** Déterminer $\max_{D}(f)$.

Exercice 46 (Centrale PSI 2017) [Solution]

Soient $f: (x,y) \mapsto x^4 + y^4 - 2(x-y)^2$ et $A = \{(x,y) \in \mathbb{R}^2, \max(x,y) \leq 2, \min(x,y) \geq -2\}$

1. f admet-elle des extrema sur A?

En quels points les extremas locaux peuvent-ils être atteints?

- **2.** Etudier f(x,x) et f(x,-x); que peut-on en déduire?
- **3.** Donner les extrema locaux de f sur A puis sur \mathbb{R}^2 .

Exercice 47 (CCP PC 2009) [Solution]

Soit $(A, \overrightarrow{i}, \overrightarrow{j})$ un repère orthonormé du plan, R un réel strictement positif, O et O' les points définis par $\overrightarrow{AO} = R\overrightarrow{i}$ et $\overrightarrow{AO'} = -R\overrightarrow{i}$, C et C' les cercles de rayon R et de centre respectifs O et O'. Soient a et b deux réels de $[0,\pi]$, M le point de \mathcal{C} tel que l'argument de l'affixe de \overrightarrow{OM} est a et M' le point de \mathcal{C}' tel que l'affixe de $\overrightarrow{O'M'}$ est b.

1. Déterminer les affixes de M et M' et montrer que l'aire du triangle AMM' est :

$$S = \frac{R^2}{2}(\sin(b)(1+\cos(a)) + \sin(a)(1-\cos(b))).$$

- 2. On note $f:(x,y)\mapsto \sin(y-x)+\sin(x)+\sin(y)$. Justifier l'existence de $(\alpha,\beta)\in [0,\pi]^2$ tel que $\forall (x,y)\in [0,\pi]^2, f(x,y)\leqslant f(\alpha,\beta)$.
- 3. Montrer que $\left(\frac{\pi}{3}, \frac{2\pi}{3}\right)$ est l'unique point critique de f sur $]0, \pi[^2]$.
- 4. Déterminer l'aire maximale de AMM'.

Exercice 48 (CCP PC 2007) [Solution]

On définit $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$.

1. Montrer que f définie par $f(x,y) = |\sin(x+iy)|^2$ admet un maximum et un minimum sur $D = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$. Quel est le minimum?

- **2.** Montrer que $\forall (x,y) \in \mathbb{R}^2$, $f(x,y) = \frac{\operatorname{ch}(2y) \cos(2x)}{2}$.
- **3.** Trouver les points critiques de f sur $D' = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$.
- **4.** Montrer qu'il existe θ_0 tel que le maximum de f sur D soit $f(\cos \theta_0, \sin \theta_0)$.
- **5.** Montrer que $\forall t \in \mathbb{R}^+$, $\operatorname{sh}(t) \geqslant t$ et $\sin(t) \leqslant t$.
- **6.** Montrer que $g: \theta \mapsto f(\cos \theta, \sin \theta)$ est croissante sur $\left[0, \frac{\pi}{2}\right]$ et donner le maximum de f.

Exercice 49 (Centrale PSI 2018) [Solution]

Soit $f(x,y) = (x^2 - y)(3x^2 - y)$

- 1. Déterminer le gradient de f aux points (1, 1) et (1, 2); en déduire l'équation du plan tangent à la surface d'équation z = f(x, y) aux points (1, 1, f(1, 1)) et (1, 2, f(1, 2)).
- **2.** Déterminer $\lim_{x \to \infty} f(x, 2x^2)$. La fonction f admet-elle des extremums globaux?
- 3. Déterminer le signe de f(x,ax) et f(0,y) lorsque x et y sont proches de 0, pour $a \in \mathbb{R}$. La fonction f admet-elle des extremums locaux?

Exercice 50 (Centrale PSI 2019) [Solution]

- 1. Soient U un ouvert de \mathbb{R}^p , $f:U\to\mathbb{R}$ de classe \mathcal{C}^1 et $a\in U$. On suppose que f admet un extremum local en a. Que peut-on en déduire?
 - Montrer que ce n'est plus le cas si on ne suppose plus U ouvert.
- **2.** Soit $f:(x,y)\in\mathbb{R}^2\longmapsto (ax+by)e^{-(x^2+y^2)}$ avec $a,b\in\mathbb{R}^*$. Déterminer le gradient et les points critiques de f
- **3.** Étudier les extrema locaux et absolus de f. $indication: commencer\ par\ vérifier\ que\ f\ admet\ des\ extrema\ absolus\ en\ regardant\ la\ limite\ de\ f\ quand\ \|(x,y)\|\ tend$ $vers + \infty$.

Exercice 51 (CCP PSI 2013) [Solution]

Soit $f \in \mathcal{L}(\mathbb{R}^n)$ symétrique, de valeurs propres strictement positives.

- **1.** Montrer que $\forall x \in \mathbb{R}^n, (f(x)|x) > 0$.
- **2.** Pour $u \in \mathbb{R}^n$, on définit g par $g(x) = \frac{1}{2}(f(x)|x) (u|x)$. Montrer que g admet des dérivées partielles et les expliciter.
- 3. Montrer que g admet un unique point critique et que ce point critique est un minimum global.

Applications à la géométrie

Exercice 52 | Solution |

Soit S la surface d'équation xy = z et D la droite d'équation $\begin{cases} x = 2 \\ y - 2z + 3 = 0 \end{cases}$.

- 1. La surface S est-elle régulière?
- **2.** Déterminer les points de S en lesquels le plan tangent contient D.

Exercice 53 (CCP PSI 2007) [Solution]

- 1. Déterminer une équation du plan tangent P_0 à la surface d'équation xyz = 1 au point (x_0, y_0, z_0) .
- **2.** Déterminer les coordonnées du projeté orthogonal de O sur P_0 .

Exercice 54 (Centrale PC 2010) [Solution] Soit (S) la surface de \mathbb{R}^3 d'équation $x^2 + y^2 - z^2 = 1$; trouver l'ensemble Γ des points de S où la droite \mathcal{D} d'équations est parallèle au plan tangent à S.

Exercice 55 | Solution |

Soit S la surface d'équation $x^4 - x^3 + xy - y^2 - z = 0$.

- 1. Montrer que S est une surface régulière.
- 2. Déterminer les points de S en lesquels le plan tangent est parallèle à xOy.

