ds25 06 s.docx Page 1 sur 8

PSI2. Devoir surveillé n°6. Samedi 15 mars 2025. Corrigé succinct.

Problème n°1. Extrait centrale 2018 psi.

Q1)La force de trainée aérodynamique est donnée par : $T = \frac{1}{2}C_x \mu_{air}V^2$

Pour le transrapid, il n'y a pas de contact physique dont la seule force résistante est la force de trainée dont la puissance est :

$$P = TV = \frac{1}{2}C_x \mu_{air} V^3 \approx 920kW$$

Pour le TGV, il faut compter aussi le frottement contre les rails.

La puissance de la force de traînée est 150kW et celle du frottement contre les rails est :

$$P_{rails} = \mu mgV = 16MW$$

juste en-dessous de la puissance mécanique totale de traction des moteurs (17,6MW).

Bilan: en régime stationnaire à 300km.h⁻¹, le transrapid consomme 16 fois moins que le TGV.

Q2)Le TEC va s'écrire : $\frac{dE_c}{dt} = -P$ où P est la puissance de freinage. Cette relation est intégrable, mais fait apparaître le temps et nous connaissons pas le temps de freinage. Je définis l'axe Ox où x est la distance parcourue à partir du début du freinage. On a alors:

$$\frac{dE_c}{dt} = \frac{dE_c}{dx}\frac{dx}{dt} = \frac{dE_c}{dx}v = -P \quad qui \ donne \ v^2dv = -\frac{P}{m}dx$$

On peut alors intégrer sur la durée du freinage. Le train parcours d=3,6km avec une vitesse initiale v_i . On sort :

$$P = \frac{mv_i^3}{3d} \approx 10MW$$

- Q3)L'ordre de grandeur de la puissance de la force de traînée a déjà été calculée (1MW) et ne réprésente AU MAXIMUM que 10% de la puissance de freinage nécessaire. La prise en compte de la force de traînée va compliquer les calculs en changeant très peu les valeurs numériques obtenues.
- Q4)Travailler à puissance de freinage constante implique que la force de freinage augmente quand la vitesse diminue et diverge au moment de l'arrêt final : accrochez-vous !!!

ds25 06 s.docx Page 2 sur 8

Problème n°2 :ccp psi 2022.

Q28)Combustion du méthane : $CH_4 + 2O_2 = CO_2 + 2 H_2O$

Q = 803 kJ/mol de carburant ou de mol de CO₂ libérées.

Combustion du fuel : $C_{16}H_{34} + 49/2 O_2 = 16 CO_2 + 17 H_2O$

Q = 7600 kJ/mol de carburant donc pour 16 mol de CO_2 .

Soit 803*16/7600 > 800*16/8000 = 1,6 mol de CO₂ libérées pour 803 kJ d'énergie.

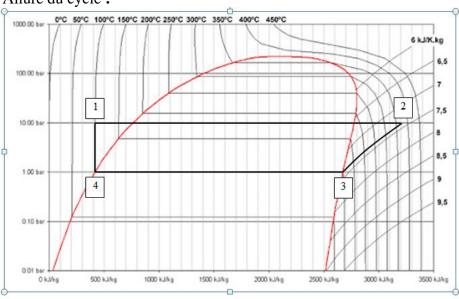


Tableau:

	Point 1	Point 2	Point 3	Point 4
T(°C)	≈ 100	370	100	100
P (bar)	10	10	1	1
h (kJ.kg ⁻¹)	400	3200	2700	400
Etat	Liquide	Vapeur sèche	Vapeur saturante (x _v =1)	Liquide saturé $(x_v = 0)$

Q30)On applique le 1^{ier} principe industriel de la thermodynamique aussi appelé bilan enthalpique sur chacun des éléments : $\Delta h = w_i + q$.

