I Calculs de réduction

Exercice 1 | Solution |

Diagonaliser ou trigonaliser les matrices suivantes puis calculer leur puissance $n^{\text{ème}}$.

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \quad ; \quad B = \begin{pmatrix} 11 & -5 & 5 \\ -5 & 3 & -3 \\ 5 & -3 & 3 \end{pmatrix} \quad ; \quad C = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix} \quad ; \quad D = \begin{pmatrix} 6 & 2 & 2 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$$

Exercice 2 (Mines-Télécom PSI 2018) [Solution]

Diagonaliser
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Exercice 3 (Mines-Télécom PSI 2023) [Solution]

Soit
$$A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ 4 & 8 & -12 \end{pmatrix}$$
.

- 1. Déterminer le rang de A.
- 2. En déduire sans calcul le polynôme caractéristique.
- **3.** Déterminer les éléments propres de A.
- **4.** A est-elle diagonalisable?

Exercice 4 (Mines-Télécom PSI 2024) [Solution]

$$Soit D = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

- 1. Donner, sans calcul, le rang de D, ker(D) et Im(D)
- **2.** Diagonaliser D

Exercice 5 (CCINP PSI 2022) [Solution]

Soit
$$A = \begin{pmatrix} 0 & 1 & 3 \\ 2 & 1 & -3 \\ -2 & 1 & 5 \end{pmatrix}$$

- 1. Déterminer les valeurs propres de A.
- **2.** A est-elle diagonalisable?
- **3.** Déterminer u et v, deux vecteurs propres de A et w tel que (u, v, w) soit une base de \mathbb{R}^3 .
- **4.** Trigonaliser A.

Exercice 6 (Mines-Télécom PSI 2023) [Solution]

Soit
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}$$
. Trigonaliser A et calculer A^n .

Exercice 7 (Mines-Télécom PSI 2021) [Solution]

Soit
$$A = \begin{pmatrix} -1 & 1 & 3 \\ -2 & 2 & 2 \\ -2 & 1 & 4 \end{pmatrix}$$

- 1. Montrer que A n'est pas diagonalisable mais trigonalisable
- **2.** Déterminer les éléments propres de A.
- 3. Déterminer un vecteur propre u de A associé à la valeur propre 2 puis un vecteur v tel que $(A 2I_3)v = u$. En déduire une matrice P inversible et T triangulaire supérieure telles que $A = PTP^{-1}$
- **4.** Calculer T^k puis A^k

Exercice 8 (CCINP PSI 2023) [Solution]

Soient
$$\alpha \in \mathbb{R}$$
 et $M_{\alpha} = \begin{pmatrix} \alpha & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & \alpha \end{pmatrix}$

- 1. Déterminer $\mathcal{X}_{M_{\alpha}}$ et les valeurs propres de M_{α}
- 2. M_{α} est-elle diagonalisable? Si oui, déterminer ses espaces propres, P inversible et D diagonale telles que M_{α} = PDP^{-1}
- **3.** M_{α} est-elle inversible?
- **4.** Lorsque M_{α} n'est pas inversible, déterminer des bases de $\ker(M_{\alpha})$ et $\operatorname{Im}(M_{\alpha})$.

Exercice 9 (CCP PSI 2011) [Solution]

Donner les rangs de
$$A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & 0 & -1 \\ 1 & 1 & -1 \end{pmatrix}$$
 et $A - I_3$. A est-elle diagonalisable? Trouver P telle que $P^{-1}AP = \begin{pmatrix} a & 0 & \alpha \\ 0 & b & \beta \\ 0 & 0 & c \end{pmatrix}$.

Exercice 10 (CCP PSI 2009) [Solution]

Déterminer l'ensemble
$$\Omega$$
 des réels a tels que $A=\begin{pmatrix} 2 & 1 & -2 \\ 1 & a & -1 \\ 1 & 1 & -1 \end{pmatrix}$ n'est pas diagonalisable.

Pour $a \in \Omega$, trouver P inversible telle que $P^{-1}AP$ soit triangulaire supérieure.

Exercice 11 (ENSAM PSI 2015) [Solution]

Pour quelles valeurs de
$$z \in \mathbb{C}$$
, la matrice $M = \begin{pmatrix} 1 & 0 & z \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ est-elle diagonalisable?