Solutions

Exercice 1 [sujet] **1.** $|f_1(x,y)| \le |x+y| \text{ donc } \lim_{(0,0)} f_1 = 0$

- 2. $f_2(x,0) \xrightarrow[x\to 0]{} 1$ et $f_2(0,y) \xrightarrow[y\to 0]{} -1$ donc pas de limite en (0,0)
- 3. $f_3(x,0) \xrightarrow[x \to 0^+]{} +\infty$ donc pas de limite en (0,0).
- **4.** $|f_4(x,y)| \le \frac{2N_2(x,y)^3}{N_2(x,y)^2} = 2N_2(x,y)$ donc $\lim_{(0,0)} f_4 = 0$
- 5. $\lim_{(x,y)\to(0,0)} \frac{\sin x}{x} = 1 \text{ donc } \lim_{(0,0)} f_5 = -1$
- **6.** $f_6(x,y) = e^{y \ln(x)}$ donc f_6 est définie sur $\mathbb{R}^{+*} \times \mathbb{R}$ et $f_6(x,0) \xrightarrow[x \to 0^+]{} 1$ et $f_6\left(t,\frac{1}{\ln t}\right) \xrightarrow[t \to 0]{} e$ donc pas de limite en (0,0).
- 7. $|\sin(u)| \le |u| \text{ donc } |f_7(x,y)| \le \frac{N_2(x,y)^2}{N_2(x,y)} \text{ et } \lim_{(0,0)} f_7 = 0$

Exercice 2 [sujet] H est C^0 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ puis si $|y| \leqslant x^2$, on a $|H(x,y)| \leqslant \frac{|y|}{\sqrt{x^2 + y^2}} \leqslant \frac{x^2}{N_2(x,y)} \leqslant N_2(x,y)$ alors que si $|y| \geqslant x^2$, on a $|H(x,y)| \leqslant \frac{x^4}{|y|N_2(x,y)} \leqslant \frac{x^2}{N_2(x,y)} \leqslant N_2(x,y)$ donc H est continue en (0,0)

Exercise 3 /sujet/ 1. $|f(x,y)| \leq N_2(x,y)$

2. f(x,0) = 0 donc $\frac{\partial f}{\partial x}(0,0) = 0$ et, pour $(x,y) \neq (0,0)$, $\frac{\partial f}{\partial x}(x,y) = \frac{y}{\sqrt{x^2 + y^2}} - \frac{x^2y}{(x^2 + y^2)^{3/2}}$ donc $\frac{\partial f}{\partial x}(0,y) \xrightarrow{y \to 0^+} 1$ donc $\frac{\partial f}{\partial x}$ n'est pas continue en (0,0)

Exercice 4 [sujet] **1.** $|f(x,y)| \le |x+y|^p \xrightarrow[(x,y)\to(0,0)]{} 0 \text{ car } p \ge 1 \text{ donc } \lim_{(0,0)} f = 0$

- $\mathbf{2.} \ \frac{1}{x}f(x,0) = x^{p-1}\sin\left(\frac{1}{|x|}\right) \ \mathrm{donc} \ \frac{\partial f}{\partial x}(0,0) = 0 \ \mathrm{pour} \ p \geqslant 2 \ \mathrm{et} \ \mathrm{n'existe} \ \mathrm{pas} \ \mathrm{pour} \ p = 1.$
- 3. Pour $(x,y) \neq (0,0)$, $\frac{\partial f}{\partial x}(0,0) = p(x+y)^{p-1} \sin\left(\frac{1}{\sqrt{x^2+y^2}}\right) \frac{2x(x+y)^p}{(x^2+y^2)^{3/2}} \cos\left(\frac{1}{\sqrt{x^2+y^2}}\right)$. $\left|\frac{\partial f}{\partial x}(x,y)\right| \leqslant p|x+y|^{p-1} + \frac{2^{p+1}N_2(x,y)^{p+1}}{N_2(x,y)^3}$ donc f est \mathcal{C}^1 pour $p \geqslant 3$ alors que si p = 2, $\frac{\partial f}{\partial x}(x,0) \underset{x \to 0^+}{\sim} -2\cos\left(\frac{1}{x}\right)$ donc pas de limite en (0,0)

Exercice 5 /sujet/ 1. th généraux

2.
$$\frac{\partial f}{\partial x}(x,y) = \frac{2xy^2}{x+y} - \frac{x^2y^2}{(x+y)^2}$$

- 3. $\frac{1}{t}(f(t,0) f(0,0)) = 0$ donc $\frac{\partial f}{\partial x}(0,0) = 0$
- **4.** $f(x, -x + x^6) = \frac{(-1 + x^5)^2}{x^2}$ donc f n'est pas bornée au voisinage de (0, 0).

Exercise 6 [sujet] f(x,0) = 0 donc $\frac{\partial f}{\partial x}(0,0) = 0$ et, pour $(x,y) \neq (0,0)$, $\frac{\partial f}{\partial x}(x,y) = \frac{2xy^2}{x^2 + y^2} - \frac{2x^3y^2}{(x^2 + y^2)^2}$ donc $\left|\frac{\partial f}{\partial x}(x,y)\right| \leqslant 4N_2(x,y)$ donc est continue en (0,0).

Exercice 7 [sujet] H(x,0) = 0 donc $\frac{\partial H}{\partial x}(0,0) = 0$ et $\left|\frac{\partial H}{\partial x}(x,y)\right| \le 4N_2(x,y)^2 + 2N_2(x,y)^2$ donc $\frac{\partial f}{\partial x}$ est continue en (0,0).

$$H(0,y) = 0 \text{ donc } \frac{\partial H}{\partial y}(0,0) = 0 \text{ et } \left| \frac{\partial H}{\partial y}(x,y) \right| \le N_2(x,y)^2 + 2N_2(x,y)^2 \text{ donc } \frac{\partial H}{\partial y} \text{ est aussi continue en } (0,0)$$

Exercice 8 [sujet] **1.** f est C^2 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et $|f(x,y)| \leq \frac{x^3 + y^3}{N_2(x,y)^2} \leq 2N_2(x,y)$

2. $\frac{\partial f}{\partial x}(0,0) = 1$ alors que $\frac{\partial f}{\partial x}(0,y) = 0$ donc $\frac{\partial f}{\partial x}$ n'est pas continue en (0,0).

3. $\frac{\partial^2 f}{\partial u \partial x} = \lim_{y \to 0} \frac{1}{y} \left(\frac{\partial f}{\partial x}(0, y) - \frac{\partial f}{\partial x}(0, 0) \right)$ donc cette limite n'existe pas.

Exercice 9 [sujet] fait en cours; on trouve $\frac{\partial^2 f}{\partial x \partial y}(0,0) = 1$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0) = -1$ donc, par le théorème de Schwarz (contraposée), on en déduit que f n'est pas \mathcal{C}^2 sur R^2 .