$$\begin{split} \text{On a: } & w_{iT} = h_3 \text{-}h_2 = \text{-}500 \text{ kJ.kg}^{\text{-}1}; \qquad q_{GV} = h_2 \text{-}h_1 = 2800 \text{ kJ.kg}^{\text{-}1}; \qquad \qquad q_{Cond} = h_4 \text{-}h_3 = \text{-}2300 \text{ kJ.kg}^{\text{-}1}. \\ & \eta = \frac{\left|w_{iT}\right|}{q_{GV}} = \frac{h_2 - h_3}{h_2 - h_1}; \end{split}$$

$$\textbf{Q31)} \text{On a } D_m.w_{iT} = P_T \ \approx \ P_{\text{\'elec}} \Rightarrow \quad \ D_m = \frac{P_{\text{\'elec}}}{\left|w_{iT}\right|} = \frac{250}{500} \approx 0,5 \ kg.s^{\text{-}1}.$$

ds25 06 s.docx Page 3 sur 8

Problème 3. Extrait modifié centrale 1 psi 2016.

I Pertes de charge dans les conduites

I.A Fluide en écoulement homogène incompressible laminaire

I.A.1.a) Ecoulement parfait: écoulement sans frottement, adiabatique, réversible d'un point de vue thermodynamique donc isentropique.

Ecoulement homogène incompressible: les grandeurs macroscopiques qui décrivent le fluide sont les mêmes en tout point ; notamment la masse volumique est la même en tout point.

Stationnaire: indépendant du temps

1.A.1.b) Pour un système ouvert en écoulement stationnaire, le premier principe industriel de la thermodynamique s'écrit: $\Delta \left(h + \frac{v^2}{2} + gz\right) = w_{ind} + q$ entre deux points d'un tube de courant.

Le travail des forces de pression amont et aval est déjà compté ainsi que celui du poids.

L'écoulement est supposé adiabatique (q=0) et il n'y a pas d'autres forces (w_{ind}=0) donc la grandeur $h + \frac{v^2}{2} + gz$ est constante sur une ligne de courant ou $\left(h + \frac{v^2}{2} + gz\right) = 0$.

Le premier principe et le second principe sur une transformation élémentaire réversible de l'unité de masse de fluide donne : du = Tds - pdv

On utilise maintenant h=u+pv d'où $dh=du+pdv+vdp=Tds+vdp=Tds+\frac{dp}{\mu}$

car v est le volume massique, soit l'inverse de la masse volumique.

On utilise maintenant $dh = Tds + \frac{dP}{\mu}$ avec ds=0 car l'écoulement est isentropique.Comme μ est constant, on obtient alors : $d\left(\frac{P}{\mu} + \frac{v^2}{2} + gz\right) = 0$. En multipliant par μ , on obtient :

$$P + \frac{\mu v^2}{2} + \mu gz = Cte = e_T$$
 qui est une énergie volumique

Pour obtenir H, on divise maintenant par µg constant:

$$H = \frac{e_T}{\mu g} = z + \frac{p}{\mu g} + \frac{v^2}{2g} = cte$$

- **I.A.1.c)** L'hypothèse d'un écoulement parfait ne peut être valide près des parois dans un écoulement laminaire d'un fluide réel, car la vitesse doit s'y annuler à cause de la viscosité.
- **I.A.1.d)** Dans le cas d'un écoulement permanent d'un fluide incompressible réel, il faut ajouter dans la formule initiale précédente le travail des forces massiques de frottement soit :

$$w_{ind} = \mu \int_{A}^{B} \vec{f}_{visc} \cdot d\vec{\ell} \le 0$$

ds25 06 s.docx Page 4 sur 8

On reprend le processus entier et on obtient : $e_T(B) - e_T(A) = \int_A^B \vec{f}_{visc} \cdot d\vec{\ell} \le 0$

 e_T diminue le long de l'écoulement à cause du travail des forces de viscosité.

