Réduction des endomorphismes

La notation \mathbb{K} désigne soit le corps des nombres réels, soit le corps des nombres complexes.

I Éléments propres d'un endomorphisme et d'une matrice carrée

1. Valeurs propres et vecteurs propres d'un endomorphisme

<u>Définition</u>: Soient E un espace vectoriel, $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$.

1. On dit que λ est une valeur propre de u s'il existe un vecteur x de E non nul tel que $u(x) = \lambda x$. Le spectre de u, noté $\mathrm{Sp}(u)$, est l'ensemble des valeurs propres de u.

$$\lambda \in \operatorname{Sp}(u) \iff \exists \mathbf{x} \neq \mathbf{0}, u(x) = \lambda x$$

2. Si $\lambda \in \operatorname{Sp}(u)$, on note $E_{\lambda}(u) = \ker(u - \lambda i d_E)$ l'espace propre de u associé à la valeur propre λ . Un vecteur non nul de $E_{\lambda}(u)$ est appelé vecteur propre de u associé à la valeur propre λ .

$$x$$
 est un vecteur propre de u si et seulement si $\left\{ \begin{array}{c} \mathbf{x} \neq \mathbf{0} \\ \text{et} \\ \exists \lambda \in \mathbb{K}, u(x) = \lambda x \end{array} \right.$

Exemple(s):

- (I.1) Si p est le projecteur sur F parallèlement à G (avec F et G différents de $\{0\}$), on a $Sp(p) = \{0, 1\}$, $E_0(p) = G$ et $E_1(p) = F$.
- $(I.2) Si d: f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) \mapsto f' \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) \text{ alors } Sp(d) = \mathbb{R} \text{ et } E_{\lambda}(d) = \text{Vect } \{x \mapsto e^{\lambda x}\}.$

Propriété [I.1]: Soit u un endomorphisme de E et D un sous-espace vectoriel de E. Alors D est une droite stable par u si et seulement si il existe un vecteur propre e de u tel que $D = \text{Vect}\{e\}$.

Remarque(s):

(I.4) Déterminer les droites stables par u est donc équivalent à déterminer les vecteurs propres de u.

Propriété [I.2] : Soient E un espace vectoriel et $u \in \mathcal{L}(E)$.

- 1. Si $\lambda_1, \ldots, \lambda_p$ sont p valeurs propres 2 à 2 distinctes de u alors $E_{\lambda_1}(u), \ldots, E_{\lambda_p}(u)$ sont en somme directe.
- **2.** Si x_1, \ldots, x_p sont des vecteurs propres de u associés à des valeurs propres 2 à 2 distinctes alors (x_1, \ldots, x_p) est une famille libre.

Exemple(s):

(I.5) Les fonctions $f_k: t \mapsto e^{z_k t}$, pour $0 \leqslant k \leqslant n$, forment une famille libre si z_0, \ldots, z_n sont des complexes deux à deux distincts.

PSI2 - Lycée Montaigne Page 1/9

<u>Propriété</u> [I.3]: Si u et v sont deux endomorphismes de E qui commutent (ie $u \circ v = v \circ u$) alors les espaces propres de u sont stables par v.

Remarque(s):

- (I.6) Si u et v commutent et x est un vecteur propre de u alors v(x) est aussi un vecteur propre de u seulement si $v(x) \neq 0$.
- (I.7) La réciproque est fausse; c/ex : les espaces propres de $U = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ sont stables par $V = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ mais $UV \neq VU$.

2. Valeurs propres et vecteurs propres d'une matrice carrée

<u>Définition</u>: Soit $A \in \mathcal{M}_n(\mathbb{K})$. Les valeurs propres, le spectre de A (noté $\mathrm{Sp}_{\mathbb{K}}(A)$) et les vecteurs propres et les espaces propres de A (notés $E_{\lambda}(A)$) sont ceux de l'endomorphisme de \mathbb{K}^n canoniquement associé à A.