Exercice 10 [sujet] 1. quotient

2. facile : commencer par $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$

3. $\frac{\partial^2 f}{\partial x \partial y}(0,0) = -1$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0) = 3$ donc f n'est pas \mathcal{C}^2 sur \mathbb{R}^2 (ouvert) d'après le th de Schwarz

Exercice 11 [sujet] **1.** $f_1(x,0) = |x|$ n'est pas dérivable en 0

2. $f_2(x,0) = |x| \text{ idem}$

 $\mathbf{3.} \ f_3(x,0) = \begin{cases} \frac{\sin(x^2)}{|x|} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases} \quad \text{donc } \frac{1}{x} f_3(x,0) \to \begin{cases} +1 & \text{si } x \to 0^+ \\ -1 & \text{si } x \to 0^- \end{cases} \quad \text{donc pas dérivée partielle selon } x \text{ en } (0,0).$

Exercice 12 [sujet] 1. $\frac{\partial g_1}{\partial x}(x,y) = \frac{\partial f}{\partial y}(y,x)$ et $\frac{\partial g_1}{\partial y}(x,y) = \frac{\partial f}{\partial x}(y,x)$

2. $g_2'(x) = \frac{\partial f}{\partial x}(x,x) + \frac{\partial f}{\partial y}(x,x)$

3. $\frac{\partial g_3}{\partial x}(x,y) = g_2'(x)\frac{\partial f}{\partial y}(y,f(x,x))$ et $\frac{\partial g_3}{\partial y}(x,y) = \frac{\partial f}{\partial x}(y,f(x,x))$

 $\textbf{4.} \ \ g_4'(x) = -\frac{\partial f}{\partial x}(-x,f(x,x)) + \left(\frac{\partial f}{\partial x}(x,x^2) + 2x\frac{\partial f}{\partial y}(x,x^2)\right)\frac{\partial f}{\partial y}(-x,f(x,x^2))$

Exercice 13 [sujet] $\frac{\mathrm{d}}{\mathrm{d}x}f(x,2x) = \frac{\partial f}{\partial x}(x,2x) + 2\frac{\partial f}{\partial y}(x,2x)$

Exercice 14 [sujet] f(x,0) = 0 donc $\frac{\partial f}{\partial x}(0,0) = 0$; de même $\frac{\partial f}{\partial y}(0,0) = 0$ mais $f(t,t^2) = \frac{1}{2}$ si $t \neq 0$ donc f n'est pas continue en (0,0)

Exercise 15 [sujet] $l(x+h) = \frac{x+h}{\sqrt{\|x\|^2 + 2(x|h) + o(h)}} = \frac{1}{\|x\|} (x+h) \left(1 + \frac{(x|h)}{\|x\|^2} + o(h)\right) = l(x) + \frac{h}{\|x\|} + \frac{(x|h)}{\|x\|^3} x + o(h);$ $h \mapsto \frac{h}{\|x\|^2} + \frac{(x|h)}{\|x\|^3} x \text{ est linéaire donc c'est } dl(x)$

 $h\mapsto \frac{h}{\|x\|}+\frac{(x|h)}{\|x\|^3}x$ est linéaire donc c'est $\mathrm{d}l(x).$

On a ensuite $\frac{\partial l}{\partial x_i}(a) = \mathrm{d}l(a).e_i = \frac{e_i}{\|a\|} + \frac{a_i}{\|a\|^3}x$ qui est continue pour $a \neq 0$ donc l est \mathcal{C}^1

Exercice 16 [sujet] $|u_n(x,y)| \leq \frac{|x|^n}{\sqrt{n}}$ donc f est définie sur $]-1,1[\times \mathbb{R}]$.

f est une série entière par rapport à la variable x avec $R\geqslant 1$ donc $\frac{\partial f}{\partial x}(x,y)=\sum_{n\geqslant 1}\sqrt{n}\cos(ny)x^{n-1}$

Par rapport à y, on applique le théorème de dérivation avec $\left|\frac{\partial u_n}{\partial y}(x,y)\right| \leqslant \sqrt{n}|x|^{n-1}$ (indépendant de y) donc CN sur $\mathbb R$ si |x| < 1.

Exercice 17 [sujet] 1. Si |y| > 1 alors $f_n(x,y) \underset{n \to +\infty}{\sim} \left(\frac{x}{y}\right)^{2n}$ (SATP) donc CV si et seulement si $\left|\frac{x}{y}\right| < 1$; $f_n(x,\pm 1) = \frac{x^{2n}}{2}$ donc CV si et seulement si |x| < 1 = |y|; enfin, si |y| < 1 alors $f_n(x,y) \underset{n \to +\infty}{\sim} x^{2n}$ (SATP) donc CV si et seulement si |x| < 1. Au final $D = |-1,1|^2 \cup \{(x,y) \in \mathbb{R}^2, |y| \geqslant 1, |x| < |y|\}$

2. Par rapport à la variable $x, x \mapsto f(x, y)$ est une série entière donc C^{∞} . Par rapport à y, c'est une série de fonctions donc on applique le th de dérivation avec $\left|\frac{\partial f_n}{\partial y}(x,y)\right| = 2n\frac{|y|^{2n-1}x^{2n}}{(1+y^{2n})^2}$. On étudier le cas $x \geqslant 0, y \geqslant 0$ par exemple : si |x| < 1 et $0 \leqslant y \leqslant a$ alors $\left|\frac{\partial f_n}{\partial y}(x,y)\right| \leqslant 2nx^{2n}$ donc CVNTS de \mathbb{R}^+ ; si $|x| \geqslant 1$ et $y \in [a, +\infty[$ avec a > x (cf D), alors $\left|\frac{\partial f_n}{\partial y}(x,y)\right| \leqslant 2n\left(\frac{x}{a}\right)^{2n}$ donc CVNTS de $[x, +\infty[$. Au final f admet des dérivées partielles en tout point de f.

Exercice 18 [sujet] **1.** R = 1 donc F est définie sur $\mathbb{R}^{+*} \times] - 1, 1[$.

- 2. $|u_n(a,x)-u_n(a',x)| = \left|\frac{(a'-a)x^n}{(n+a)(n+a')}\right| \le \frac{|a-a'|}{n^2} \operatorname{car} a > \operatorname{et} a' > 0$. On a $|F(a,x)-F(a,y)| \le |F(a,x)-F(a',x)| + |F(a',x)-F(a',y)| \le |a-a'| \sum_{n=1}^{+\infty} \frac{1}{n^2} + |F(a',x)-F(a',y)| \xrightarrow{(a,x)\to(a',y)} 0 \operatorname{car} |a-a'| \to 0 \operatorname{et} \operatorname{par} \operatorname{continuit\'e} \operatorname{de} \operatorname{la} \operatorname{s\'erie} \operatorname{enti\`ere} \operatorname{sur}] 1, 1[, \lim_{x\to y} F(a',x) = F(a',y).$
- 3. Série entière donc $\frac{\partial F}{\partial x}(a,x) = \sum_{n=1}^{+\infty} \frac{nx^{n-1}}{n+a}$. On prouve la continuité de même sur $[-\alpha,\alpha] \times \mathbb{R}^{+*}$ avec $\left|\frac{nx^{n-1}}{n+a} \frac{nx^{n-1}}{n+a'}\right| \le \frac{\alpha^{n-1}}{n}|a-a'|$ et $\sum \frac{\alpha^{n-1}}{n}$ CV car $\alpha \in [0,1[$.
- 4. Série de fct cette fois $\frac{\partial F}{\partial a}(a,x) = -\sum_{n=1}^{+\infty} \frac{x^n}{(n+a)^2} \left(\operatorname{car} \left| \frac{x^n}{(n+a)^2} \right| \leqslant \frac{1}{n^2} \operatorname{donc CVN} \right)$. La continuité s'obtient encore de la même façon avec $\left| \frac{x^n}{(n+a)^2} \frac{x^n}{(n+a')^2} \right| \leqslant \frac{(2n+a+a')|a-a'|}{n^4} \leqslant \frac{2(n+A)}{n^4} |a-a'|$ et le reste ne change pas $\operatorname{car} \sum \frac{n+A}{n^4} \operatorname{CV}$.

