TD6: Intégration

Exercice 1

Calculer, pour x > 0, les intégrales suivantes en utilisant le changement de variable indiqué :

1.
$$I(x) = \int_0^x \sqrt{e^t - 1} dt$$
 en posant $u = \sqrt{e^t - 1}$

2.
$$J(x) = \int_{x}^{\frac{1}{x}} \frac{t \ln(t)}{(1+t^{2})^{2}} dt$$
 en posant $t = \frac{1}{u}$.

Exercice 2 (CCINP PSI 2019)

1. Soit
$$f:[a,b] \longrightarrow \mathbb{C}$$
 telle que $\forall t \in [a,b], f(t) = f(a+b-t)$. Montrer que $\int_a^b t f(t) dt = \frac{a+b}{2} \int_a^b f(t) dt$.

2. Calculer
$$\int_0^\pi \frac{x \sin(x)}{1 + \cos^2 x} \, \mathrm{d}x$$

Exercice 3

Soit $x \in \mathbb{R}$, $x \neq \pm 1$.

1. Justifier l'existence de
$$I(x) = \int_0^\pi \ln \left(x^2 - 2x\cos(t) + 1\right) dt$$
.

2. Donner la factorisation dans
$$\mathbb{R}[X]$$
 de $X^{2n}-1$

3. Soit
$$S_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} \ln \left(x^2 - 2x \cos \frac{k\pi}{n} + 1 \right)$$
; justifier que $I(x) = \lim_{n \to +\infty} \pi S_n(x)$. (*)

4. En déduire la valeur de
$$I(x)$$
. (*)

Exercice 4

1. Montrer que
$$f(x) = \int_{x}^{x^2} \frac{\mathrm{d}t}{\ln t}$$
 est définie sur $]0,1[$.

2. Montrer que
$$f$$
 se prolonge en une fonction de classe C^1 sur $[0,1]$. (*)

3. Calculer
$$\int_0^1 \frac{1-t}{\ln t} dt$$
.

Exercice 5

Pour
$$f \in \mathcal{C}^0([0,1],\mathbb{R})$$
, on pose $\phi(f)(x) = \int_0^1 \inf(x,t)f(t) dt$.

1. En utilisant la relation de Chasles, trouver une autre forme de
$$\phi(f)(x)$$
. Prouver que ϕ est un endomorphisme de $\mathcal{C}^0([0,1],\mathbb{R})$.

2. Trouver
$$\ker \phi$$

3. Prouver que
$$\phi(f)$$
 est de classe \mathcal{C}^2 et calculer $(\phi(f))''$ en fonction de f .

4. En déduire
$$\text{Im}(\phi)$$

5. Résoudre l'équation
$$\phi(f) = \lambda f$$
 où $\lambda \in \mathbb{R}$. (*)

Exercice 6 (ICNA PSI 2019)

1. Pour quelle(s) valeur(s) de
$$a$$
 et b , $\int_0^{+\infty} \left(\sqrt{t} + a\sqrt{t+1} + b\sqrt{t+2}\right) dt$ converge-t-elle? (*)

2. Calculer cette intégrale quand elle converge.

Exercice 7

Justifier la convergence de
$$I_1 = \int_0^{+\infty} \frac{\arctan t}{1+t^2} dt$$
, $I_2 = \int_0^{+\infty} \sin^2(t)e^{-t} dt$ et $I_3 = \int_0^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt$.

Exercice 8

Soit
$$f(x) = \int_{-\infty}^{+\infty} e^{-t^2} dt$$

1. Montrer que
$$f$$
 est définie et de classe \mathcal{C}^1 sur \mathbb{R}^+ ; déterminer $f'(x)$.

2. Montrer que
$$I = \int_0^{+\infty} f(x) dx$$
 est convergente.

Indications

Exercice 3

3. Somme de Riemann

Exercice 4

2. Pour la limite en 1, soit encadrer f(x), soit introduire un équivalent de $\frac{1}{\ln t}$ en 1.

Exercice 5

5. si $\lambda \neq 0$ montrer qu'une solution f est nécessairement de classe C^2

Exercice 6

1. On peut calculer une primitive puis DL avec la précision o(1) et discuter sur la valeur des coefficients.

Exercice 8

3. *IPP*