- 1. $\lambda \in \mathrm{Sp}_{\mathbb{K}}(A) \Leftrightarrow \lambda \in \mathbb{K} \text{ et } \exists X \in \mathcal{M}_{n,1}(\mathbb{K}), \mathbf{X} \neq \mathbf{0}, AX = \lambda X$
- **2.** $E_{\lambda}(A) = \ker(A \lambda I_n)$
- **3.** $X \in \mathcal{M}_{n,1}(\mathbb{K})$ est vecteur propre de A si et seulement si $\mathbf{X} \neq \mathbf{0}$ et $\exists \lambda \in \mathbb{K}, AX = \lambda X$.

<u>Propriété</u> [I.4]: Soit A une matrice <u>réelle</u> $n \times n$ (alors $A \in \mathcal{M}_n(\mathbb{C})$). On a $\operatorname{Sp}_{\mathbb{R}}(A) \subset \operatorname{Sp}_{\mathbb{C}}(A)$.

$$\lambda \in \operatorname{Sp}_{\mathbb{C}}(A) \Leftrightarrow \overline{\lambda} \in \operatorname{Sp}_{\mathbb{C}}(A) \quad \text{et} \quad \dim E_{\lambda}(A) = \dim E_{\overline{\lambda}}(A)$$

Remarque(s):

(I.8) On a même un résultat plus précis : si (X_1, \ldots, X_p) est une base de $E_{\lambda}(A)$ alors $(\overline{X_1}, \ldots, \overline{X_p})$ est une base de $E_{\overline{\lambda}}(A)$; il est donc inutile d'étudier les 2 sous-espaces propres.

Exemple(s):

(I.9) Soit $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. Vérifier $A^3 = I_3$, en déduire $\operatorname{Sp}_{\mathbb{C}}(A)$ puis une base des différents espaces propres de A.

Propriété [I.5]: Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ semblables (ie il existe $P \in \mathcal{GL}_n(\mathbb{K})$ telle que $B = P^{-1}AP$).

Alors $\operatorname{Sp}_{\mathbb{K}}(A) = \operatorname{Sp}_{\mathbb{K}}(B)$ et pour $\lambda \in \operatorname{Sp}_{\mathbb{K}}(A)$, on a dim $E_{\lambda}(A) = \dim E_{\lambda}(B)$.

Conséquence [I.6]: Soient E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Pour toute base \mathcal{B} de E, on a $\mathrm{Sp}(u) = \mathrm{Sp}_{\mathbb{K}}$ (Mat $_{\mathcal{B}}(u)$).

3. Polynôme caractéristique

Définition:

- 1. Soient E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Le **polynôme caractéristique** de u est le polynôme \mathcal{X}_u associé à la fonction polynômiale $\lambda \in \mathbb{K} \mapsto \det(\lambda i d_E u)$.
- **2.** Si $A \in \mathcal{M}_n(\mathbb{K})$, le **polynôme caractéristique** de A est le polynôme \mathcal{X}_A défini par :

$$\forall \lambda \in \mathbb{K}, \mathcal{X}_A(\lambda) = \det(\lambda I_n - A)$$

PSI2 - Lycée Montaigne Page 2/9

Remarque(s):

(I.10) Si \mathcal{B} est une base de $E, u \in \mathcal{L}(E)$ et $A = \operatorname{Mat}_{\mathcal{B}}(u)$ alors $\mathcal{X}_u = \mathcal{X}_A$.

 $\overline{(I.11)}$ Inversement \mathcal{X}_A est le polynôme caractéristique de l'endomorphisme canoniquement associé à A. Exemple(s):

Propriété [I.7]:

1. Soient E un K-espace vectoriel de dimension finie, $u \in \mathcal{L}(E)$ et $\lambda \in K$. On a

$$\lambda \in \operatorname{Sp}(u) \Leftrightarrow (u - \lambda i d_E) \notin \mathcal{GL}(E) \Leftrightarrow \mathcal{X}_u(\lambda) = 0$$

Les valeurs propres de u sont <u>exactement</u> les racines de \mathcal{X}_u (dans \mathbb{K})

2. Si $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$ alors

$$\lambda \in \operatorname{Sp}_{\mathbb{K}}(A) \Leftrightarrow (A - \lambda I_n) \notin \mathcal{GL}_n(\mathbb{K}) \Leftrightarrow \mathcal{X}_A(\lambda) = 0$$

Le spectre de A (sur \mathbb{K}) est <u>exactement</u> l'ensemble des racines de \mathcal{X}_A (dans \mathbb{K})

Exemple(s):

(I.14) Montrer que $u = P \mapsto X(X-1)P' - nXP$ est un endomorphisme de $\mathbb{R}_n[X]$ et déterminer ses éléments propres.