Exercice 12 (ENSAM PSI 2016) [Solution]

A quelle condition nécessaire et suffisante,
$$A = \begin{pmatrix} 0 & a & b \\ a & 0 & b \\ a & b & 0 \end{pmatrix}$$
 est-elle diagonalisable?

Exercice 13 (Mines-Ponts PSI 2023) [Solution]

Pour quelles valeurs de
$$a \in \mathbb{R}$$
 la matrice $\begin{pmatrix} 0 & 0 & a \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$ est-elle diagonalisable?

indication : étudier les variations de \mathcal{X}_A pour déterminer le nombre de valeurs propres de A.

Exercice 14 (CCP PSI 2018) [Solution]

Soit
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 4 & 5 & -2 \\ 4 & 3 & 0 \end{pmatrix}$$
.

- 1. Déterminer le polynôme caractéristique de A.
- **2.** Exprimer A^n comme combinaison linéaire de I_3 , A et A^2 .

Exercice 15 (Mines-Télécom PSI 2022) [Solution] Soit
$$A = \begin{pmatrix} a & c & b \\ b & a & c \\ c & b & a \end{pmatrix} \in \mathcal{M}_3(\mathbb{C})$$
 et $J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$

- 1. Exprimer A en fonction de J et J^2 .
- $\mathbf{2}$. Calculer le polynôme caractéristique de J. La matrice J est-elle diagonalisable?
- **3.** Diagonaliser A.

Exercice 16 (CCINP PSI 2022) [Solution]

Pour
$$(a, b, c) \in \mathbb{R}^3$$
, on pose $M(a, b, c) = \begin{pmatrix} a & 0 & c \\ 0 & b & 0 \\ c & 0 & a \end{pmatrix}$

- 1. Déterminer les valeur propres de M(a,b,c)
- 2. Déterminer le noyau de M(a,0,a) et M(a,b,a) (pour a et b non nuls)
- 3. Calculer $\det(M(a,b,c))$ et déterminer le noyau et l'image de M(a,b,c) lorsqu'elle n'est pas inversible.
- **4.** Justifier que M(a,b,c) est diagonalisable et la diagonaliser (trouver P et P^{-1})

Exercice 17 (CCINP PSI 2022) [Solution]

Soient
$$M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 et $R = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$, avec $(a, b) \in \mathbb{C}^2$.

- 1. Montrer que M est diagonalisable.
- **2.** Exprimer R en fonction de M et I_3 . Montrer que R est diagonalisable.
- **3.** On pose $u_n = \text{Tr}(M^n)$. Montrer que (u_n) est à valeurs entières et que (u_n) diverge.
- **4.** On pose $v_n = \operatorname{Tr}(R^n)$. Déterminer les valeurs de (a,b) pour lesquelles (v_n) converge.

Exercice 18 (AADN PSI 2012) [Solution]

CNS sur a pour que $M = \begin{pmatrix} 1 & a & a \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$ soit diagonalisable. Dans ce cas, calculer M^n .

Exercice 19 (CCP PSI 2018) [Solution]

Soit
$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2-n & n-2 & n \end{pmatrix}$$
.

- 1. Déterminer le polynôme caractéristique de A.
- **2.** A est-elle diagonalisable?

Exercice 20 (ENSEA/ENSIIE PSI 2022) [Solution]

Soit
$$m \in \mathbb{R}$$
; soit $A_m = \begin{pmatrix} -1 & m & m \\ 1 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}$. La matrice A_m est-elle diagonalisable?

Exercice 21 (CCINP PSI 2022) | Solution

On définit :
$$\forall m \in \mathbb{N}, A_m = \begin{pmatrix} -m-1 & m & 2 \\ -m & 1 & m \\ -2 & m & 3-m \end{pmatrix}$$
.

- 1. Donner les valeurs propres et sous-espaces propres de A_m .
- $\mathbf{2}$. Donner si existence les valeurs de m telles que A_m soit diagonalisable. Même question pour l'inversibilité.
- **3.** Si A_m est diagonalisable déterminer la matrice de passage P.

