Oral TD6: espaces euclidiens

Exercice 1 (CCINP PSI 2023)

Soient a_0, \ldots, a_n des réels et $\varphi(P, Q) = \sum_{k=0}^n P(a_k)Q(a_k)$ pour $P, Q \in \mathbb{R}_n[X]$.

- 1. Donner une CNS pour que φ soit un produit scalaire sur $\mathbb{R}_n[X]$; on suppose cette condition réalisée par la suite.
- **2.** Trouver F^{\perp} où $F = \left\{ P \in \mathbb{R}_n[X], \sum_{k=0}^n P(a_k) = 0 \right\}$
- 3. Calculer la distance de X^n à F

Exercice 2 (CCINP PSI 2024)

Soit $\phi(A, B) = \int_0^{+\infty} A(t)B(t)e^{-t} dt$ avec $(A, B) \in \mathbb{R}[X]$.

- 1. Montrer que ϕ défini un produit scalaire qu'on notera (.|.) puis que $(X^k|1)=k!$.
- **2.** On pose Q le projecteur de 1 sur $F = \text{Vect}(X, X^2, ..., X^n)$, montrer qu'il existe $(a_k)_{1 \le k \le n}$ tel que $Q = \sum_{k=1}^n a_k X^k$.
- 3. On pose $P = 1 \sum_{k=1}^{n} a_k \prod_{j=1}^{k} (X+j)$ Calculer $(1-Q|X^i)$; en déduire $\forall i \in [1, n]$, P(i) = 0 puis une expression de P.
- **4.** Montrer que $\inf_{(\alpha_1,...,\alpha_n)} \int_0^{+\infty} (1 + \alpha_1 t + \alpha_2 t^2 + ... + \alpha_n t^n)^2 e^{-t} dt = \frac{1}{n+1}$.

Exercice 3 (CCINP PSI 2023)

Soient $A, B \in \mathcal{O}_n(\mathbb{R})$ telles que $M = \frac{1}{3}(A+2B)$ soit orthogonale. On pose $C = A^T B$

- 1. Calculer $A^TB + B^TA$
- 2. En déduire un polynôme annulateur de C. (*)
- 3. Montrer que $\ker(C-I_n)$ et $\operatorname{Im}(C-I_n)$ sont supplémentaires. (*)
- **4.** Montrer A = B

Exercice 4 (CCINP PSI 2023)

Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M(M^T M)^2 = I_n$.

- 1. Montrer que M est inversible.
- **2.** Montrer que M est symétrique.
- **3.** Montrer que $M = I_n$.

Exercice 5 (CCINP PSI 2022)

Soit (e_1, \ldots, e_n) une famille libre de E, espace préhilbertien, telle que $\forall x \in E, ||x||^2 = \sum_{i=1}^n (e_i|x)^2$

- **1.** Montrer que, pour $1 \le i \le n$, $||e_i|| \le 1$.
- **2.** Soit x un vecteur unitaire et orthogonal à $\text{Vect}\{e_1,\ldots,e_{n-1}\}$. Calculer $(x|e_n)^2$ et en déduire $||e_n||$. (*)
- **3.** Montrer que (e_1, \ldots, e_n) est une base orthonormale de E.

Exercice 6 (Mines-Ponts PSI 2022)

Soit $A \in \mathcal{S}_n^+(\mathbb{R})$. Soit $\alpha > 0$.

- 1. Le produit de matrices carrées symétriques est-il symétrique?
- **2.** Montrer que $I_n + \alpha A$ est inversible.
- **3.** Montrer que $M = (I_n \alpha A)(I_n + \alpha A)^{-1}$ est diagonalisable et $\operatorname{Sp}(M) \subset]-1,1].$ (*)

Exercice 7 (Mines-Ponts PSI 2024)

Soit \mathcal{E} l'ensemble des matrices symétriques réelles définies positives de $\mathcal{M}_n(\mathbb{R})$

- **1.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ non nulle, montrer que $\text{Tr}(AA^T) > 0$
- **2.** Soit $S \in \mathcal{E}$. Montrer qu'il existe $A \in \mathcal{GL}_n(\mathbb{R})$ telle que $S = A^T A$
- **3.** Soit $(S, S') \in \mathcal{E}^2$. Montrer Tr(SS') > 0

Indications

Exercice 3

- ${\bf 2.}\ \ C\ \ est\ \ orthogonale.$
- 3. Ils sont orthogonaux.

Exercice 5

2. Cauchy-Schwarz

Exercice 6

3. Diagonaliser