Propriété [I.8]:

1. Si $A \in \mathcal{M}_n(\mathbb{K})$ alors $\deg(\mathcal{X}_A) = n$ et

$$\mathcal{X}_A = X^n - \operatorname{Tr}(A)X^{n-1} + \dots + (-1)^n \det(A)$$

2. Soient E un espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$. Alors $\deg(\mathcal{X}_u) = n$ et

$$\mathcal{X}_u = X^n - \text{Tr}(u)X^{n-1} + \dots + (-1)^n \det(u)$$

Remarque(s):

(I.15) Si $A \in \mathcal{M}_2(\mathbb{K})$ alors $\mathcal{X}_A = X^2 - \text{Tr}(A)X + \det(A)$.

Conséquence [I.9]:

- 1. Si u est un endomorphisme de E, espace vectoriel de dimension finie n, alors u admet au plus n valeurs propres distinctes.
- **2.** Si $A \in \mathcal{M}_n(\mathbb{K})$ alors A admet au plus n valeurs propres complexes distinctes.

Exemple(s):

(I.16) Toute matrice de $M_n(\mathbb{K})$ admet au moins une valeur propre complexe.

(I.17) Toute matrice réelle de <u>taille impaire</u> admet au moins une valeur propre réelle. Ce résultat est faux pour une matrice de taille paire.

(I.18) Tout endomorphisme d'un espace vectoriel <u>complexe et de dimension finie</u> admet au moins une valeur propre.

Ce résultat est faux pour un espace réel ou pour un espace complexe de dimension infinie.

<u>Définition</u>:

1. Soient E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ et $\lambda \in \operatorname{Sp}(u)$. On appelle **ordre de multiplicité** de la valeur **propre** λ l'ordre de multiplicité de la racine λ de \mathcal{X}_u ; on la note $m_{\lambda}(u)$.

$$\mathcal{X}_u = (X - \lambda)^{m_\lambda(u)} \times Q \quad \text{avec } Q(\lambda) \neq 0$$

2. Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \operatorname{Sp}_{\mathbb{K}}(A)$. On appelle **ordre de multiplicité de la valeur propre** λ l'ordre de multiplicité de la racine λ de \mathcal{X}_A ; on la note $m_{\lambda}(A)$.

Remarque(s):

(1.20) On peut aussi caractériser la multiplicité d'une racine à l'aide des dérivées

$$\forall k \in [0, m_{\lambda}(u) - 1], \mathcal{X}_{u}^{(k)}(\lambda) = 0 \text{ et } \mathcal{X}_{u}^{(m_{\lambda}(u))}(\lambda) \neq 0$$

 λ est donc une valeur propre multiple de u si et seulement si $\mathcal{X}_u(\lambda) = \mathcal{X}'_u(\lambda) = 0$.

Conséquence [I.10] : Soit $A \in \mathcal{M}_n(\mathbb{R})$ réelle. On a

$$\forall \lambda \in \operatorname{Sp}_{\mathbb{C}}(A), m_{\lambda}(A) = m_{\overline{\lambda}}(A)$$

Propriété [I.11]:

1. Soient E un \mathbb{K} -espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$. Si \mathcal{X}_u est scindé sur \mathbb{K} (donc en particulier si $\mathbb{K} = \mathbb{C}$) alors

$$n = \sum_{\lambda \in \mathrm{Sp}(u)} m_{\lambda}(u) \quad , \quad \mathrm{Tr}(u) = \sum_{\lambda \in \mathrm{Sp}(u)} \lambda \times m_{\lambda}(u) \quad \mathrm{et} \quad \det(u) = \prod_{\lambda \in \mathrm{Sp}(u)} \lambda^{m_{\lambda}(u)}$$

