Fonctions vectorielles et équations différentielles

On considère I un intervalle de \mathbb{R} contenant au moins deux points distincts et n un entier naturel non nul. On s'intéresse dans ce chapitre à des fonctions $f: I \to \mathbb{R}^n$, définie sur I et à valeurs dans \mathbb{R}^n .

Interprétation : soit $f: I \longrightarrow \mathbb{R}^n$

- \diamond le couple (I, f) est une courbe paramétrée tracée dans \mathbb{R}^n .
- \diamond l'ensemble $\Gamma = f(I) = \{u \in \mathbb{R}^n | \exists t \in I, u = f(t)\}$ est le support de la courbe paramétrée par (I, f)

I Dérivation des fonctions vectorielles d'une variable réelle

1. Dérivée ponctuelle

<u>Définition</u>: Soient $f: I \to \mathbb{R}^n$ et t_0 un point de I. Si la fonction $h \in \mathbb{R}^* \longmapsto \frac{1}{h}(f(t_0 + h) - f(t_0))$ admet une limite en 0, on dit que f est **dérivable en** t_0 . Dans ce cas, on note

$$f'(t_0) = \lim_{h \to 0} \frac{1}{h} (f(t_0 + h) - f(t_0))$$

le vecteur dérivé de f en t_0 .

$\underline{\text{Remarque}(s)}$:

(I.1) f est dérivable en t_0 si et seulement si la fonction τ_{t_0} : $\begin{cases} I \setminus \{t_0\} \to \mathbb{R}^n \\ t \mapsto \frac{1}{t - t_0} (f(t) - f(t_0)) \end{cases}$ est prolongeable par continuité en t_0 .

Propriété [I.1]: Soient $f: I \to \mathbb{R}^n$ et $t_0 \in I$. Alors f est dérivable en t_0 si et seulement si f admet un $\mathrm{DL}_1(t_0)$, ie si et seulement si il existe $a \in \mathbb{R}^n$ tel que

$$f(t_0 + h) = f(t_0) + ha + o(h)$$

Conséquence [I.2] : Soient $f: I \to \mathbb{R}^n$ et $t_0 \in I$. Si f est dérivable en t_0 alors f est continue en t_0 .

<u>Propriété</u> [I.3]: Soient $t_0 \in I$, $\mathcal{B} = (e_1, \dots, e_n)$ une base de \mathbb{R}^n et f_1, \dots, f_n les fonctions de I dans \mathbb{R} telles que $\forall t \in I, f(t) = \sum_{i=1}^n f_i(t)e_i$. Alors f est dérivable en t_0 si et seulement si f_1, \dots, f_n sont dérivables en t_0 .

Dans ce cas, on a $f'(t_0) = \sum_{i=1}^{n} f'_i(t_0)e_i$.

2. Fonctions dérivables sur I

<u>Définition</u>: Soit $f: I \to \mathbb{R}^n$. On dit que f est **dérivable sur** I si f est dérivable en tout point t_0 de I. Dans ce cas, on note f' la **fonction dérivée de** f définie par

$$f': \quad I \longrightarrow \mathbb{R}^n$$

$$t_0 \longmapsto f'(t_0)$$

On note $\mathcal{D}(I,\mathbb{R}^n)$ l'ensemble des fonctions dérivables sur I et à valeurs dans \mathbb{R}^n .

Remarque(s):

- (I.2) La fonction f' est, comme f, une fonction à valeurs vectorielles : $f'(I) \subset \mathbb{R}^n$.
- (I.3) On a $\mathcal{D}(I,\mathbb{R}^n) \subset \mathcal{C}^0(I,\mathbb{R}^n)$. L'inclusion est stricte; $c/ex: t \mapsto |t|x$ si $x \in \mathbb{R}^n$ est non nul.