Exercice 22 (CCP PSI 2021) [Solution

Soit
$$A_n = (a_{i,j})_{1 \le i,j \le n}$$
 avec $a_{i,j} = \begin{cases} 0 & \text{si } i = j \\ 1 & \text{si } |i-j| = 1 \\ 0 & \text{sinon} \end{cases}$. On pose $D_n(\theta) = \mathcal{X}_{A_n}(2\cos\theta)$.

- **1.** Trouver une relation entre D_{n+2} , D_{n+1} et D_n et en déduire que $D_n(\theta) = \frac{\sin((n+1)\theta)}{\sin \theta}$ pour $\theta \in \mathbb{R} \setminus \pi\mathbb{Z}$.
- **2.** A_n est-elle diagonalisable?

Exercice 23 (Mines-Ponts PSI 2023) [Solution]

Soit $\theta \in [0, \pi[$. On note E l'ensemble des suites réelles vérifiant : $\forall n \in \mathbb{N}, \ u_{n+2} - 2\cos\theta \ u_{n+1} + u_n = 0$

- 1. Montrer que E est un \mathbb{R} -espace vectoriel. En donner une base.
- **2.** Soit $p \in \mathbb{N}$. Pour quelles valeurs de θ existe-t-il une suite non nulle de E telle que $u_0 = u_{p+1} = 0$?
- 3. Soit $A \in \mathcal{M}_p(\mathbb{R})$ telle que : $\forall (i,j) \in [1,p]^2$, $a_{i,j} = \delta_{|i-j|,1}$. Déterminer les éléments propres de A. Est-elle diagonalisable?

indication : résoudre le système $AX = 2\cos\theta X$ en posant $X = (u_i)_{1\leqslant i\leqslant p}$

Exercice 24 (Mines-Ponts PSI 2014) [Solution]

Soit
$$f$$
 canoniquement associé à $\begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{pmatrix}$

- 1. Trouver une CNS sur a, b et c pour que f soit diagonalisable.
- **2.** Montrer que dans ce cas, on a $f^n \in \text{Vect}\{id_E, f\}$ pour tout $n \in \mathbb{N}$.

Exercice 25 (CCINP PSI 2023) [Solution]

Soit
$$A_n \in \mathcal{M}_n(\mathbb{R})$$
 telle que $a_{i,j} = \begin{cases} i & \text{si } i = j \\ 1 & \text{sinon} \end{cases}$ On note P_n le polynôme caractéristique de A_n .

- 1. Justifier que A_n est diagonalisable indication : à faire après le cours sur les espaces euclidiens
- **2.** Donner le spectre de A_2

- **3.** Montrer que, pour $n \ge 3$, $P_n = (X n + 1)P_{n-1} X(X 1) \dots (X n + 2)$
- **4.** Montrer que $\forall k \in [0, n-1], (-1)^{n-k}P_n(k) > 0$ et en déduire que A_n possède une valeur propre dans chacun des intervalles $]0,1[,]1,2[,\ldots,]n-2,n-1[.$
- **5.** En déduire à nouveau que A_n est diagonalisable.

Exercice 26 (Mines-Ponts PSI 2021) [Solution]

Soient
$$a, b, c \in \mathbb{C}$$
, $bc \neq 0$, $b \neq c$ et $M = \begin{pmatrix} a & (c) \\ & \ddots \\ & & a \end{pmatrix}$

Soient
$$a, b, c \in \mathbb{C}$$
, $bc \neq 0$, $b \neq c$ et $M = \begin{pmatrix} a & (c) \\ \ddots & \\ (b) & a \end{pmatrix}$

1. Calculer $\Delta(t) = \begin{vmatrix} a+t & (c+t) \\ & \ddots & \\ (b+t) & a+t \end{vmatrix}$ et en déduire \mathcal{X}_M .

indication: montrer que $\Delta(t) \in \mathbb{R}_1[t]$ (sans chercher à le calculer complètement)

2. M est-elle diagonalisable?

Exercice 27 (ENTPE PSI 2007) [Solution]

Soit $A = (a_{i,j}) \in \mathcal{M}_{2n}(\mathbb{R})$ avec $a_{i,j} = \begin{cases} 1 \text{ si } i+j \text{ est pair} \\ 0 \text{ sinon} \end{cases}$ Donner le rang de A, puis ses éléments propres. A est-elle

Exercice 28 (Mines-Ponts PSI 2011) [Solution]

Soit $A=(a_{i,j})_{1\leqslant i,j\leqslant n}$ avec $a_{1,n}=\alpha_n$ et $a_{i,i-1}=\alpha_{i-1}$, les autres coefficients nuls. Donner une CNS sur les $\alpha_i\in\mathbb{C}$ pour que A soit diagonalisable et la diagonaliser.