2. Si $A \in \mathcal{M}_n(\mathbb{K})$ alors

$$n = \sum_{\lambda \in \mathbf{Sp}_{\mathbb{C}}(\mathbf{A})} m_{\lambda}(A) \quad , \quad \operatorname{Tr}(A) = \sum_{\lambda \in \mathbf{Sp}_{\mathbb{C}}(\mathbf{A})} \lambda \times m_{\lambda}(A) \quad \text{et} \quad \det(A) = \prod_{\lambda \in \mathbf{Sp}_{\mathbb{C}}(\mathbf{A})} \lambda^{m_{\lambda}(A)}$$

Remarque(s):

(I.21) Un polynôme $P \in \mathbb{K}[X]$ est scindé sur \mathbb{K} s'il peut se factoriser en $P = a \prod_{i=1}^{d} (X - \alpha_i)$ avec les α_i dans \mathbb{K} (pas forcément distincts).

Tout polynôme est scindé sur \mathbb{C} et un polynôme réel est scindé sur \mathbb{R} si et seulement si il ne possède que des racines réelles (ie pas de racines complexes non réelles).

Propriété [I.12]:

1. Deux matrices semblables ont le même polynôme caractéristique donc les mêmes valeurs propres avec les mêmes ordres de multiplicité.

Si
$$A = PBP^{-1}$$
 avec $P \in \mathcal{GL}_n(\mathbb{K})$ alors $\mathcal{X}_A = \mathcal{X}_B$ donc $\mathrm{Sp}_{\mathbb{K}}(A) = \mathrm{Sp}_{\mathbb{K}}(B)$

2. Pour toute matrice A, les matrices A et A^T ont le même polynôme caractéristique donc les mêmes valeurs propres avec les mêmes ordres de multiplicité.

$$\mathcal{X}_A = \mathcal{X}_{A^T} \text{ donc } \operatorname{Sp}_{\mathbb{K}}(A) = \operatorname{Sp}_{\mathbb{K}}(A^T)$$

Remarque(s):

(I.22) Si A et B sont semblables et $\lambda \in \operatorname{Sp}_{\mathbb{K}}(A) = \operatorname{Sp}_{\mathbb{K}}(B)$ alors on a vu aussi que $\dim(E_{\lambda}(A)) = \dim(E_{\lambda}(B))$ mais les deux espaces propres ne sont pas égaux : deux matrices semblables n'ont pas les mêmes vecteurs propres!

PSI2 - Lycée Montaigne Page 4/9

(I.23) Les espaces propres de A et A^T sont aussi de même dimension mais ils ne sont pas égaux : les vecteurs propres de A et A^T ne sont pas les mêmes!

Propriété [I.13] : Soient E un espace vectoriel de dimension finie, u un endomorphisme de E et F un sous-espace de E stable par u. On note u_F l'endomorphisme de F induit par u; on a alors :

$$\mathcal{X}_{u_F}$$
 divise \mathcal{X}_u

On en déduit en particulier

$$\operatorname{Sp}(u_F) \subset \operatorname{Sp}(u)$$
 et $m_{\lambda}(u_F) \leqslant m_{\lambda}(u)$ si $\lambda \in \operatorname{Sp}(u_F)$

Conséquence [I.14]:

1. Soient E un espace de dimension finie, $u \in \mathcal{L}(E)$ et $\lambda \in \operatorname{Sp}(u)$. On a

$$1\leqslant \dim E_{\lambda}(u)\leqslant m_{\lambda}(u)$$

2. Si $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathrm{Sp}_{\mathbb{K}}(A)$, on a

$$1\leqslant \dim E_{\lambda}(A)\leqslant m_{\lambda}(A)$$

Remarque(s):

(I.24) Si dim(E) = n et $u \in \mathcal{L}(E)$ possède n valeurs propres distinctes $(\mathcal{X}_u$ scindé à racines simples) alors dim $E_{\lambda}(u) = 1$ et $E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}(u)$.