Exercise 19 [sujet] 1. $D_f = \{(x,y), xy \neq 1\} = \{xy > 1\} \cup \{|xy| < 1\} \cup \{xy < -1\}$

- **2.** $\frac{\partial f}{\partial x}(x,y) = \frac{\partial f}{\partial y}(x,y) = 0$
- 3. f est constante sur les trois ouverts (convexes) : $f = \pi$ sur $\{xy > 1\}$; f = 0 sur $\{|xy| < 1\}$ et $f = -\pi$ sur $\{xy < -1\}$

Exercice 20 [sujet] 1. $\frac{\partial f}{\partial x}(0,0) = 0$ et $\left|\frac{\partial f}{\partial x}(x,y) - 0\right| \leqslant \frac{3x^2|y|}{N_2(x,y)^2} + \frac{2x^4|y|}{N_2(x,y)^4} \leqslant 5N_2(x,y)$ puis $\frac{\partial f}{\partial y}(0,0) = 0$ et $\left|\frac{\partial f}{\partial y}(x,y) - 0\right| \leqslant 3N_2(x,y)$ donc f est \mathcal{C}^1

2. En fait il faut comprendre que c'est plutôt $\phi(x_0,\ldots,x_n)\in\mathbb{R}^{n+1}\mapsto\int_0^1f(x,P(x))\,\mathrm{d}x$ avec $P=\sum_{i=0}^nx_iX^i$ pour respecter le programme. On a $f(x,y+h)=\int_{h\to 0}^1f(x,y)+h\frac{\partial f}{\partial y}(x,y)+o(h)$ donc pour $\varepsilon>0$, il existe $\eta>0$ tel que si $|h|<\eta$ on a $\left|f(x,y+h)-f(x,y)-h\frac{\partial f}{\partial y}(x,y)\right|\leqslant\varepsilon|h|$; comme si $H\in\mathbb{R}_n[X]$ est tel que $\|H\|_{\infty,[0,1]}\leqslant\eta$, on a $|H(x)|\leqslant\eta$ donc $\left|f(x,P(x)+H(x))-f(x,P(x))-H(x)\frac{\partial f}{\partial x}(x,P(x))\right|\leqslant\varepsilon\|H\|_\infty$ donc $\left|\phi(P+H)-\phi(P)-\int_0^1H(x)\frac{\partial f}{\partial y}(x,P(x))\,\mathrm{d}x\right|\leqslant\varepsilon\|H\|_\infty$. Comme $H\mapsto\int_0^1H(x)\frac{\partial f}{\partial y}(x,P(x))\,\mathrm{d}x$ est linéaire, on en déduit $\mathrm{d}\phi(P).H=\int_0^1H(x)\frac{\partial f}{\partial y}(x,P(x))\,\mathrm{d}x$ puis $\frac{\partial\phi}{\partial x_i}=\mathrm{d}\phi(P).X^i=\int_0^1x^i\frac{\partial f}{\partial y}(x,P(x))\,\mathrm{d}x$. Reste la continuité de ces dérivées partielles : f est \mathcal{C}^1 donc, pour $\varepsilon>0$, il existe $\eta>0$ tel que si $U\in\mathbb{R}_n[X]$ vérifie $\|U\|_\infty\leqslant\eta$ alors $\|(P+U)-P\|_\infty\leqslant\eta$ donc $\left|\frac{\partial f}{\partial y}(x,P(x)+U(x))-\frac{\partial f}{\partial y}(x,P(x))\right|\leqslant\varepsilon$ et en intégrant $\left|\frac{\partial\phi}{\partial x_i}(P+U)-\frac{\partial\phi}{\partial x_i}(P)\right|\leqslant\varepsilon\int_0^1x^i\,\mathrm{d}x\leqslant\varepsilon$ donc $\frac{\partial\phi}{\partial x_i}$ est continue et ϕ est \mathcal{C}^1 .

Exercise 21 [sujet] $\frac{\partial^2 g}{\partial x^2}(x,y) = 2f'(x^2 + y^2) + 4x^2f''(x^2 + y^2)$ et $\frac{\partial^2 g}{\partial y^2}(x,y) = 2f'(x^2 + y^2) + 4y^2f''(x^2 + y^2)$; on doit donc avoir $4f'(t) + 4tf''(t) = t^p$ pour t > 0. On trouve $f(t) = \alpha \ln(t) + \beta + \frac{t^{p+1}}{4(p+1)^2}$

- Exercice 22 [sujet] 1. On intègre $\frac{\partial g}{\partial y}(x,y) = \frac{\partial f}{\partial x}(x,y)$ donc on pose $g(x,y) = \int_0^y \frac{\partial f}{\partial x}(x,t) \, \mathrm{d}t + \varphi(x)$; si y est fixé et $x \in [\alpha,\beta]$, par continuité de $\frac{\partial^2 f}{\partial x^2}$ sur le fermé borné $[\alpha,\beta] \times [0,y]$, on a $\left|\frac{\partial^2 f}{\partial x^2}(x,t)\right| \leqslant C$ (intégrable sur le segment [0,y]) donc $\frac{\partial g}{\partial x}(x,y) = \int_0^y \frac{\partial^2 f}{\partial x^2}(x,t) \, \mathrm{d}t + \varphi'(x) = -\int_0^y \frac{\partial^2 f}{\partial y^2}(x,t) \, \mathrm{d}t + \varphi'(x) = -\left[\frac{\partial f}{\partial y}(x,t)\right]_{t=0}^{t=y} + \varphi'(x)$; il suffit donc de prendre ensuite $\varphi(x) = \int_0^x \frac{\partial f}{\partial y}(t,0) \, \mathrm{d}t$.
 - **2.** Si $h(r,\theta) = f(r\cos\theta, r\sin\theta)$ alors $\left|\frac{\partial h}{\partial r}(r,\theta)\right| \leqslant M_R$ qui existe par continuité de $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sur le fermé borné $B_f((0,0),R)$ (intégrable sur $[0,2\pi]$) donc $\phi'(r) = \int_0^{2\pi} \cos\theta \frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta) + \sin\theta \frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta) d\theta$

- **3.** Avec **1**, on a $r\phi'(r) = \int_0^{2\pi} r\cos\theta \frac{\partial g}{\partial y}(r\cos\theta, r\sin\theta) r\sin\theta \frac{\partial g}{\partial x}(r\cos\theta, r\sin\theta) d\theta = \left[g(r\cos\theta, r\sin\theta)\right]_{\theta=0}^{\theta=2\pi} = 0$ ϕ' est nulle sur \mathbb{R}^{+*} donc sur \mathbb{R} par continuité en 0. $\phi(r) = \phi(0) = 2\pi f(0,0)$
- **4.** = $2\pi f(a,b)$ de la même façon