Propriété [I.4]: $\mathcal{D}(I,\mathbb{R}^n)$ est un sous-espace vectoriel de $\mathcal{C}^0(I,\mathbb{R}^n)$ et on a :

$$\forall (f,g) \in \mathcal{D}(I,\mathbb{R}^n)^2, \forall (\alpha,\beta) \in \mathbb{R}^2, (\alpha f + \beta g)' = \alpha f' + \beta g'$$

Propriété [I.5]: Soient $f: I \to \mathbb{R}^n$, $\mathcal{B} = (e_1, \dots, e_n)$ une base de \mathbb{R}^n , f_1, \dots, f_n les fonctions coordonnées de f dans \mathcal{B} , ie telles que $\forall t \in I$, $f(t) = \sum_{i=1}^n f_i(t)e_i$. Alors $f \in \mathcal{D}(I, \mathbb{R}^n)$ si et seulement si $(f_1, \dots, f_n) \in \mathcal{D}(I, \mathbb{R})^n$ et dans ce cas,

$$\forall t \in I, f'(t) = \sum_{i=1}^{n} f'_i(t)e_i.$$

Propriété [I.6]: (Composition par une application linéaire)

Soient $f: I \to \mathbb{R}^n$ et $u \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ linéaire. Si $f \in \mathcal{D}(I, \mathbb{R}^n)$ alors $u \circ f \in \mathcal{D}(I, \mathbb{R}^p)$ et

$$\forall t \in I, (u \circ f)'(t) = u \circ (f')(t) = u(f'(t))$$

Propriété [I.7]: (Composition par une application multilinéaire)

1. Soient $f \in \mathcal{D}(I, \mathbb{R}^n)$, $g \in \mathcal{D}(I, \mathbb{R}^p)$ et $B : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^q$ bilinéaire. La fonction B(f, g), définie par $B(f, g) : t \in I \longmapsto B(f(t), g(t))$ est dérivable sur I et

$$\forall t \in I, B(f,g)'(t) = B(f'(t),g(t)) + B(f(t),g'(t))$$

2. Soient $f_i \in \mathcal{D}(I, \mathbb{R}^{n_i})$, pour $1 \leq i \leq p$, et $M : \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_p} \longrightarrow \mathbb{R}^m$ une application $\underline{p\text{-lin\'eaire}}$. Alors l'application définie par $M(f_1, \ldots, f_p) : t \in I \longmapsto M(f_1(t), \ldots, f_p(t))$ est dérivable sur I et

$$\forall t \in I, M(f_1, \dots, f_p)'(t) = \sum_{i=1}^p M(f_1(t), \dots, f_{i-1}(t), f_i'(t), f_{i+1}(t), \dots, f_p(t))$$

Conséquence [I.8]:

1. Si $(f,g) \in \mathcal{D}(I,\mathbb{R}^n)^2$ et si (||) est un produit scalaire sur \mathbb{R}^n . alors $(f|g) \in \mathcal{D}(I,\mathbb{R})$ et

$$\forall t \in I, (f|g)'(t) = (f'(t)|g(t)) + (f(t)|g'(t))$$

PSI2 - Lycée Montaigne Page 2/6

2. Si $(f_1,\ldots,f_n)\in\mathcal{D}(I,\mathbb{R}^n)^n$ et si $\mathcal{B}=(e_1,\ldots,e_n)$ est une base de \mathbb{R}^n alors $\det_{\mathcal{B}}(f_1,\ldots,f_n)\in\mathcal{D}(I,\mathbb{R})$ et

$$\forall t \in I, \det_{\mathcal{B}}(f_1, \dots, f_n)'(t) = \sum_{i=1}^n \det_{\mathcal{B}}(f_1(t), \dots, f_{i-1}(t), f_i'(t), f_{i+1}(t), \dots, f_n(t))$$

Remarque(s):

(I.4) Si $f \in \mathcal{D}(I, \mathbb{R}^n)$ est telle que $\forall x \in I, f(x) \neq 0$ alors $||f|| \in \mathcal{D}(I, \mathbb{R})$ et $||f||' = \frac{(f|f')}{||f||}$.