Exemple(s):

(1.25) Déterminer les éléments propres de $A = (a_{i,j})_{1 \le i,j \le n}$ où $a_{i,j} = \begin{cases} a & \text{si } i = j \\ b & \text{sinon} \end{cases}$

II Réduction des endomorphismes en dimension finie

1. Diagonalisation

Définition:

1. Soient E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. On dit que u est diagonalisable si

<u>il existe</u> une base $\mathcal B$ de E dans laquelle $\operatorname{Mat}_{\mathcal B}(u)$ est une matrice diagonale.

2. Si $A \in \mathcal{M}_n(\mathbb{K})$, on dit que A est diagonalisable dans $\mathcal{M}_n(\mathbb{K})$ si A est <u>semblable</u> à une matrice diagonale, ie

il existe
$$P \in \mathcal{GL}_n(\mathbb{K})$$
 et D diagonale telles que $A = PDP^{-1}$

Remarque(s):

(II.1) Si $A \in \mathcal{M}_n(\mathbb{K})$ possède n valeurs propres distinctes dans \mathbb{K} (ie \mathcal{X}_A est scindé à racines simples dans \mathbb{K}) alors A est diagonalisable dans $\mathcal{M}_n(\mathbb{K})$.

PSI2 - Lycée Montaigne Page 5/9

Propriété [II.1]: Soient E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Les propriétés suivantes sont équivalentes:

- i. u est diagonalisable.
- ii. Il existe une base de E formée de vecteurs propres de u.

iii.
$$E = \bigoplus_{\lambda \in \mathrm{Sp}(u)} E_{\lambda}(u)$$

iv.
$$\dim(E) = \sum_{\lambda \in \operatorname{Sp}(u)} \dim(E_{\lambda}(u)).$$

Exemple(s):

- (II.2)Soient E un espace vectoriel de dimension $n, u \in \mathcal{L}(E)$ diagonalisable possédant n valeurs propres distinctes et $v \in \mathcal{L}(E)$ tel que $u \circ v = v \circ u$. Montrer que v est diagonalisable. En déduire $u \circ v = v \circ u$ si et seulement si il existe $P \in \mathbb{K}_{n-1}[X]$ tel que v = P(u).
- Soient E de dimension finie et $u \in \mathcal{L}(E)$ diagonalisable tel que $\mathrm{Sp}(u) = \{\lambda_1, \dots, \lambda_r\}$. Si p_1, \dots, p_r (II.3)sont les projecteurs associée à $E = \bigoplus_{i=1}^r E_{\lambda_i}(u)$ alors $u^k = \lambda_1^k p_1 + \dots + \lambda_r^k p_r$, pour tout $k \in \mathbb{N}$.

Propriété [II.2]: Soient $A \in \mathcal{M}_n(\mathbb{K})$ et f l'endomorphisme de \mathbb{K}^n canoniquement associé à A. Alors A est $\overline{\text{diagonalisa}}$ ble dans $\mathcal{M}_n(\mathbb{K})$ si et seulement si f est diagonalisable.

Conséquence [II.3]: Soit $A \in \mathcal{M}_n(\mathbb{K})$, on a équivalence de :

- i. A est diagonalisable (dans $\mathcal{M}_n(\mathbb{K})$)
- ii. Il existe une base de \mathbb{K}^n formée de vecteurs propres de A.

iii.
$$\mathbb{K}^n = \bigoplus_{\lambda \in \operatorname{Sp}_{r}(A)} E_{\lambda}(A)$$

iii.
$$\mathbb{K}^n = \bigoplus_{\lambda \in \operatorname{Sp}_{\mathbb{K}}(A)} E_{\lambda}(A).$$

iv. $n = \sum_{\lambda \in \operatorname{Sp}_{\mathbb{K}}(A)} \dim(E_{\lambda}(A)).$

Exemple(s):

(II.4) Soit $A \in \mathcal{M}_n(\mathbb{K})$ de rang 1. Montrer que A est diagonalisable si et seulement si $\text{Tr}(A) \neq 0$.