Exercice 23 [sujet] $g(r, \theta) = f(r \cos \theta, r \sin \theta)$

- 1. $r\cos\theta \frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta) r\sin\theta \frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta) = \frac{\partial g}{\partial \theta}(r,\theta)$ donc $g(r,\theta) = \alpha(r)$ et $f(x,y) = \beta(x^2 + y^2)$ $(\beta(t) = \alpha(\sqrt{t}))$
- **2.** $r\cos\theta \frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta) + r\sin\theta \frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta) = r\frac{\partial g}{\partial r}(r,\theta) \text{ donc } g(r,\theta) = r + \alpha(\theta)$

Exercise 24 [sujet] $g(r,\theta) = f(r\cos\theta, r\sin\theta)$; $r\cos\theta \frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta + r\sin\theta \frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta) = r\frac{\partial g}{\partial r}(r,\theta)$ donc $r\frac{\partial g}{\partial r}(r,\theta) - g(r,\theta) = -r^2$ puis $g(r,\theta) = \alpha(\theta)r - r^2$.

Exercise 25 [sujet] $\frac{\partial^2 g}{\partial x^2}(x,y) - \frac{\partial^2 g}{\partial y^2}(x,y) = \frac{1}{x^2} \left[2\left(\frac{y}{x}\right) f'\left(\frac{y}{x}\right) + \left(\left(\frac{y}{x}\right)^2 - 1\right) f''\left(\frac{y}{x}\right) \right] \text{ donc } f''(t) + \frac{2t}{t^2 - 1} f'(t) = \frac{t}{t^2 - 1} \text{ et on trouve } f(t) = \alpha \ln \left| \frac{1+t}{1-t} \right| + \beta + \frac{t}{2} \text{ sur } \right] - \infty, -1[\text{ ou sur }] - 1, 1[\text{ ou sur }]1, +\infty[\text{. Au final } f(t) = \beta + \frac{t}{2} \text{ sur } \mathbb{R} \text{ (recollement)}$

Exercice 26 [sujet] 1. $\begin{cases} u = x^2 + y^2 \\ v = x + y \end{cases}$ si et seulement si x et y sont les racines de $2X^2 - 2vX + v^2 - u$; ses deux

racines sont réelles et distinctes si et seulement si $2u - v^2 > 0$; on a alors (avec x > y) $\begin{cases} x = \frac{v + \sqrt{2u - v^2}}{2} \\ y = \frac{v - \sqrt{2u - v^2}}{2} \end{cases}$ donc

 ϕ^{-1} est aussi \mathcal{C}^1

- $\mathbf{2.} \ \ y \frac{\partial f}{\partial x}(x,y) x \frac{\partial f}{\partial y}(x,y) = (y-x) \frac{\partial g}{\partial v}(x^2+y^2,x+y) \ \text{donc} \ f \ \text{est solution si et seulement si} \ \frac{\partial g}{\partial v}(u,v) = 2vg(u,v)$
- **3.** $g(u,v) = \alpha(u)e^{v^2}$ et $f(x,y) = \alpha(x^2 + y^2)e^{(x+y)^2}$ avec αC^1

Exercice 27 [sujet] $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ est inversible donc le changement de variable est bijectif (la réciproque est aussi linéaire donc C^1); $\frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) = \frac{\partial g}{\partial u}(x+y,x-y)$ donc $\frac{\partial g}{\partial u} = g$, $g(u,v) = \alpha(v)e^u$ et $f(x,y) = \alpha(u-y)e^{x+y}$ avec αC^1 .

Exercise 28 [sujet] 1. $\partial_1 h(u,v) = \alpha \partial_1 g(\alpha u + \beta v, \beta u - \alpha v) + \beta \partial_2 g(\alpha u + \beta v, \beta u - \alpha v)$

- **2.** Si $\alpha = \beta = 1$, on a $\partial_1 h(u, v) = 0$ donc $h(u, v) = \varphi(v)$
- **3.** $(u,v)\mapsto (u+v,u-v)$ est bien bijectif; $v=\frac{x-y}{2}$ donc $g(x,y)=\psi(x-y)$ avec $\psi\in\mathcal{C}^1(\mathbb{R})$.

Exercice 29 [sujet] Si u=x et v=x+2y, $A=\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$ est inversible (la réciproque est linéaire donc \mathcal{C}^1 aussi); $2\frac{\partial f}{\partial x}(x,y)-\frac{\partial f}{\partial y}(x,y)=2\frac{\partial g}{\partial u}(x,x+2y)$ donc $g(u,v)=\alpha(v)$ et $f(x,y)=\alpha(x+2y)$ avec α \mathcal{C}^1 .

Exercise 30 [sujet] f(x,y) = g(x+y,x-y) donc $\frac{\partial^2 f}{\partial x^2}(x,y) - \frac{\partial^2 f}{\partial y^2}(x,y) = 4\frac{\partial^2 g}{\partial u \partial v}(x+y,x-y)$ (par Schwarz) donc $\frac{\partial^2 g}{\partial u \partial v}(u,v) = \frac{u^2-v^2}{4}$, $\frac{\partial g}{\partial v}(u,v) = \frac{1}{16}\left(\frac{u^3}{3}-uv^2+\alpha(v)\right)$ et $g(u,v) = \frac{1}{16}\left(\frac{u^3}{3}v-u\frac{v^3}{3}+\beta(v)+\gamma(u)\right)$ avec β et γ C^1 ($\beta'=\alpha$)

Exercice 31 [sujet] Si f(x,y) = g(x+ay,x+by) alors $\frac{\partial^2 f}{\partial x^2}(x,y) - 4\frac{\partial^2 f}{\partial x \partial y}(x,y) + 3\frac{\partial^2 f}{\partial y^2}(x,y) = (1-a)(1-2a)\frac{\partial^2 g}{\partial u^2}(x+ay,x+by) + (2-3(a+b)+4ab)\frac{\partial^2 g}{\partial u \partial v}(x+ay,x+by) + (1-b)(1-2b)\frac{\partial^2 g}{\partial v^2}(x+ay,x+by)$; on peut donc choisir a=1 et $b=\frac{1}{2}, A=\begin{pmatrix} 1 & 1 \\ 1 & 1/2 \end{pmatrix}$ est inversible (la réciproque est linéaire donc \mathcal{C}^2) et on a $\frac{\partial^2 g}{\partial u \partial v}(u,v)=0$ donc $g(u,v)=\alpha(u)+\beta(v)$ avec α et β \mathcal{C}^2 .