I.A.1.e) On en déduit donc $H(B) - H(A) = \int_A^B \frac{\overrightarrow{f_{visc}}}{\mu g} . \overrightarrow{d\ell} = \int_A^B \frac{\eta \Delta \overrightarrow{v}}{\mu g} . \overrightarrow{d\ell} \le 0.$

Une variation élémentaire de H s'écrit donc : $dH = \frac{\eta}{\mu g} \Delta \vec{v} \cdot d\vec{\ell}$. La perte de charge H(A) - H(B) est donc bien positive (ou nulle en absence de viscosité).

I.A.2.a) Pour un fluide incompressible, la conservation de la matière devient : $div(\vec{v}) = 0$. En utilisant les cartésiennes, cela donne ici : $\frac{\partial v}{\partial x} = 0$, donc v ne dépend pas de x.

I.A.2b) . On suppose $\frac{\partial H}{\partial x} = -a$. D'après la question I.A.1.e, on déduit $\frac{\partial H}{\partial x} = -a = \frac{\eta \Delta v}{\mu g}$.

D'où $\frac{\eta}{\mu gr} \frac{\partial}{\partial r} \left(r \frac{\partial v}{\partial r} \right) = -a$, soit encore $\frac{\partial}{\partial r} \left(r \frac{\partial v}{\partial r} \right) = \frac{-a\mu gr}{\eta}$ que l'on intègre entre 0 et r:

 $r\frac{\partial v}{\partial r} = \frac{-a\mu gr^2}{2\eta}$ soit $\frac{\partial v}{\partial r} = \frac{-a\mu gr}{2\eta}$ que l'on intègre cette fois entre r et r_0 .

$$v(r_0) - v(r) = -v(r) = \frac{a\mu g}{4n}(r^2 - r_0^2).$$

On en déduit $v(r) = \frac{a\mu g}{4\eta}(r_0^2 - r^2) = v_{max}\left(1 - \frac{r^2}{r_0^2}\right)$ avec $v_{max} = \frac{a\mu g r_0^2}{4\eta}$.

I.A.2.c) La vitesse débitante est la vitesse moyenne calculée sur une section:

$$U = \frac{1}{\pi r_0^2} \iint_{section} v(r) \ r d\theta dr = \frac{1}{\pi r_0^2} \int_0^{r_0 \int} 2\pi \left(1 - \frac{r^2}{r_0^2}\right) v_{max} \text{ soit après simplification } U = \frac{1}{2} v_{max}.$$

De
$$Q = U\pi r_0^2 = \frac{1}{2}v_{max}\pi r_0^2$$
 on déduit donc $v(r) = \left(1 - \frac{r^2}{r_0^2}\right)v_{max} = \frac{2Q}{\pi r_0^2}\left(1 - \frac{r^2}{r_0^2}\right)$.

I.A.2.d) Pour un débit de 30Ls⁻¹ et un diamètre de 20cm, $U = \frac{Q}{\pi r_0^2} = \frac{30.10^{-3}}{\pi . 10^{-2}} = 0.95 ms^{-1}$.

De
$$v_{\text{max}} = \frac{a\mu g r_0^2}{4\eta}$$
 on déduit la perte de charge linéique $a = \frac{8\eta U}{\mu g r_0^2} = \frac{32\eta U}{\mu g D^2}$

- Cas de l'huile:
- A.N pour l'huile: $a = 1.5 \times 10^{-2}$; d'où une surpression nécessaire $\Delta P = \mu g \Delta H = \mu g a L = 6.5 \times 10^{3} Pa$
- Nombre de Reynolds: Re = $\frac{\mu DU}{\eta}$ = 990 \approx 10³ < 2300 compatible avec un écoulement laminaire.
- Cas de l'eau.
- Nombre de Reynolds: Re = $\frac{\mu DU}{\eta}$ = 1,9 10⁵ >>2300. L'écoulement de l'eau est turbulent.

ds25 06 s.docx Page 5 sur 8

Pb4 Mines Ponts 2022 psi.