Propriété [II.4]: Si $P \in \mathcal{GL}_n(\mathbb{K})$ est telle que $A = PDP^{-1}$ avec $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ alors $\operatorname{Sp}_{\mathbb{K}}(A) = \{\lambda_1, \dots, \lambda_n\}$ et P est la matrice de passage de la base canonique de \mathbb{K}^n à une base de vecteurs propres de A (ie la $j^{\text{ème}}$ colonne de P est un vecteur propre de A associé à λ_i).

Théorème [II.5]:

1. Soient E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Alors u est diagonalisable si et seulement si

$$\mathcal{X}_u$$
 est scindé sur \mathbb{K} $\ \underline{\mathrm{et}}$ $\ orall \lambda \in \mathrm{Sp}(u), \dim(E_\lambda(u)) = m_\lambda(u)$

2. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors A est diagonalisable si et seulement si

$$\mathcal{X}_A ext{ est scind\'e sur } \mathbb{K} \quad \operatorname{\underline{et}} \quad orall \lambda \in \mathrm{Sp}_{\mathbb{K}}(A), \dim(E_{\lambda}(A)) = m_{\lambda}(A)$$

Exemple(s):

$$(II.5)$$
 Si $A = \begin{pmatrix} 5 & -2 & 0 \\ 1 & 5 & -1 \\ 0 & 2 & 5 \end{pmatrix}$, A n'est pas diagonalisable dans $\mathcal{M}_n(\mathbb{R})$, mais l'est dans $\mathcal{M}_n(\mathbb{C})$.

Page 6/9 PSI2 - Lycée Montaigne

Conséquence [II.6]:

- 1. Si u est un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie n tel que \mathcal{X}_u possède n racines distinctes dans \mathbb{K} alors u est diagonalisable.
- **2.** Si $A \in \mathcal{M}_n(\mathbb{K})$ est telle que \mathcal{X}_A possède n racines distinctes dans \mathbb{K} alors A est diagonalisable.

<u>Attention</u>: Ce n'est qu'une condition suffisante de diagonalisabilité: id_E est diagonalisable mais son polynôme caractéristique n'est pas à racines simples.

Exemple(s):

2. Polynôme annulateur

Propriété [II.7]: Soient E un espace vectoriel, $u \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$ Si $\lambda \in \operatorname{Sp}(u)$ alors $P(\lambda) \in \operatorname{Sp}(P(u))$.

Remarque(s):

(II.8) On verra la réciproque plus tard (mais ce n'est pas un résultat du cours à priori).

<u>Propriété</u> [II.8]: Soient E un espace vectoriel, $u \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$ <u>un</u> polynôme annulateur de u. Alors on a $\forall \lambda \in \operatorname{Sp}(u), P(\lambda) = 0$ ie $\prod_{\lambda \in \operatorname{Sp}(u)} (X - \lambda)$ divise P. Cela signifie que

 $\underline{\mathbf{si}}$ λ est une valeur propre de u alors λ est une racine de P

<u>Attention</u>: Les valeurs propres de u sont parmi les racines de tout polynôme annulateur de u.

Exemple(s):

- (II.9) Si s est une symétrie alors $\operatorname{Sp}(s) \subset \{-1, +1\}$ et si $s \neq \pm id_E$ alors $\operatorname{Sp}(s) = \{-1, +1\}$.
- (II.10) Si $A \in \mathcal{M}_n(\mathbb{K})$ alors il existe un polynôme annulateur P de A tel que $P(\lambda) = 0 \Leftrightarrow \lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ ie un polynôme annulateur dont les racines sont exactement les valeurs propres complexes de A.
- (II.11) Si $N \in \mathcal{M}_n(\mathbb{K})$ est diagonalisable et nilpotente alors N = 0.

<u>Théorème</u> [II.9]:

1. Soient E un K-espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Alors u est diagonalisable si et seulement si

il existe $\underline{\mathrm{UN}}$ polynôme annulateur de u scindé à racines simples (dans \mathbb{K})

2. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors A est diagonalisable (dans $\mathcal{M}_n(\mathbb{K})$) si et seulement si

il existe $\overline{\text{UN}}$ polynôme annulateur de A scindé à racines simples (dans \mathbb{K})

Exemple(s):

(II.12) Tout projecteur et toute symétrie d'un espace vectoriel de dimension finie est diagonalisable.