Exercice 32 [sujet] Le changement est bijectif de \mathbb{R}^2 sur \mathbb{R}^2 si et seulement si $a \neq b$. On pose f(x,y) = g(x+ay,x+by); comme $\varphi: (x,y) \mapsto (1+ax,1+by)$ est bijective et linéaire (donc \mathcal{C}^2 de même que φ^{-1}), f et g sont simultanément \mathcal{C}^2 sur \mathbb{R}^2 . On vérifie $\frac{\partial^2 f}{\partial x^2} - 3\frac{\partial^2 f}{\partial x \partial y} + 2dparfy[y] == (1-a)(1-2a)\frac{\partial^2 g}{\partial u^2} + (2-3(a+b)+4ab)\frac{\partial^2 g}{\partial u \partial v} + (1-b)(1-2b)\frac{\partial^2 g}{\partial v^2}$; on peut choisir a=1 et $b=\frac{1}{2}$, il reste $\frac{\partial^2 g}{\partial u \partial v}=0$ donc $g(u,v)=\alpha(u)+\beta(v)$ et $f(x,y)=\alpha(x+y)+\beta\left(x+\frac{1}{2}y\right)$ avec α et $\beta \mathcal{C}^2$ sur \mathbb{R}

Exercice 33 |sujet| 1. Facile

- 2. $t \frac{\partial f}{\partial x}(tx, ty, yz) = t^a \frac{\partial f}{\partial x}(x, y, z)$ en dérivant par rapport à x3. $f(x, y, z) = f(tx, ty, tz) \xrightarrow[t \to 0^+]{} f(0, 0, 0)$ car f est continue en (0, 0, 0); E_0 est l'ensemble des fonctions constantes
- **4.** $g'(t) = x \frac{\partial f}{\partial x}(tx, ty, tz) + y \frac{\partial f}{\partial y}(tx, ty, tz) + z \frac{\partial f}{\partial z}(tx, ty, tz) at^{a-1}f(x, y, z)$, on en déduit l'équation différentielle; $g(t) = \alpha t^a$ avec g(1) = 0 donc g = 0 et $f \in E_a$. si $f \in E_a$ alors g(t) = 0 donc g'(1) = 0 qui donne la relation

Exercice 34 [sujet] **1.** (0,0) est le seul point critique

2. $f(x,x^2) - f(0,0) \underset{x\to 0}{\sim} x^3$ qui ne garde pas un signe fixe donc pas d'extremum en (0,0), ni ailleurs car f est \mathcal{C}^1 et \mathbb{R}^2

Exercice 35 [sujet] (0,0) est le seul point critique puis $f(x,x^3) - f(0,0) = x^5 + \ln\left(1 + \frac{x^6}{4}\right) \underset{x\to 0}{\sim} x^5$ (qui change de signe) donc pas d'extremum en (0,0).

Exercice 36 [sujet] $g(x, \lambda x) \underset{x\to 0}{\sim} \lambda^2 x^2 \geqslant 0$ si $\lambda \neq 0$ et $g(x, 0) = 3x^4 \geqslant 0$. Par contre $g(x, 2x^2) = -4x^4$ donc pas de minimum local en (0,0)

Exercice 37 [sujet] Un seul point critique (3, -1) $f(3 + h, -1 + k) - f(3, -1) = h^2 + hk + k^2 = \left(h + \frac{k}{2}\right)^2 + \frac{1}{4}k^2 \ge 0$ donc min local en (3, -1).

Exercice 38 [sujet] les points critiques sont (0,0,0), (1,1,1), (1,-1,-1) (et d'autres qui se trouvent par permutations de x,y et z); $f(x,y,z) \underset{(x,y,z)\to(0,0,0)}{\sim} x^2+y^2+z^2 \geqslant 0$ donc minimum local en (0,0,0); $f(1+h,1+k,1+l)-f(1,1,1)=k^2+h^2+l^2-2hk-2hl-2kl-2hkl$ donc $f(1+h,1,1)-f(1,1,1)=h^2\geqslant 0$ et $f(1+t,1+t,1+t)-f(1,1,1)\underset{t\to 0}{\sim} -3t^2\leqslant 0$ donc par d'extremum en (1,1,1). Idem en (1,-1,-1) car f(x,y,z)=f(x,-y,-1)

Exercice 39 [sujet] 5 points critiques (0,0), $(0,\pm 1)$ et $(0,\pm 1/\sqrt{3})$. f(0,0)=0 et f(0,1)=0 donc minimum (absolu) en (0,0) et (0,1) car $f\geqslant 0$; $f(x,1/\sqrt{3})-f(0,1/\sqrt{3})=x^2\geqslant 0$ et $f(0,t)-f(0,1/\sqrt{3})$ admet un maximum local en $1/\sqrt{3}$ donc pas d'extremum local en $(0,1/\sqrt{3})$. De même pour les 2 autres puisque f(x,y)=f(x,-y)

Exercice 40 [sujet] Un seul point critique (2,1) et $(\mathbb{R}^{+*})^2$ est ouvert. $f(2+h,1+k)-f(2,1) \sim hk+\frac{1}{2}h^2+2k^2=0$ $2\left(k+\frac{h}{4}\right)^2+\frac{3}{8}h^2\geqslant 0$ donc minimum local en (2,1).

Exercice 41 [sujet] Pas de point critique sur $\overset{o}{D}$ (ouvert) donc les extrema de f, continue, sur D, fermé borné, sont atteint sur la frontière de D; $f(x,0) = x^2$ est maximal en 1 et minimal en 0; $f(\cos\theta,\sin\theta) = 1 - \frac{1}{2}\sin(2\theta)$ est maximal en 0 et $\frac{\pi}{2}$, minimal en $\frac{\pi}{4}$. Au final $\min_{D}(f) = f(0,0) = 0$ et $\max_{D}(f) = f(1,0) = 1$

Exercice 42 [sujet] f est continue sur $K = [-1,1]^2$, fermé borné donc f admet des extrema absolus sur K. $f \geqslant 0$ et f(0,0) = 0 donc $\min_{K} f = 0$. Les points critiques sur $K =]-1,1[^2$ sont les points de la forme (x,0); aucun ne peut être le maximum donc il est atteint sur la frontière de K. $f(x,1)=x^4+\ln(2)$ est maximal en 1 (et -1); $f(1,y)=y^3+\ln(1+y^2)$ est maximal en 1 donc $\max_K f=f(1,1)=1+\ln(2)$. Pas d'extremum local supplémentaire.

Exercice 43 [sujet] 1.
$$\frac{1}{x}(g(x,0)-g(0,0)) = 0 \xrightarrow[x\to 0]{} 0 \text{ donc } \frac{\partial g}{\partial x}(0,0) = 0 \text{ et de même, } \frac{\partial g}{\partial y}(0,0) = 0.$$

Puis $\left|\frac{\partial g}{\partial x}(x,y) - \frac{\partial g}{\partial x}(0,0)\right| = \left|2y \ln \|(x,y)\|_2 + \frac{2x^2y}{\|(x,y)\|_2^2}\right| \leqslant 2\|(x,y)\|_2 \left|\ln \|(x,y)\|_2 + \frac{2\|(x,y)\|_2^3}{\|(x,y)\|_2^2} \xrightarrow[(x,y)\to(0,0)]{} 0 \text{ de même pour } \frac{\partial g}{\partial y} \text{ donc } g \text{ est } \mathcal{C}^1$

- ${f 2.}~g$ est continue sur D qui est fermé borné non vide
- 3. g(0,0) = 0 et $g(x,x) = 2x^2 \ln(x) < 0$ si x > 0 donc pas de minimum en (0,0). Comme $g(x,-x) = -x^2 \ln(x) > 0$, pas de maximum non plus. g = 0 sur tout le bord de D; sur $D_1 = D \cap (\mathbb{R}^2)^2$, $g \leq 0$ donc tous les points du bord de D_1 sauf (0,1) et (1,0) sont des maximum; pas de maximum en (0,1) car g > 0 sur l'autre quart de disque à côté de (0,1). Au final, tous les points du bord de D sont des extremum sauf (1,0), (0,1), (-1,0) et (0,-1).