Un mouvement non stationnaire (ie tel que f' ne s'annule pas) C^2 dans \mathbb{R}^n est uniforme si et seulement si $\forall t \in I, f'(t) \perp f''(t)$.

Conséquence [I.9]: Soient $f \in \mathcal{D}(I, \mathbb{R}^n)$ et $\lambda \in \mathcal{D}(I, \mathbb{R})$ alors $\lambda f \in \mathcal{D}(I, \mathbb{R}^n)$ et

$$\forall t \in I, (\lambda f)'(t) = \lambda'(t)f(t) + \lambda(t)f'(t)$$

Propriété [I.10] : Soient $f \in \mathcal{D}(I, \mathbb{R}^n)$, $\varphi : J \to \mathbb{R}$ dérivable sur J, un intervalle de \mathbb{R} . Si $\varphi(J) \subset I$ alors $f \circ \varphi$ est dérivable sur J et

$$\forall t \in I, (f \circ \varphi)'(t) = \varphi'(t) \times f' \circ \varphi(t)$$

Propriété [I.11]: (Caractérisation des fonctions constantes)

Soit $f: I \to \mathbb{R}^n$ continue sur I et dérivable sur I, l'intérieur de I. Alors

f est constante sur I si et seulement si f' = 0 sur I

3. Fonctions de classe C^k

Définition : Soit $f: I \to \mathbb{R}^n$

- 1. On note $f^{(0)} = f$ et pour $k \in \mathbb{N}$, $f^{(k+1)} = (f^{(k)})'$ si $f^{(k)}$ est dérivable sur I. $f^{(k)}$ est alors la **dérivée** $k^{\text{ème}}$ **de** f **sur** I.
- **2.** Pour $k \in \mathbb{N}^*$, on dit que f est de **classe** \mathcal{C}^k **sur** I si f' est de classe \mathcal{C}^{k-1} sur I. On note $\mathcal{C}^k(I,\mathbb{R}^n)$ l'ensemble des fonctions de classe \mathcal{C}^k sur I et à valeurs dans \mathbb{R}^n .
- **3.** On dit que f est de classe \mathcal{C}^{∞} sur I si f est de classe \mathcal{C}^k sur I pour tout entier $k \in \mathbb{N}$. On note $\mathcal{C}^{\infty}(I,\mathbb{R}^n) = \bigcap_{k \in \mathbb{N}} \mathcal{C}^k(I,\mathbb{R}^n)$ l'ensemble des fonctions de classe \mathcal{C}^{∞} sur I et à valeurs dans \mathbb{R}^n .

<u>Propriété</u> [I.12]: Pour tout $k \in \mathbb{N}^* \cup \{\infty\}$, $C^k(I, \mathbb{R}^n)$ est un sous-espace vectoriel de $C^0(I, \mathbb{R}^n)$ et

$$\forall k \in \mathbb{N}, \forall (f,g) \in \mathcal{C}^k(I,\mathbb{R}^n)^2, \forall (\alpha,\beta) \in \mathbb{R}^2, (\alpha f + \beta g)^{(k)} = \alpha f^{(k)} + \beta g^{(k)}$$

Propriété [I.13] : Soient $k \in \mathbb{N} \cup \{\infty\}$, $f \in \mathcal{C}^k(I,\mathbb{R}^n)$ et $u \in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^p)$ <u>linéaire</u>. Alors $u \circ f \in \mathcal{C}^k(I,\mathbb{R}^p)$ et, pour $j \leq k$, on a

$$(u \circ f)^{(j)} = u \circ \left(f^{(j)}\right)$$

PSI2 - Lycée Montaigne Page 3/6

Propriété [I.14]: (Formule de Leibniz)