Q10. L'équation de la réaction de fonctionnement est la combinaison linéaire des demi-équations ci-dessous :

 $Zn + H_2O = ZnO + 2 H^+ + 2 e^-$ soit en milieu basique $Zn + 2 HO^- = ZnO + H_2O + 2 e^-$ et $O_2 + 4 H^+ + 4 e^- = 2 H_2O$ soit en milieu basique $O_2 + 2 H_2O + 4 e^- = 4 HO^-$

Le zinc est oxydé, la poudre de zinc en contact avec A₁ constitue donc l'anode.

A₂ constitue la cathode, où se déroule la réduction du dioxygène entrant par les orifices C et traversant la membrane semi-perméable.

Les électrons sont libérés à l'anode et consommés à la cathode, et circulent en sens opposé à celui du courant électrique, la cathode constitue donc le pôle + de la pile, l'anode le pôle -.

Q11. La tension à vide standard aux bornes de la pile vaut :

$$e^{\circ} = E^{\circ}(O_{2(g)}/H_2O_{(l)}) - E^{\circ}(\text{ZnO}_{(s)}/\text{Zn}_{(s)})$$

AN: $e^{\circ} = 1.23 - (-0.43) = 1.66 \text{ V}$

Q12. Pour l'équation de la réaction de fonctionnement : $2 \operatorname{Zn}_{(s)} + O_{2(g)} = 2 \operatorname{Zn}O_{(s)}$ on a d'après la loi de Hess : $\Delta_r H^\circ = 2\Delta_f H^\circ(\operatorname{Zn}_{(s)}) - 2\Delta_f H^\circ(\operatorname{Zn}_{(s)}) - \Delta_f H^\circ(O_{2(g)})$

AN:
$$\Delta_r H^\circ = -2 \times 350 = -700 \text{ kJ} \cdot \text{mol}^{-1}$$

Par définition: $\Delta_r S^\circ = 2S_m \circ (\text{ZnO}_{(s)}) - 2S_m \circ (\text{Zn}_{(s)}) - S_m \circ (O_{2(g)})$.
AN: $\Delta_r S^\circ = 2 \times 40 - 2 \times 40 - 200 = -200 \text{ J} \cdot \text{mol}^{-1} \cdot K^{-1}$
 $\Delta_r G^\circ = \Delta_r H^\circ - T \Delta_r S^\circ$.
A 298 K: $\Delta_r G^\circ (298 \text{ K}) = -700 \cdot 10^3 + 200 \times 298 \simeq -640.4 \text{ kJ} \cdot \text{mol}^{-1}$
 $K^\circ = e^{-\frac{\Delta_r G^\circ}{RT}}$. AN: $K^\circ = e^{\frac{640400}{8 \times 298}}$

Pour faire l'AN on peut calculer $\log K^{\circ} = \frac{\ln(K^{\circ})}{\ln(10)} \simeq \frac{1}{2,3} \times \frac{640400}{8\times300} = \frac{640400}{2,3\times24} \simeq 110 \text{ soit } K^{\circ} \simeq 10^{110}.$

La transformation est totale, c'est cohérent.

Q13.
$$\Delta_r G^{\circ} = -4Fe^{\circ} \Leftrightarrow e^{\circ} = \frac{-\Delta_r G^{\circ}}{4F}$$
. AN: $e^{\circ} \simeq \frac{640400}{4 \times 10^5} \simeq 1.6 \ V$.

La valeur est en accord avec celle calculée à la Q11, compte tenu des approximations sur les $\Delta_f H^\circ$, S_m° , sur F, ...

Q14. La durée théorique de fonctionnement vérifie $q = i\Delta t = 4F\xi \text{Zn,i}_{max}$ (Zn est le réactif limitant car 0_2 est apporté en continu à la cathode), avec : $n_{\text{Zn,}i} = \frac{m_{\text{Zn,}i}}{M_{\text{Zn}}}$.