PSI2 - Lycée Montaigne Page 7/9

Conséquence [II.10] :

- 1. Soit u un endomorphisme de E, espace vectoriel de dimension finie. Alors u est diagonalisable si et seulement si le polynôme $P = \prod_{\lambda \in \operatorname{Sp}(u)} (X \lambda) = \prod_{1 \leqslant k \leqslant r} (X \lambda_k)$ est annulateur de u, avec $\operatorname{Sp}(u) = \{\lambda_1, \dots, \lambda_r\}$, les λ_i étant deux à deux distincts.
- **2.** $A \in \mathcal{M}_n(\mathbb{K})$ est diagonalisable dans $\mathcal{M}_n(\mathbb{K})$ si et seulement si $P = \prod_{\lambda \in \operatorname{Sp}_{\mathbb{K}}(A)} (X \lambda) = \prod_{1 \leqslant k \leqslant r} (X \lambda_k)$ est annulateur de A, avec $\operatorname{Sp}_{\mathbb{K}}(A) = \{\lambda_1, \dots, \lambda_r\}$, les λ_i étant deux à deux distincts.

Remarque(s):

<u>Conséquence</u> [II.11] : Si u est un endomorphisme diagonalisable de E, espace vectoriel de dimension finie, et F un sous-espace de E stable par u, alors l'endomorphisme induit par u sur F est diagonalisable.

Exemple(s):

- (II.14) Soient E un espace vectoriel de dimension finie, $u \in \mathcal{L}(E)$ diagonalisable et F un sous-espace de E. Montrer que F est stable par u si et seulement si il existe e_1, \ldots, e_k , des vecteurs propres de u, tels que $F = \text{Vect}\{e_1, \ldots, e_k\}$.
 - Cette équivalence est fausse si \boldsymbol{u} n'est pas diagonalisable.
- (II.15) Soient u et v deux endomorphismes diagonalisables de E, espace vectoriel de dimension finie, qui commutent $(u \circ v = v \circ u)$. Montrer qu'il existe une base \mathcal{B} de E telle que les deux matrices $\operatorname{Mat}_{\mathcal{B}}(u)$ et $\operatorname{Mat}_{\mathcal{B}}(v)$ soient diagonales. On dit que u et v sont co-diagonalisables.

<u>Théorème</u> [II.12] : (Théorème de Cayley-Hamilton)

- 1. Soient E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Le polynôme \mathcal{X}_u est annulateur de u, ie $\mathcal{X}_u(u) = 0$.
- **2.** Si $A \in \mathcal{M}_n(\mathbb{K})$, alors $\mathcal{X}_A(A) = 0$.

Remarque(s):

- (II.16) Les intérêts du théorème de Cayley-Hamilton sont les suivants : il fournit un polynôme annulateur de A de degré n (donc il existe un polynôme annulateur non nul de degré n et dont les racines sont exactement les valeurs propres de A.
- (II.17) Lorsqu'on a besoin d'un polynôme annulateur de A dont les racines sont exactement les valeurs propres $\lambda_1, \ldots, \lambda_r$ (distinctes) de A.
 - Si on sait que A est diagonalisable, on prend $P = \prod_{k=1}^{r} (X \lambda_k)$ qui est scindé à racines simples.
 - Sinon, on prend \mathcal{X}_A qui ne sera peut être pas scindé (dans \mathbb{R}) et qui n'est à priori pas à racines simples.

Exemple(s):

- (II.18) Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 + A^2 + A = 0$. Montrer que rg(A) est pair.
- (II.19) Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $P \in \mathbb{C}[X]$. Montrer que : $P(A) \in \mathcal{GL}_n(\mathbb{C}) \Leftrightarrow \forall \lambda \in \operatorname{Sp}(A), P(\lambda) \neq 0$.
- (II.20) Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$. Déterminer une condition nécessaire et suffisante sur A pour que B soit diagonalisable.
- (II.21) Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{C})$. Montrer qu'il existe $P \in \mathcal{M}_n(\mathbb{C})$ non nulle telle que AP = PB si et seulement si A et B ont une valeur propre commune.
- (II.22) Soit $A \in \mathcal{M}_n(\mathbb{K})$ alors on a les équivalences : A est nilpotente si et seulement si $\mathrm{Sp}_{\mathbb{C}}(A) = \{0\}$ si et seulement si $\mathcal{X}_A = X^n$.

