Corrigé TD8: probabilités

Exercice 6 (Mines-Télécom PSI 2023)

Un pion se déplace sur une droite : il se déplace d'un cran vers la droite avec la probabilité $p \in]0,1[$ et vers la gauche avec la probabilité 1-p. À l'instant initial, il est à l'origine du repère et on note X_n sa position après n déplacements.

- **1.** Que vaut $X_n(\Omega)$?
- **2.** On note D_n le nombre de déplacements vers la droite au cours des n premiers instants. Relier X_n à D_n .
- **3.** Déterminer les lois de D_n et X_n .
- 4. Calculer l'espérance de X_n .
- 1. $X_n(\Omega) \subset \llbracket -n, n \rrbracket$
- **2.** Si on a D_n déplacements vers la droite alors on en a $n-D_n$ vers la gauche et $X_n=D_n-(n-D_n)=2D_n-n$.
- 3. D_n compte le nombre de succès (« vers la droite ») dans une répétition indépendante de n expériences de Bernoulli de paramètre p donc $D_n \sim \mathcal{B}(n, p)$.

On en déduit, pour n = 2k et $h \in [\![-k,k]\!]$, $(X_{2k} = 2h) = (D_n = h + k)$ donc $P(X_{2k} = 2h) = \binom{2k}{k+h} p^{k+h} (1-p)^{k-h}$; l'événement $(X_{2k} = 2h+1)$ est impossible. De même, si n = 2k+1 et $h \in [\![-k,k]\!]$, $P(X_{2k+1} = 2h+1) = \binom{2k+1}{k+h+1} p^{k+h+1} (1-p)^{k-h}$.

4. Par linéarité de l'espérance, on a $E(X_n) = E(2D_n - n) = 2E(D_n) - n = 2np - n$. La question n'est pas posée mais on a aussi $V(X_n) = 4V(D_n) = 4 \times 2np(1-p)$

Exercice 7 (Mines-Ponts PSI 2023)

Soit $(X_k)_{k\geqslant 1}$ une suite de variables aléatoires discrètes indépendantes suivant $\mathscr{B}\left(\frac{2}{3}\right)$. On définit les événements $A_k=$

 $(X_{2k-1}X_{2k}=0),\ B_p=\bigcap_{k=1}^pA_k$ et la variable aléatoire discrète $T=\min\{k\geqslant 2, X_{k-1}=X_k=1\}$ **1.** Montrer que $P\left(\bigcap_{k=1}^{+\infty}A_k\right)=1$ et en déduire $P(T\in\mathbb{N})=1$

- 2. Trouver une relation de récurrence vérifiée par la suite $(P(T=n))_{n\in\mathbb{N}}$.
- **3.** Déterminer l'espérance de T.
- 1. On a $P\left(\bigcap_{k=1}^{+\infty} A_k\right) = 1 P\left(\bigcap_{k=1}^{+\infty} A_k\right)$. Par continuité décroissante $P\left(\bigcap_{k>1} A_k\right) = \lim_{p \to +\infty} P(B_p)$; par coalitions,

les A_k sont indép donc $P(B_p) = \prod_{k=0}^p P(A_k)$ et $P(A_k) = P((X_{2k-1} = 0) \cup (X_{2k} = 0)) = P(X_{2k-1} = 0) + P(X_{2k} = 0)$

$$0) - P(X_{2k-1} = X_{2k} = 0) = \frac{2}{3} + \frac{2}{3} - \left(\frac{2}{3}\right)^2 = \frac{8}{9}. \text{ Donc } P(B_p) = \left(\frac{8}{9}\right)^p \xrightarrow[p \to +\infty]{} 0.$$

 $\overline{\bigcap_{k\geqslant 1} A_k} = \bigcup_{k\geqslant 1} (X_{2k-1} = X_{2k} = 1) \subset \bigcap_{j\geqslant 1} (X_j = X_{j+1} = 1) = (T \in \mathbb{N}) \text{ donc } P(T \in \mathbb{N}) \geqslant P\left(\bigcap_{k=1}^{+\infty} A_k\right) = 1 \text{ ce qui dense} P(T \in \mathbb{N})$

- 2. $((X_1 = 0), (X_1 = 1))$ est une SCE car $X_1(\Omega) = \{0, 1\}$ donc $P(T = n+1) = P(T = n+1|X_1 = 0)P(X_1 = 0) + P(T = n+1|X_1 = 1)P(X_1 = 1) = P(T = n)\frac{1}{3} + P(T = n-1)\frac{1}{3}\frac{2}{3}$ car si $(X_1 = 0)$ et (T = n+1) (avec $n \ge 3$) alors $(X_2 = 0)$. De plus $P(T = 2) = \frac{4}{9}$ et $P(T = 3) = \frac{4}{27}$
- 3. T est à valeurs dans \mathbb{N} (presque sûrement) donc E(T) existe dans $\mathbb{R}^+ \cup \{+\infty\}$ et on a $E(T) = \sum_{n \geq 2} nP(T=n) = \sum_{n \geq 2} nP(T=n)$

$$2P(T=2) + 3P(T=3) + \sum_{n\geqslant 3} (n+1)P(T=n+1) = \frac{8}{9} + \frac{4}{9} + \sum_{n\geqslant 3} (n+1) \left[\frac{1}{3}P(T=n) + \frac{2}{9}P(T=n-1) \right] = \frac{1}{9} + \frac{4}{9} + \frac{4}$$

 $\frac{4}{3} + \frac{1}{3}(E(T) - 2P(T=2) + 1 - P(T=2)) + \frac{2}{9}(E(T) + 2)$...De cette relation, on détermine la valeur de E(T): c'est une équation de la forme $\alpha E(T) = \beta$