Soient $k \in \mathbb{N} \cup \{\infty\}$, $f \in \mathcal{C}^k(I, \mathbb{R}^n)$, $g \in \mathcal{C}^k(I, \mathbb{R}^p)$ et $B : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^q$ bilinéaire. Alors B(f, g) est de classe \mathcal{C}^k sur I et pour $j \leq k$, on a

$$B(f,g)^{(j)} = \sum_{i=0}^{j} {j \choose i} B(f^{(i)}, g^{(j-i)})$$

Propriété [I.15]: Soient $k \in \mathbb{N} \cup \{\infty\}$, $f: I \to F$ de classe C^k sur I, J un intervalle de \mathbb{R} et $\varphi: J \to \mathbb{R}$ de classe C^k sur J. Si $\varphi(J) \subset I$ alors $f \circ \varphi$ est de classe C^k sur J.

II Équations différentielles linéaires

1. Rappels sur les équations différentielles linéaires scalaires d'ordre 1

<u>Définition</u>: Soient α , β , γ trois applications définies sur un intervalle I et à valeurs dans \mathbb{K} .

- 1. L'équation (\mathcal{E}) : $\alpha y' + \beta y = \gamma$ est une équation différentielle linéaire scalaire d'ordre 1.
- **2.** Une solution de (\mathcal{E}) est une fonction $y:I\to\mathbb{K}$ dérivable sur I telle que

$$\forall t \in I, \alpha(t)y'(t) + \beta(t)y(t) = \gamma(t)$$

3. L'équation (\mathcal{E}_H) : $\alpha y' + \beta y = 0$ est l'équation homogène associée.

Propriété [II.1]:

- 1. L'ensemble E_H des solutions de (\mathcal{E}_H) est un sous-espace vectoriel de $\mathcal{C}^0(I,\mathbb{K})$.
- **2.** Si y_p est une solution de l'équation (\mathcal{E}) alors l'ensemble E des solutions de (\mathcal{E}) est $E = y_p + E_H$, un sous-espace affine de $\mathcal{C}^0(I, \mathbb{K})$.

y est solution de (\mathcal{E}) si et seulement si $y = y_0 + y_p$ avec y_0 une solution de (\mathcal{E}_H)

Remarque(s):

(II.1) Si la fonction α ne s'annule pas sur I, y est solution de $\alpha y' + \beta y = \gamma$ si et seulement si y est solution de y' - ay = b avec $a = -\frac{\beta}{\alpha}$ et $b = \frac{\gamma}{\alpha}$; a et b sont alors continues sur I.

<u>Théorème</u> [II.2]: Soit a une fonction continue sur un <u>intervalle</u> I et à valeurs dans \mathbb{K} . Les solutions de l'équation homogène $(\mathcal{E}_H): y'-ay=0$ sont les fonctions définies sur I par

$$\forall t \in I, y(t) = \lambda e^{A(t)}$$

où $\lambda \in \mathbb{K}$ et $t \longmapsto A(t)$ est une **primitive** de a sur I.

Cela signifie que l'ensemble E_H des solutions de (\mathcal{E}_H) est la droite vectorielle engendrée par $t \mapsto e^{A(t)}$

$$E_H = \text{Vect}\{t \mapsto e^{A(t)}\}$$

Propriété [II.3]: (Méthode de la variation de la constante)

Soient a et b deux fonctions continues sur I et y_0 une solution non nulle de l'équation homogène (\mathcal{E}_H) : y' - ay = 0. Il existe une solution de l'équation y' - ay = b de la forme

 $y_p = \lambda \times y_0$, où λ est une fonction dérivable sur I.

PSI2 - Lycée Montaigne Page 4/6

Remarque(s):

(II.2) La méthode de variation de la constante n'est pas la seule façon de trouver une solution particulière : on peut chercher une solution « évidente », une solution polynômiale, ou DSE . . .

Conséquence [II.4] : (Théorème de Cauchy-Lipschitz linéaire)

Soient a et b deux fonctions continues sur un intervalle I et $(t_0, y_0) \in I \times \mathbb{K}$. Le problème de Cauchy

$$\begin{cases} y' - ay = b \\ y(t_0) = y_0 \end{cases}$$

admet une unique solution définie sur I.