Exercice 44 [sujet] $f \geqslant 0 = f(0,0)$ donc $\min_T f = 0$; f est continue sur T, fermé borné, donc $\max_T f$ existe; comme f = 0 sur la frontière de T, $\max_T f$ est atteint en un point de T donc en un point critique. Le seul point critique est $\left(\frac{2}{5}, \frac{2}{5}\right)$ donc $\max_T f = f\left(\frac{2}{5}, \frac{2}{5}\right)$

Exercice 45 [sujet] 1. si $x \geqslant y$, $|f(x,y)| \leqslant \frac{xy}{(1+x)(1+y)2y} = \frac{x}{2(1+x)(1+y)} \leqslant \frac{x}{2} \xrightarrow[(x,y)\to(0,0)]{} 0$ et on fait de même dans l'autre cas

- **2.** si $x \geqslant y$, $f(x,y) \leqslant \frac{x}{1+x} \times \frac{1}{2(1+y)} \leqslant \frac{1}{2}$ et de même si $y \geqslant x$
- 3. f est continue sur K, fermé borné non vide en dimension finie, donc $M = \max_K(f)$ existe. Comme $(1,1) \in K$, on a $M \geqslant f(1,1) = \frac{1}{8}$ et si $(x,y) \notin K$ alors $f(x,y) = \frac{x}{1+x} \frac{y}{1+y} \frac{1}{x+y} \leqslant 1 \times 1 \times \frac{1}{20} < f(1,1) \leqslant M$ donc $M = \max_D(f)$ aussi (et existe)
- **4.** Si x=0 ou y=0 alors f(x,y)=0 donc M est atteint sur $\overset{\circ}{D}=(\mathbb{R}^{+*})^2$ qui est un ouvert et f est \mathcal{C}^1 sur $\overset{\circ}{D}$ donc M est atteint en un point critique. $\frac{\partial f}{\partial x}(x,y)=\frac{y(y-x^2)}{(1+y)(1+x)^2(x+y)^2}$ (et sym pour y) donc (x,y) est un point critique si et seulement si $\begin{cases} y=x^2\\ x=y^2 \end{cases} \Leftrightarrow x=y=1$ donc $M=f(1,1)=\frac{1}{8}$.

Exercice 46 [sujet] 1. f est continue et $E = [-2, 2]^2$ est fermé borné donc f admet des extrema absolus sur A. Les extrema locaux sont atteints soit en un point critique de A, soit sur la frontière de A. Les points critiques dans A sont $(0,0), \pm(\sqrt{2},-\sqrt{2})$.

- **2.** $f(x,x)=2x^4\geqslant 0$ et $f(x,-x)\sim -2x^2\leqslant 0$ donc pas d'extremum local en (0,0)
- 3. $f(\sqrt{2}+h,-\sqrt{2}+k)-f(\sqrt{2},-\sqrt{2})$ $\underset{(h,k)\to(0,0)}{\sim}$ $10\left(h+\frac{k}{10}\right)^2+\frac{99}{100}k^2\geqslant 0$ donc minimum local en $(\sqrt{2},-\sqrt{2})$; de même en $(-\sqrt{2},\sqrt{2})$ puisque f(-x,-y)=f(x,y). Reste la frontière de A: si $y\in[-2,2],$ $f(2,y)=y^4-2(y-2)^2+16=g(y)$. En étudiant les variations de g (signe de g''), on trouve que g est minimale en un point $y_0\in\left[-2,\frac{-1}{\sqrt{3}}\right]$ et maximale en y=2 avec g(2)=32 (idem sur les 3 autres côtés). On a donc $\max_A f=f(2,2)=f(-2,-2)=32$. Pour le minimum sur A, il faut comparer la valeur de $f(2,y_0)$ et celle de $f(\sqrt{2},-\sqrt{2})=-8$: on a $y_0\in\left[-\frac{5}{3},-\frac{3}{2}\right]$ (vérifier $g'\left(-\frac{5}{3}\right)<0$ et $g'\left(-\frac{3}{2}\right)>0$) donc $(y_0-2)^2\leqslant\left(2+\frac{5}{3}\right)^2=\left(\frac{11}{3}\right)^2$ puis $g(y_0)=y_0^4-2(y_0-2)^2+16\geqslant\left(\frac{3}{2}\right)^4-2\left(\frac{11}{3}\right)^2+16>-8=f(\sqrt{2},-\sqrt{2})$ (ouf!). En étudiant les 3 autres côtés du carré A, on trouve de même et on peut, enfin, conclure $\min_A f=f(-\sqrt{2},\sqrt{2})=f(\sqrt{2},-\sqrt{2})=8$. Pas d'autre extremum local sur \mathbb{R}^2 (ouvert) puisqu'il n'y a pas de point critique hors de A.

Exercice 47 [sujet] 1. $z_M = R(1+e^{ia})$ et $z_{M'} = R(-1+e^{ib})$ puis $S = \frac{1}{2}|\det(\overrightarrow{AM}, \overrightarrow{AM'})| = \frac{R^2}{2}\begin{vmatrix} 1+\cos(a) & -1+\cos(b) \\ \sin(a) & \sin(b) \end{vmatrix}$

- **2.** f est continue sur $[0,\pi]^2$ qui est fermé borné
- 3. facile
- 4. $f\left(\frac{\pi}{3}, \frac{2\pi}{3}\right) = \frac{3}{2}\sqrt{3}$; sur la frontière de $[0, \pi]^2$, le triangle est aplati donc S = 0, le triangle d'aire maximal est obtenu en un point de $]0, \pi[^2]$ donc en un point critique qui est unique.

Exercice 48 [sujet] **1.** f est continue et D fermé borné; $f \ge 0 = f(0,0)$ donc min f = 0

- 2. développer
- **3.** il n'y a que (0,0)

- 4. comme le seul point critique dans D' est le minimum, le maximum est sur la frontière.
- **5.** étudier $t \mapsto \operatorname{sh}(t) t$ et $t \mapsto t \sin(t)$
- **6.** signe de g' avec ce qui précède puis $\max f = g\left(\frac{\pi}{2}\right) = f(0,1)$

Exercise 49 [sujet] 1. $\nabla f(1,1) = (4,-2)$ donc plan tgt 4(x-1) - 2(y-1) - z = 0; $\nabla f(1,2) = (-4,0)$ donc plan tgt 4(x-1) + (z+1) = 0

- 2. $f(x,2x^2) = -x^4 \xrightarrow[x \to +\infty]{} -\infty$ donc pas de minimum absolu et comme $f(x,0) = 3x^4 \xrightarrow[x \to +\infty]{} +\infty$, pas de maximum absolu non plus.
- **3.** si $a \neq 0$, $f(x, ax) \underset{x \to 0}{\sim} (ax)^2 \ge 0$, $f(x, 0) = 3x^4 \ge 0$ et $f(0, y) = y^2 \ge 0$ pourtant pas de minimum local en 0 car $f(x, 2x^2) = -x^4 < 0$ si $x \neq 0$.