D'où :
$$\Delta t = \frac{2Fm_{\text{Zn},i}}{i \times M_{\text{Zn}}}$$
. AN : $\Delta t = \frac{2 \times 10^5 \times 0.65}{0.8 \cdot 10^{-3} \times 65} = \frac{20}{0.8} \times 10^5 = 2.5 \cdot 10^6 \text{ s (soit environ } \frac{2.5 \cdot 10^6}{24 \times 3600} \simeq 30 \text{ jours)}$.

Q15. L'énergie électrique que peut fournir la pile vaut : $W_{\text{\'el}} = Ui\Delta t$ où U est la tension de fonctionnement.

AN:
$$W_{\text{\'el}} = 1.5 \times 0.8 \cdot 10^{-3} \times 25 \cdot 10^{5} = 1.5 \times 20 \cdot 10^{2} = 3.0 \cdot 10^{3} \text{ J}$$

ds25 06 s.docx Page 6 sur 8

Problème n°5. Centrale mp 2022.

Q1. - Caractère oxydant ou réducteur : On sait que la somme des nombres d'oxydation est égale à la charge de l'ion ou de la molécule. Le nombre d'oxydation du fer dans $Fe_{(s)}$ est donc 0, il est de +II dans $Fe_{(aq)}^{2+}$ et de +III dans $Fe_{(aq)}^{3+}$. Dans $Fe_{(aq)}^{3+}$:

n.o. (Fe)
$$+ 2 \times$$
 n.o. (O) $+ 2 \times$ n.o. (H) $= 0$

le nombre d'oxydation de l'oxygène est -II et celui de l'hydrogène est +I donc celui du fer est +II. Par le même raisonnement, le nombre d'oxydation du fer dans $FeOOH_{(s)}$ est +III, dans $HFeO_2^-(aq)$, il est de +II.

• Caractère acido-basique : On remarque que $Fe(OH)_{2(s)}$ peut être vu comme basique par rapport à $Fe_{(aq)}^{2+}$:

$$Fe(OH)_{2(s)} + 2H^+ \rightarrow Fe_{(aq)}^{2+} + 2H_2O_{(liq)}$$

et acide par rapport à $HFeO_{2(aq)}^{-}$:

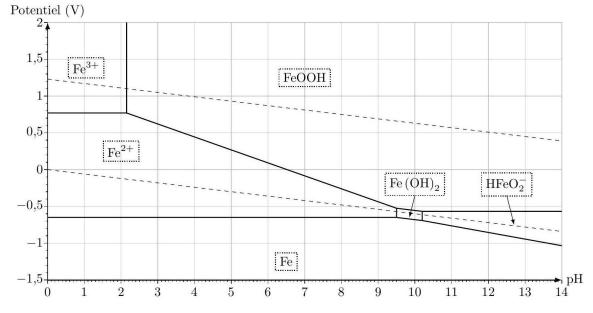
$$HFeO_{2(aq)}^- + H^+ \longrightarrow Fe(OH)_{2(s)}$$

De même $\text{FeOOH}_{(s)}$ est basique par rapport à $\text{Fe}^{3+}_{(aq)}$:

$$FeOOH_{(s)} + 3H^+ \xrightarrow{\text{Fe}_{(aq)}^{3+}} Fe_{(aq)}^{3+} + 2H_2O_{(liq)}$$

- Conclusion:
- À bas potentiel, on trouvera $Fe_{(s)}$; puis $Fe_{(aq)}^{2+}$, $Fe(OH)_{2(s)}$ et $HFeO_{2(aq)}^{-}$ et enfin à haut potentiel, $Fe_{(aq)}^{3+}$ et $FeOOH_{(s)}$.
- `\(\text{a bas pH, on trouvera Fe}_{(aq)}^{2+}\) puis à pH intermédiaire Fe(OH)_{2(s)} et enfin HFeO $_{2(aq)}^{-}$. De même on retrouve Fe $_{(aq)}^{3+}$ à bas pH et FeOOH_(s) à haut pH.

