TD23: Fonctions de plusieurs variables

Exercice 1 (CCINP PSI 2023)

Exercice 1 (CCINP PSI 2023)
Soient
$$F = \{(x,y) \in \mathbb{R}^2, x+y=0\}$$
 et $f:(x,y) \longmapsto \begin{cases} \frac{x^2y^2}{x+y} & \text{si } (x,y) \notin F \\ 0 & \text{si } (x,y) \in F \end{cases}$

- **1.** Justifier que $f \in \mathcal{C}^1(\mathbb{R}^2 \setminus F)$
- **2.** Montrer que, si $(x,y) \notin F$, $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial u}(x,y) = 3f(x,y)$
- **3.** Existence et valeurs de $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$?
- **4.** f est-elle continue en (0,0)? (*)

Exercice 2 (ENSEA PSI 2021)

Exercice 2 (ENSEA PSI 2021)
Soit
$$f(x,y) = \begin{cases} \frac{3xy^3 - x^3y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- **1.** Montrer que f est C^2 sur $\mathbb{R}^2 \setminus \{(0,0)\}$
- **2.** Montrer que f est \mathcal{C}^1 sur \mathbb{R}^2 .
- **3.** Calculer $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$; f est-elle \mathcal{C}^2 sur \mathbb{R}^2 ? (*)

Exercice 3 (CCP PC 2011)

Soit E_a l'ensemble des fonctions $f \in \mathcal{C}^1(\mathbb{R}^3)$ telles que $\forall t > 0, \forall (x, y, z) \in \mathbb{R}^3, f(tx, ty, tz) = t^a f(x, y, z)$.

- **1.** Montrer que E_a est un sous-espace vectoriel de \mathcal{C}^1 (\mathbb{R}^3).
- **2.** Montrer que si $f \in E_a$ est \mathcal{C}^2 sur \mathbb{R}^3 alors $\frac{\partial f}{\partial r} \in E_{a-1}$.
- **3.** Montrer que si $f \in E_0$ alors f(x, y, z) = f(0, 0, 0). Que peut-on en déduire sur E_0 ?
- **4.** Soit f de classe C^1 sur \mathbb{R}^3 telle que $x \frac{\partial f}{\partial x}(x,y,z) + y \frac{\partial f}{\partial y}(x,y,z) + z \frac{\partial f}{\partial z}(x,y,z) = af(x,y,z)$. Montrer que $g: t \in \mathbb{R}^{+*} \mapsto f(tx, ty, tz) - t^a f(x, y, z)$ est dérivable sur \mathbb{R}^{+*} et vérifie tg'(t) = ag(t). En déduire que $f \in E_a$.

La réciproque est-elle vraie?

Exercice 4 (CCINP PSI 2022)

Soit $g \in \mathcal{C}^1(\mathbb{R}^2)$ telle que $\forall (x,y) \in \mathbb{R}^2, \partial_1 g(x,y) + \partial_2 g(x,y) = 0$. On pose $h(u,v) = g(\alpha u + \beta v, \beta u - \alpha v)$ avec $(\alpha,\beta) \neq (0,0)$.

- **1.** Calculer $\partial_1 h(u,v)$
- **2.** Trouver (α, β) tels que $h(u, v) = \varphi(v)$ avec $\varphi \in \mathcal{C}^1(\mathbb{R})$
- **3.** Déterminer g

Résoudre $x \frac{\partial \hat{f}}{\partial x} + y \frac{\partial f}{\partial u} - f = -(x^2 + y^2) \text{ sur } \mathbb{R}^2 \setminus \{(x,0), x \in \mathbb{R}^-\}$ (on pourra passer en coordonnées polaires).

Exercice 6 (Mines-Ponts PSI 2019

Résoudre sur \mathbb{R}^2 $\frac{\partial^2 f}{\partial x^2} - 3 \frac{\partial^2 f}{\partial x \partial u} + 2 \frac{\partial^2 f}{\partial u^2} = 0$; on pourra utiliser le changement de variable u = x + ay et v = x + by (*)

 $f:(x,y)\mapsto xy+\frac{4}{x}+\frac{2}{x}$ admet-elle des extrema locaux sur $(\mathbb{R}^{+*})^2$?

Exercice 8 (Centrale PSI 2023)

Soient
$$D = (\mathbb{R}^+)^2$$
 et f définie sur D par $f(x,y) = \frac{xy}{(1+x)(1+y)(x+y)}$ si $(x,y) \neq (0,0)$ et $f(0,0) = 0$

- 1. Montrer que f est continue sur D. (*)
- **2.** Montrer que f est majorée sur D. (*)
- **3.** Soit $K = [0, 10]^2$. Montrer que f admet un maximum sur K puis sur D. (*)
- **4.** Déterminer $\max_{D}(f)$.

Exercice 9 (CCP PSI 2013)

Soit $f \in \mathcal{L}(\mathbb{R}^n)$ autoadjoint défini positif.

- **1.** Pour $u \in \mathbb{R}^n$, on définit g par $g(x) = \frac{1}{2}(f(x)|x) (u|x)$. Montrer que g admet des dérivées partielles et les expliciter. (*)
- 2. Montrer que g admet un unique point critique et que ce point critique est un minimum global. (*)

Exercice 10

Soit S la surface d'équation xy = z et D la droite d'équation $\begin{cases} x = 2 \\ y - 2z + 3 = 0 \end{cases}$.

- 1. La surface S est-elle régulière?
- 2. Déterminer les points de S en lesquels le plan tangent contient D. (*)

Indications

Exercice 1

4. Étudier $f(x, -x + x^{\alpha})$ avec $\alpha > 0$ bien choisi.

Exercice 2

3. Changer de notation si besoin : poser $f_1 = \frac{\partial f}{\partial x}$ pour calculer $\frac{\partial^2 f}{\partial u \partial x}$.

Exercice 6

Comme pour l'exercice 2 si nécessaire

Exercice 8

- **1.** Distinguer $x \ge y$ et $y \ge x$.
- 2. Idem.
- **3.** Il s'agit de vérifier que $\max_{D} f = \max_{K} f = M$ en vérifiant que f prend des valeurs $\leqslant M$ en dehors de D.

Exercice 9

- **1.** Revenir à la définition, en introduisant e_i un vecteur de la base canonique de \mathbb{R}^n .
- **2.** Les calculs sont plus faciles en posant $x = x_0 + h$ avec x_0 le point critique.

Exercice 10

2. Pour qu'une droite soit incluse dans un plan, il suffit que deux de ses points soient dans le plan.