 \mathbb{R}^2 est ouvert donc les extrema locaux sont des points critiques, donc en (0,0) seulement, ce qui n'est pas le cas.

Exercice 50 [sujet] **1.** a est un point critique (cours); $c/ex f(x,y) = x^2 + y^2 sur B_f(0,1)$

2.
$$\nabla f(x,y) = 0 \Leftrightarrow \left\{ \begin{array}{l} a - 2x(ax + by) = 0 \\ b - 2y(ax + by) = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y = \frac{b}{a}x \\ x = \frac{\pm a}{\sqrt{2(a^2 + b^2)}} \end{array} \right.$$

3. Par croissance comparée, on a $\lim_{\|(x,y)\|_2 \to +\infty} f(x,y) = 0$. On suppose a > 0 et b > 0 (par ex), on note $X_+ = \left(\frac{a}{\sqrt{2(a^2+b^2)}}, \frac{b}{\sqrt{2(a^2+b^2)}}\right)$ et $X_- = -X_+$ les pts critiques de f puis $m = f(X_-)$ et $M = f(X^+)$. Comme m < 0 et M > 0, il existe r > 0 tel que, pour $\|(x,y)\|_2 > r$, on ait $\frac{m}{2} < f(x,y) < \frac{M}{2}$. Puis f est continue sur $B_f(0,r)$ (fermée bornée non vide) donc admet sur $B_f(0,r)$ un min et un max. On a par ex, $\max_{B_f(0,r)} f \geqslant M$ car $X_+ \in B_f(0,r)$,

donc $\max_{B_f(0,r)} f$ est en fait le maximum de f sur \mathbb{R}^2 entier. Comme \mathbb{R}^2 est un ouvert, ce max est atteint en un point critique donc en X_+ (idem avec X_- pour le min). Il ne peut pas y avoir d'autre extremum local car \mathbb{R}^2 est ouvert et il n'y a pas d'autre pt critique.

Exercice 51 /sujet/ 1. cours endomorphismes symétriques

- 2. calculer f(x+h) et vérifier $\nabla f(x) = f(x) u$ (en utilisant f symétrique)
- **3.** Le point critique est $x_0 = f^{-1}(u)$, puis on vérifie $g(x) g(x_0) = \frac{1}{2}(f(x x_0)|x x_0) > 0$ si $x \neq x_0$.

Exercice 52 [sujet] **1.** On pose f(x, y, z) = xy - z, $\frac{\partial f}{\partial z} = -1$ ne s'annule pas donc tous les points sont réguliers.

2. Le plan tgt en M_0 contient D si et seulement si il contient le point (2, -3, 0) (un point de D) et si $\nabla f(M_0) \perp \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ (un vecteur directeur de D) on en déduit $x_0 = \frac{1}{2}$ et $(2 - x_0)y_0 - (3 + y_0)x_0 = -z_0$ avec $x_0y_0 = z_0$; on trouve $x_0 = \frac{1}{2} = z_0$ et $y_0 = 1$

Exercice 53 [sujet] **1.** On pose f(x, y, z) = xyz - 1; l'équation du plan tangent (\mathcal{P}_0) en M_0 est $(x - x_0)y_0z_0 + (y - y_0)x_0z_0 + (z - z_0)x_0y_0 = 0$.

2. On a $\overrightarrow{OP_0} \perp (\mathcal{P}_0)$ donc $\overrightarrow{OP_0} = \lambda \nabla(f)(M_0)$, soit $\begin{cases} x = \lambda y_0 z_0 \\ y = \lambda x_0 z_0 \\ z = \lambda x_0 y_0 \end{cases}$ et $M_0 \in \mathcal{P}_0$ donc, en remplaçant dans l'équation de $z = \lambda x_0 y_0$ et $M_0 \in \mathcal{P}_0$ donc, en remplaçant dans l'équation de $z = \lambda x_0 y_0$

Exercice 54 [sujet] On a $D \not\parallel \mathcal{P}_0$ si et seulement si $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \perp \nabla(f)(M_0) = \begin{pmatrix} 2x_0 \\ 2y_0 \\ 2z_0 \end{pmatrix}$ donc si et seulement si $x_0 + y_0 = 0$; comme $M_0 \in S$, on a aussi $x_0^2 + y_0^2 - z_0^2 = 1$, ce qui donne $\Gamma = \{(x, y, z) \in \mathbb{R}^3, x + y = 0 \text{ et } x^2 + y^2 - z^2 = 1\}$

Exercice 55 [sujet] **1.** $\nabla(f)(M) = \begin{pmatrix} 4x^3 - 3x^2 + y \\ x - 2y \\ -1 \end{pmatrix}$ ne s'annule jamais

2. (\mathcal{P}_0) est parallèle à xOy si et seulement si $\nabla(f)(M)/\!\!/ \overrightarrow{k}$ donc si et seulement si $\nabla(f)(M) \wedge \overrightarrow{k} = \overrightarrow{0}$, ie si et seulement si $\nabla(f)(M) \wedge \overrightarrow{k} = \overrightarrow{0}$, ie si et seulement si $\nabla(f)(M) \wedge \overrightarrow{k} = \overrightarrow{0}$, ie si et seulement si $\nabla(f)(M) \wedge \overrightarrow{k} = \overrightarrow{0}$, ie si et seulement si $\nabla(f)(M) \wedge \overrightarrow{k} = \overrightarrow{0}$, ie si et seulement si $\nabla(f)(M) \wedge \overrightarrow{k} = \overrightarrow{0}$, ie si et seulement si $\nabla(f)(M) \wedge \overrightarrow{k} = \overrightarrow{0}$, ie si et seulement si $\nabla(f)(M) \wedge \overrightarrow{k} = \overrightarrow{0}$, ie si et seulement si $\nabla(f)(M) \wedge \overrightarrow{k} = \overrightarrow{0}$, ie si et seulement si $\nabla(f)(M) \wedge \overrightarrow{k} = \overrightarrow{0}$, ie si et seulement si $\nabla(f)(M) \wedge \overrightarrow{k} = \overrightarrow{0}$, ie si et seulement si $\nabla(f)(M) \wedge \overrightarrow{k} = \overrightarrow{0}$, ie si et seulement si $\nabla(f)(M) \wedge \overrightarrow{k} = \overrightarrow{0}$, on calcule alors la valeur de z en utilisant l'équation de (S).