D'où le placement des espèces sur le diagramme.



Q2. On doit considérer le couple $Fe_{(aq)}^{2+}/Fe_{(s)}$ donc la frontière entre les deux espèces. La formule de Nerst est : $E = E^0(Fe^{2+}/Fe) + \frac{0.06}{2}\log([Fe^{2+}])$

À la frontière entre le domaine du fer solide $(Fe_{(s)})$ et celui de l'ion fer II en solution $(Fe_{(aq)}^{2+})$:

$$[Fe^{2+}] = C_{tra}$$
 et on lit $E_{frontière} = -0.65 \text{ V}$

Donc:
$$E^0(\text{Fe}^{2+}/\text{Fe}) = -0.65 - 0.03 \times (-6) = -0.47 \text{ V}$$

Le produit de solubilité est la constante de la réaction de dissolution :

$$Fe(OH)_{2(s)} \rightarrow Fe^{2+}_{(aq)} + 2HO^{-}_{(aq)}$$

Soit:

$$K_s = [Fe^{2+}] \times [HO^-]^2$$

Page 7 sur 8 ds25 06 s.docx

À la frontière entre le domaine d'existence du solide $(Fe(OH)_{2(s)})$ et celui de l'ion fer (II) en solution (Fe $^{2+}_{(aq)}$): [Fe²⁺] = \mathcal{C}_{tra} (définition de la convention de tracé)

Nous relevons aussi graphiquement : $pH_{fr} = 9.5$

 $[HO^{-}]_{fr} = 10^{-14+9.5} = 10^{-4.5} \text{ mol} \cdot L^{-1}$ Donc:

Ainsi:

$$K_s = 10^{-6} \times (10^{-4.5})^2 = 10^{-15}$$

Q3. On écrit la demi-équation du couple $FeOOH_{(s)}/Fe_{(aq)}^{2+}$:

$$FeOOH_{(s)} + 3H^+ + e^- \rightarrow Fe_{(aq)}^{2+} + 2H_2O_{(liq)}$$

La formule de Nernst correspondante est :

$$E = E^{0}(\text{FeOOH/Fe}^{2+}) + \frac{0.06}{1}\log\left(\frac{[\text{H}^{+}]^{3}}{[\text{Fe}^{2+}]}\right)$$

À la frontière entre le domaine du solide et de celui de l'ion en solution $(Fe^{2+}_{(aq)})$: $[Fe^2 +] = C_{tra}$.

Ainsi : $E_{\rm fr} = E^0({\rm FeOOH/Fe^{2+}}) - 0.18 {\rm pH} - 0.06 {\rm log}~(C_{\rm tra})$ La pente de la frontière séparant ${\rm FeOOH}_{(\rm s)}$ et ${\rm Fe}_{(\rm aq)}^{2+}$ est -0.18 V.

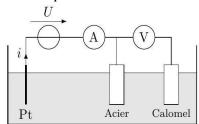
Q4. Le dioxygène et le fer n'ont pas de domaine commun : le fer solide est oxydé (en Fe²⁺ à pH7) et le dioxygène est réduit en eau.

Fe
$$\rightarrow$$
 Fe²⁺ + 2e⁻
O₂ + 4H⁺ + 4e⁻ \rightarrow 2H₂O

Le bilan est:

$$2Fe + O_2 + 4H^+ \rightarrow 2Fe^{2+} + 2H_2O$$

Q5. Schéma : une tension est imposée entre l'électrode de platine et l'acier, un courant circule; tandis que l'on mesure la tension entre l'acier et l'électrode au calomel saturé.