Exercice 29 (Mines-Ponts PSI 2023) [Solution]

Soient
$$a_1, ..., a_{n-1}$$
 des réels non nuls, $b_1, ..., b_n \in \mathbb{R}$ et $A = \begin{pmatrix} b_1 & a_1 & 0 & ... & 0 \\ a_1 & b_2 & a_2 & \ddots & \vdots \\ 0 & a_2 & b_3 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & a_{n-1} \\ 0 & ... & 0 & a_{n-1} & b_n \end{pmatrix}$

- 1. Soit $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ un vecteur propre de A. Montrer que $x_n \neq 0$.
- 2. Montrer que les sous-espaces propres de A sont des droites. indication : raisonner par l'absurde en introduisant deux vecteurs propres linéairement indépendants et utiliser la première question.
- **3.** Déterminer Card(Sp(A))indication : à faire après le cours sur les espaces euclidiens

Exercice 30 (Centrale PSI 2022) [Solution]

Si
$$(\alpha, \beta, \gamma, \delta) \in (\mathbb{C}^*)^4$$
, pour $M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$, on pose $\overline{M} = \begin{pmatrix} \overline{\alpha} & \overline{\beta} \\ \overline{\gamma} & \overline{\delta} \end{pmatrix}$ et $M^* = \overline{M}^T$.
On pose $A = \{M \in \mathcal{M}_2(\mathbb{C}), M^* = -M \text{ et } \operatorname{Tr}(M) = 0\}$ et $B = \{M \in \mathcal{M}_2(\mathbb{C}), MM^* = I_2 \text{ et } \det(M) = 1\}$

- 1. a) A est-il un \mathbb{R} espace vectoriel? De quelle dimension?
 - b) A est-il un \mathbb{C} espace vectoriel?
- **2.** Déterminer $A \cap B$.
- **3.** Les matrices de B sont-elles diagonalisables?

indication: commencer par
$$M \in B$$
 si et seulement si $M = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ avec $|\alpha|^2 + |\beta|^2 = 1$.

Exercice 31 (Centrale PSI 2024) [Solution]

Soit $M \in \mathcal{M}_2(\mathbb{C})$, à coefficients dans \mathbb{Z} telle qu'il existe $k \in \mathbb{N}^*$ vérifiant $M^k = I_2$. On note $d = \min\{k \in \mathbb{N}^*, M^k = I_2\}$

- 1. M est-elle diagonalisable? Justifier que $|\operatorname{Tr}(M)| \leq 2$
- 2. On suppose que toutes les valeurs propres de M sont réelles. Quelles sont les valeurs possibles de d?
- 3. On suppose que toutes les valeurs propres de M sont complexes non réelles. Montrer que le polynôme caractéristique de M est l'un des 3 polynômes suivants : $X^2 - X + 1$, $X^2 + 1$, $X^2 + X + 1$
- **4.** À l'aide des questions précédentes, montrer que $d \in \{1, 2, 3, 4, 6\}$

II Matrices de rang 1 ou 2

Exercice 32 (CCP PSI 2015) [Solution]

Soient E un \mathbb{R} -espace vectoriel de dimension finie $n \ge 1$, f une forme linéaire non nulle sur E et $a \ne 0$ un vecteur de E. On pose u(x) = x + f(x)a.

- 1. Montrer que u est un endomorphisme de E qui admet 1 pour valeur propre. Quelle est la dimension de $E_1(u)$?
- **2.** Donner une CNS sur a et f pour que u soit diagonalisable.

