Correction du DM5

Extrait de E3A PC 2010 maths B

- 1. a) $\sin 3x = \text{Im} \left[(\cos x + i \sin x)^3 \right] = 3 \sin x \cos^2 x \sin^3 x = 3 \sin x 4 \sin^3 x$
 - b) $f(x) = \frac{\sin x x}{x^2} \sim -\frac{x}{6}$ donc on prolonge f par continuité en posant f(0) = 0. $\frac{f(x)}{x} \xrightarrow[x \to 0]{} -\frac{1}{6}$ donc f est dérivable en 0 et $f'(0) = -\frac{1}{6}$. Pour $x \neq 0$, $x^2 \neq 0$ donc, par quotient, f est de classe \mathcal{C}^1 sur \mathbb{R}^* et $f'(x) = \frac{\cos x 1}{x^2} 2\frac{\sin x x}{x^3}$. On a $\lim_{x \to 0} \frac{\cos x 1}{x^2} = -\frac{1}{2}$ et $\sin x x \sim -\frac{x^3}{6}$ donc $\lim_{x \to 0} \frac{\sin x x}{x^3} = -\frac{1}{6}$; on en déduit $\lim_{x \to 0} f' = -\frac{1}{2} + \frac{1}{3} = -\frac{1}{6} = f'(0)$ donc f' est continue en 0 et f'(0) = 0. f'(0) = 0.
- 2. a) $x \mapsto \frac{\sin^3 x}{x^2}$ est continue sur \mathbb{R}^{+*} ; $\lim_{x \to 0} \frac{\sin^3 x}{x^2} = 0$ donc $x \mapsto \frac{\sin^3 x}{x^2}$ est intégrable sur]0,1]. $\left|\frac{\sin^3 x}{x^2}\right| \leqslant \frac{1}{x^2}$ et $x \mapsto \frac{1}{x^2}$ est intégrable sur $[1, +\infty[$ donc $x \mapsto \frac{\sin^3 x}{x^2}$ est intégrable sur $[1, +\infty[$ donc sur \mathbb{R}^{+*} et [I existe]
 - b) $x \mapsto \frac{\sin 3x}{x^2}$ est continue sur $[a, +\infty[$ et $\left|\frac{\sin 3x}{x^2}\right| \leqslant \frac{1}{x^2}$; $x \mapsto \frac{1}{x^2}$ est intégrable sur $[a, +\infty[$ donc $x \mapsto \frac{\sin 3x}{x^2}$ est intégrable sur $[a, +\infty[$.

 On pose u = 3x: la fonction $u \mapsto \frac{u}{3}$ est une bijection \mathcal{C}^1 strictement croissante de $[3a, +\infty[$ sur $[a, +\infty[$ (ce qui assure l'absolue convergence de la deuxième intégrale): $\int_a^{+\infty} \frac{\sin 3x}{x^2} \, \mathrm{d}x = 3 \int_{3a}^{+\infty} \frac{\sin u}{u^2} \, \mathrm{d}u$
 - c) On a:

$$I(a) = \int_{a}^{+\infty} \frac{3\sin x - \sin 3x}{4x^{2}} dx = \frac{3}{4} \left[\int_{a}^{+\infty} \frac{\sin x}{x^{2}} dx - \int_{3a}^{+\infty} \frac{\sin x}{x^{2}} dx \right] = \frac{3}{4} \int_{a}^{3a} \frac{\sin x}{x^{2}} dx$$
$$= \frac{3}{4} \int_{a}^{3a} f(x) dx + \frac{3}{4} \int_{a}^{3a} \frac{dx}{x}$$

et comme
$$\int_a^{3a} \frac{\mathrm{d}x}{x} = \ln 3$$
, on obtient $I(a) = \frac{3}{4} \int_a^{3a} \varphi(x) \, \mathrm{d}x + \frac{3}{4} \ln 3$

- d) La fonction f étant continue sur \mathbb{R}^+ , on a $\lim_{a\to 0} \int_a^{3a} \varphi(x) \, \mathrm{d}x = 0$: en effet, f est intégrable sur [0,1] donc $\int_a^{3a} f(t) \, \mathrm{d}t = \int_a^1 f(t) \, \mathrm{d}t \int_{3a}^1 f(t) \, \mathrm{d}t \xrightarrow[a\to 0]{} \int_0^1 f(t) \, \mathrm{d}t \int_0^1 f(t) \, \mathrm{d}t = 0. \text{ On a donc } \boxed{I = \lim_{a\to 0} I(a) = \frac{3}{4} \ln 3}$
- 3. La fonction $g: x \mapsto \frac{\sin^3 x}{x^2}$ est continue sur $]0, +\infty[$, $g(x) \underset{x\to 0}{\sim} x^3 \xrightarrow[x\to 0]{} 0$ donc g est intégrable sur]0, 1] et $|g(x)| \leqslant \frac{1}{x^2}$ donc g est intégrable sur $[1, +\infty[$ donc sur \mathbb{R}^{+*} .

 Pour le calcul, on procède de même : $J = \lim_{a\to 0} \int_a^{+\infty} \frac{\sin^5 x}{x^2} \, \mathrm{d}x$ et $\sin^5 x = \frac{1}{16} (\sin(5x) 5\sin(3x) + 10\sin(x))$. Les fonctions $x \mapsto \frac{\sin(kx)}{x^2}$ sont intégrables sur $[a, +\infty[$ (avec a > 0) car continues sur $[a, +\infty[$ et $\left|\frac{\sin(kx)}{x^2}\right| \leqslant \frac{1}{x^2}$; on a donc $J(a) = \int_a^{+\infty} \frac{\sin^5(x)}{x^2} \, \mathrm{d}x = \frac{1}{16} \left[\int_a^{+\infty} \frac{\sin(5x)}{x^2} \, \mathrm{d}x 5\int_a^{+\infty} \frac{\sin(3x)}{x^2} \, \mathrm{d}x + 10\int_a^{+\infty} \frac{\sin(x)}{x^2} \, \mathrm{d}x \right]$. On pose u = 5x dans la première intégrale et u = 3x dans la deuxième (les deux fonctions $u \mapsto \frac{u}{5}$ et $u \mapsto \frac{u}{3}$ sont \mathcal{C}^1 , bijectives et strictement croissantes de \mathbb{R} sur \mathbb{R}) et on obtient

$$16J(a) = 5 \int_{5a}^{+\infty} \frac{\sin(u)}{u^2} du - 15 \int_{3a}^{+\infty} \frac{\sin(u)}{u^2} du + 10 \int_{a}^{+\infty} \frac{\sin(x)}{x^2} dx = -5 \int_{3a}^{5a} \frac{\sin(u)}{u^2} du + 10 \int_{a}^{3a} \frac{\sin(u)}{u^2} du$$

$$= -5 \left(\int_{3a}^{5a} f(u) du + \int_{3a}^{5a} \frac{du}{u} \right) + 10 \left(\int_{a}^{3a} f(u) du + \int_{a}^{3a} \frac{du}{u} \right)$$

$$= -5 \int_{3a}^{5a} f(u) du + 10 \int_{a}^{3a} f(u) du - 5 \ln\left(\frac{5}{3}\right) + 10 \ln 3$$

Comme
$$\lim_{a \to 0} \int_{3a}^{5a} f(u) du = \lim_{a \to 0} \int_{a}^{3a} f(u) du = 0$$
, on obtient $J = \frac{1}{16} (15 \ln 3 - 5 \ln 5)$