<u>Attention</u>: Pour appliquer le théorème de Cauchy-Lipschitz, il faut commencer par mettre l'équation sous forme résolue, ie avec un coefficient égal à 1 devant y'.

Exemple(s):

- (II.3) Résoudre $xy' + y = \frac{2x}{\sqrt{1 x^4}}$.
- (II.4) Résoudre $2tx' + x = e^t$ sur \mathbb{R}^+ .

2. Équations différentielles linéaires scalaires d'ordre 2

<u>Définition</u>: Soient α , β , γ et δ quatre applications définies sur I et à valeurs dans \mathbb{K} .

L'équation (\mathcal{E}) : $\alpha y'' + \beta y' + \gamma y = \delta$ est une **équation différentielle linéaire scalaire d'ordre** 2. Une solution de (\mathcal{E}) est une fonction $y: I \to \mathbb{K}$ deux fois dérivable sur I telle que

$$\forall t \in I, \alpha(t)y''(t) + \beta(t)y'(t) + \gamma(t)y(t) = \delta(t)$$

L'équation (\mathcal{E}_H) : $\alpha y'' + \beta y' + \gamma y = 0$ est l'équation homogène associée.

Remarque(s):

(II.6) Si la fonction α ne s'annule pas sur I, y est solution de $\alpha y'' + \beta y' + \gamma y = \delta$ si et seulement si y est solution de y'' - ay' - by = c avec $a = -\frac{\beta}{\alpha}$, $b = -\frac{\gamma}{\alpha}$ et $c = \frac{\delta}{\alpha}$; a, b et c sont alors continues sur I.

Théorème [II.5]: (Théorème de Cauchy-Lipschitz linéaire)

Soient a, b et c trois applications continues sur un intervalle I et $(t_0, y_0, y_0') \in I \times \mathbb{K}^2$. Le problème de Cauchy

$$\begin{cases} y'' - ay' - by = c \\ y(t_0) = y_0 \\ y'(t_0) = y'_0 \end{cases}$$

admet une unique solution définie sur I.

<u>Attention</u>: Là encore, pour appliquer le théorème de Cauchy-Lipschitz il faut commencer par mettre l'équation sous forme résolue, ie avec un coefficient égal à 1 devant y".

Conséquence [II.6]: Soient a et b deux applications continues sur un intervalle I. Si E_H est l'ensemble des solutions de l'équation homogène $(\mathcal{E}_H): y'' - ay' - by = 0$,

- 1. L'application $\varphi_{\alpha}: E_H \longrightarrow \mathbb{K}^2$ est un isomorphisme. $y \longmapsto (y(\alpha), y'(\alpha))$
- **2.** E_H est un espace-vectoriel de dimension 2.

3. L'ensemble E des solutions de l'équation complète est un sous-espace affine de dimension $2: E = y_p + E_H$, où y_p est une solution de l'équation avec second membre (\mathcal{E}) .

y est solution de (\mathcal{E}) si et seulement si $y = y_0 + y_p$ avec y_0 une solution de (\mathcal{E}_H)

Remarque(s):

(II.7) L'ensemble des solutions de (\mathcal{E}_H) est toujours un espace vectoriel mais c'est le théorème de Cauchy-Lipschitz qui assure qu'il est de dimension 2.

Exemple(s):

- (II.8) Résoudre $t^2x'' + x = 0$ sur \mathbb{R}^{+*} en cherchant les solution de la forme $t \mapsto t^{\alpha}$.
- (II.9) Soient q et f deux fonctions paires continues sur \mathbb{R} et y une solution de y'' + qy = f. Montrer que y est paire si et seulement si y'(0) = 0.