Ce résultat est faux si on se limite au spectre réel.

Trigonalisation 3.

Définition:

- 1. Soit u un endomorphisme de E, espace vectoriel de dimension finie. On dit que u est trigonalisable s'il existe une base de E dans laquelle la matrice de u est triangulaire (supérieure).
- **2.** Si $A \in \mathcal{M}_n(\mathbb{K})$, on dit que A est **trigonalisable** (dans \mathbb{K}) s'il existe une matrice $P \in \mathcal{GL}_n(\mathbb{K})$ telle que $P^{-1}AP$ soit triangulaire (supérieure)

Remarque(s):

(II.23) $u \in \mathcal{L}(E)$ est trigonalisable si et seulement si il existe une base $\mathcal{B} = (e_1, \ldots, e_n)$ de E telle que pour tout $i \in [1, n]$, $Vect\{e_1, \dots, e_i\}$ est stable par u.

Théorème [II.13]:

1. Soient E un K-espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Alors

u est trigonalisable si et seulement si \mathcal{X}_u est scindé (sur \mathbb{K}).

2. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

A est trigonalisable dans $\mathcal{M}_n(\mathbb{K})$ si et seulement si \mathcal{X}_A est scindé sur \mathbb{K} .

Remarque(s):

- (II.24) Toute matrice est donc trigonalisable sur \mathbb{C} .
- Tout endomorphisme d'un espace vectoriel complexe de dimension finie est trigonalisable.

Conséquence [II.14]: Soient u un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie et F un sous-espace vectoriel de E stable par u. Si u est trigonalisable alors l'endomorphisme induit par u sur F est trigonalisable.

Exemple(s):

- (II.27) Si $A \in \mathcal{M}_n(\mathbb{K})$ et si $\lambda_1, \ldots, \lambda_n$ sont les valeurs propres complexes de A (comptées avec multiplicité). Pour tout $k \in \mathbb{N}^*$, les valeurs propres complexes de A^k sont $\lambda_1^k, \dots, \lambda_n^k$. Plus généralement, celles de P(A) sont $P(\lambda_1), \ldots, P(\lambda_n)$ (si $P \in \mathbb{K}[X]$).
- (II.28) Étude des matrices de rang 2 : pour $n \geqslant 3$, on note $A \in \mathcal{M}_n(\mathbb{R})$ la matrice de coefficients $\cos\left(\frac{(i+j)\pi}{n}\right)$. Étudier sa diagonalisabilité.
- (II.29) Application aux suites récurrentes linéaires : pour étudier la suite définie par $(u_0, u_1) \in \mathbb{C}^2$ et $\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n \text{ avec } (a,b) \in \mathbb{C}^2, \text{ on pose } X_n = \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$ et on étudie (X_n) définie par $X_0 = \begin{pmatrix} u_0 \\ u_1 \end{pmatrix} \text{ et } \forall n \in \mathbb{N}, \ X_{n+1} = AX_n \text{ avec } A = \begin{pmatrix} 0 & 1 \\ b & a \end{pmatrix}.$ Ceci peut se généraliser à toute suite récurrente linéaire, ie du type $u_{n+p+1} = \alpha_p u_{n+p} + \alpha_p u_{$

pour tout
$$n \ge 0$$
 en posant $X_n = \begin{pmatrix} u_n \\ \vdots \\ u_{n+p} \end{pmatrix}$ avec $A = (a_{i,j})_{1 \le i,j \le p}$ et $a_{i,j} = \begin{cases} 1 & \text{si } n \ge j = i-1 \ge 2 \\ \alpha_{j+1} & \text{si } i = n \\ 0 & \text{sinon} \end{cases}$

Page 9/9PSI2 - Lycée Montaigne