Q6. - La zone (a) pour i > 0 correspond à l'oxydation du fer solide en Fe²⁺ (car à pH = 8,2, c'est l'ion Fe²⁺ qui prédomine).

$$Fe_{(s)} \rightarrow Fe_{(aq)}^{2+} + 2e^{-}$$

Le premier plateau (b) observé pour i < 0 et proche de 0 correspond à la réduction du dioxygène en eau. Le plateau est un palier de diffusion de l'oxygène dissout.

$$\mathrm{O_{2(aq)}} + 4\mathrm{H^+} + 4e^- \longrightarrow 2\mathrm{H_2O_{(liq)}}$$

Le mur du solvant (c) observé pour $i < 0(\Delta E \approx -0.95 \text{ V})$ correspond à la réduction de l'eau en dihydrogène gazeux.

$$2H^+ + 2e^- \rightarrow H_2(g)$$

Q7. En prolongeant le mur du solvant jusqu'à l'axe des abscisses, on relève $\Delta E \approx -0.94$ V pour un courant nul. Soit, comme $E_{\text{calomel}} = 0.25 \text{ V}$:

$$E_{\text{acier}} = -0.69 \text{ V}$$

or le potentiel de Nernst de ce couple est :

$$E_{\text{Nernst}} = -0.06 \text{pH} = -0.06 \times 8.2 = -0.49 \text{ V}$$

On en déduit la valeur de la surtension cathodique :

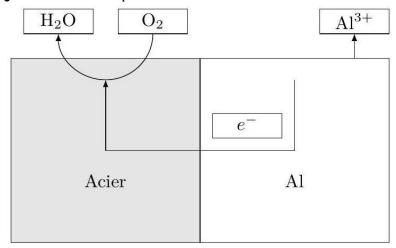
$$\eta_C = -0.20 \text{ V}$$

Q8. Il correspond au plateau à vitesse nulle, et à la zone linéaire lorsque la vitesse du courant d'eau est non nulle.

ds25 06 s.docx Page 8 sur 8

Q9. Le renouvellement du dioxygène dissout par le mouvement de fluide fait que la diffusion n'a à se faire sur une zone de plus en plus réduite au fur et à mesure que la vitesse du fluide augmente, et devient ainsi de moins en moins limitante.

Q10. Schéma complété:



Q11. On repère le potentiel mixte correspondant à la courbe d'oxydation de l'aluminium et à la réduction des ions fer. Les courants se compensent pour $\Delta E \approx -0.75 \, \text{V}$ et on relève :

$$j_{\text{corr}} = 1.5 \times 10^{-5} \,\text{A} \cdot \text{cm}^{-2} = 1.5 \times 10^{-1} \,\text{A} \cdot \text{m}^{-2}$$

 $j_{\rm corr}=1.5\times 10^{-5}~{\rm A\cdot cm^{-2}}=1.5\times 10^{-1}~{\rm A\cdot m^{-2}}$ **Q12.** À cette densité de courant est associé un courant $j_{\rm corr}~S=j_{\rm corr}~\pi d^2$ soit, sur un intervalle de temps Δt , une quantité de matière d'électrons égale à :

$$n_{e^-} = \frac{j_{\rm corr} \, \pi d^2 \Delta t}{\mathcal{F}}$$

La quantité de matière d'aluminium est $n_{e^-}/3$ donc la masse d'aluminium est :

$$\Delta m_{\rm Al} = \frac{j_{\rm corr} \pi d^2 M({\rm Al}) \Delta t}{3\mathcal{F}}$$

On a $\Delta m_{\rm Al} = \Delta e_{\rm Al} \pi d^2 \rho_{\rm Al}$ ainsi:

$$\frac{\Delta e_{\text{Al}}}{\Delta t} = \frac{j_{\text{corr}} M(\text{Al})}{3\mathcal{F} \rho_{\text{Al}}} = 5.14 \times 10^{-12} \text{ m} \cdot \text{s}^{-1}$$

Soit pendant 1 an, une épaisseur de $1,62 \times 10^{-4}$ m = 0,162 mm.

Q13. La valeur obtenue sur trois ans (environ 0,5 mm) semble assez éloignée de l'épaisseur de la pièce...