I Intégration sur un intervalle de \mathbb{R}

- 1. Rappels de première année : relations de comparaison, DL, existence de primitives pour une fonction continue, formule de Taylor avec reste intégral et inégalité de Taylor-Lagrange.
- 2. Fonctions continues par morceaux:
 - a) Fonctions continues par morceaux sur un segment : définition et propriétés.
 - b) Intégration des fonctions continues par morceaux sur un segment et propriétés de l'intégrale.
 - c) Fonctions continues par morceaux sur un intervalle quelconque.
- 3. Intégration sur un intervalle quelconque
 - a) Intégrales convergentes et divergentes sur $[a, +\infty[$: définitions, exemples (Riemann, exponentielles) et cas des fonctions à valeurs positives (utilisation de majorations pour prouver la convergence).
 - b) Intégrales convergentes et divergentes sur un intervalle quelconque : définitions, exemples (Riemann, ln), cas des fonctions à valeurs positives.
 - c) Propriétés des intégrales convergentes : linéarité, relation de Chasles, positivité, IPP et changement de variable.
- 4. Fonctions intégrables : définition, si f est intégrable sur I alors $\int_I f$ converge, théorème de comparaison et espace vectoriel des fonctions intégrables sur I.

À suivre : des probas