Propriété [II.7] : Cas des équations à coefficients constants (rappels) :

 $\overline{\text{Soient }(a,b,c)} \in \mathbb{C}^* \times \mathbb{C}^2 \text{ et } \Delta = b^2 - 4ac.$

1. Les solutions (complexes) de (\mathcal{E}_H) : ay'' + by' + cy = 0 sont définies, sur \mathbb{R} , par

$$y(x) = \begin{cases} \alpha e^{r_1 x} + \beta e^{r_2 x} & \text{si } \Delta \neq 0 \text{ et } aX^2 + bX + c = a(X - r_1)(X - r_2) \\ e^{rx}(\alpha x + \beta) & \text{si } \Delta = 0 \text{ et } aX^2 + bX + c = a(X - r_1)^2 \end{cases} \text{ avec } (\alpha, \beta) \in \mathbb{C}^2$$

2. Cas d'un second membre exponentiel-polynôme : soient $P \in \mathbb{C}[X]$ et $m \in \mathbb{C}$. Il existe une solution particulière de l'équation $ay'' + by' + cy = P(t)e^{mt}$ de la forme $y : t \mapsto t^{\alpha}Q(t)e^{mt}$ avec

$$\left\{ \begin{array}{l} Q \in \mathbb{C}[X] \\ \deg(Q) = \deg(P) \end{array} \right. \quad \text{et} \quad \alpha = \left\{ \begin{array}{l} 0 \quad \text{si } am^2 + bm + c \neq 0 \\ 1 \quad \text{si } \Delta \neq 0 \text{ et } am^2 + bm + c = 0 \\ 2 \quad \text{si } \Delta = 0 \text{ et } am^2 + bm + c = 0 \end{array} \right.$$

Exemple(s):

- (II.10) Résoudre $y'' + y = \cos^3 x$.
- (II.11) Résoudre 4tx'' + 2x' x = 0 sur \mathbb{R}^{+*} en utilisant le changement de variable $t = u^2$; puis sur \mathbb{R} .

Propriété [II.8] : Compléments (hors-programme) sur les équations différentielles linéaires d'ordre 2 Soient a, b, c continues sur $I, (\mathcal{E})$ l'équation y'' + ay' + by = c et (\mathcal{E}_H) l'équation homogène associée.

- 1. Si y_1 et y_2 sont deux solutions de (\mathcal{E}_H) alors $w = y_1 y_2' y_1' y_2$ est dérivable sur I et vérifie w' = -aw. Les fonctions y_1 et y_2 sont libres si et seulement si il existe $t_0 \in I$ tel que $w(t_0) \neq 0$ et dans ce cas on a $w(t) \neq 0$ pour tout $t \in I$.
- 2. Si y_0 est une solution de (\mathcal{E}_H) qui ne s'annule pas sur I alors $y = \alpha y_0$ est solution de (\mathcal{E}) sur I si et seulement si α' (la dérivée de α) est solution de l'équation différentielle d'ordre 1 (d'inconnue y) : $y' + \left(a + 2\frac{y'_0}{y_0}\right)y = \frac{c}{y_0}$.

Remarque(s):

- (II.12) Pour résoudre complètement une équation linéaire du second ordre, il suffit de trouver une solution non nulle de (\mathcal{E}_H) .
- (II.13) La fonction w (appelée wronskien) est souvent utile quand on cherche à étudier une base de l'ensemble des solutions de l'équation homogène (cf dernier exemple ci-dessous).

Exemple(s):

- $\overline{(II.14)}$ Résoudre $-t^2x'' + t(2+t)x' (2+t)x = -2t^3(t+1)e^t$ en commençant par chercher les solutions polynômiales de l'équation homogène.
- (II.15) Résoudre xy'' + 2y' xy = 0 en cherchant les solutions DSE.
- (II.16) Soient q continue et intégrable sur \mathbb{R}^+ et $(\mathcal{E}): y'' + qy = 0$.
 - 1. Montrer que si y est une solution bornée de (\mathcal{E}) sur \mathbb{R}^+ alors $\lim_{n \to \infty} y' = 0$.
 - 2. Montrer qu'il existe une solution de (\mathcal{E}) non bornée.