Exercice 33 (Mines-Télécom PSI 2024) [Solution]

Soient E un espace vectoriel de dimension finie $n \ge 2$, ℓ une forme linéaire non nulle sur E, $a \in E$ non nul et f définie par $f(x) = \ell(x)a - \ell(a)x$

- 1. Montrer que f est un endomorphisme de E qui s'annule en a.
- **2.** Justifier que si $\ell(a) \neq 0$ et f(x) = 0 alors $x \in \text{Vect}\{a\}$.
- **3.** Calculer f(x) si $\ell(x) = 0$
- 4. f est-il diagonalisable?
- **5.** Déterminer \mathcal{X}_f et $\mathrm{Tr}(f)$.

Exercice 34 (CCINP PSI 2022) [Solution]

Soient $X \in \mathcal{M}_{n,1}(\mathbb{R})$ et $A = X^t X$.

- 1. Déterminer rg(A) et Sp(A).
- **2.** Déterminer \mathcal{X}_A .
- 3. Montrer que $\det(I_n + A) = 1 + {}^tXX$

Exercice 35 (CCP PSI 2014) [Solution]

Soit $(X,Y) \in \mathcal{M}_{n,1}(\mathbb{R})^2$ non nulles et $M = X^t Y$.

- 1. Déterminer le rang de M.
- **2.** Déterminer $\det(M \lambda I_n)$ en fonction λ , X et Y.
- **3.** Soit $A \in \mathcal{GL}_n(\mathbb{R})$, $Y = {}^tA^{-1}X$ et $M = X{}^tY$.

En calculant
$$\det(M + I_n)$$
, montrer que $\frac{\det(X^t X + A)}{\det(A)} = 1 + {}^t X A^{-1} X$

Exercice 36 (CCINP PSI 2022) | Solution |

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $a_{1,i} = a_{i,1} = i$, les autres coefficients nuls.

- 1. Déterminer le rang de A; en déduire ker(A).
- 2. A est-elle diagonalisable? Que dire de la multiplicité de la valeur propre 0?
- **3.** Montrer que A possède 3 valeurs propres 0, λ et 1λ .
- 4. Trouver un polynôme annulateur de degré 3.

Exercice 37 (Mines-Télécom PSI 2023) [Solution]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\forall (i,j) \in [1,n]$ 2 $a_{i,j} = ij^2$.

- 1. Déterminer le rang de A et déterminer ses valeurs propres sans calculer le polynôme caractéristique.
- **2.** En déduire que A est diagonalisable.
- **3.** Déterminer une base de vecteurs propres de A.

Exercice 38 (Mines-Télécom PSI 2019) [Solution]

Soient
$$A_n = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a_2 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ a_n & 0 & \dots & 0 \end{pmatrix}$$
, avec $n \ge 2$, $a_i \in \mathbb{C}$, et $P_n = \mathcal{X}_{A_n}$.

- **1.** Calculer P_2 et P_3 .
- **2.** Calculer $rg(A_n)$ et en déduire que X^{n-2} divise P_n .

3. Montrer que
$$P_n = X^{n-2}(X^2 - a_1X - b_n)$$
 avec $b_n = \sum_{k=2}^n a_k^2$.

4. A_n est-elle diagonalisable?

Exercice 39 (CCINP PSI 2024) [Solution]

Soient $n \ge 2$, $\alpha \in \mathbb{C}$ et $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{C})$ telle que $a_{i,j} = \alpha^{i+j-2}$

- 1. Montrer que a est diagonalisable si $\alpha \in \mathbb{R}$ indication : à faire après le cours sur les espaces euclidiens
- **2.** Calculer le rang de A et en déduire ses valeurs propres.
- 3. Déterminer une condition nécessaire et suffisante pour que A soit diagonalisable.

Exercice 40 (CCP MP 2015) [Solution]

Soient a et b deux vecteurs unitaires et libres de E euclidien. Soit $u: x \mapsto (a|x)a + (b|x)b$. Déterminer $\ker(u)$ puis les éléments propres de u.

Exercice 41 (ENTPE-EIVP PSI 2015) [Solution]

Soit $(a_1, \ldots, a_n) \in \mathbb{R}^n$ tel que $\sum_{i=1}^n a_i^2 = 1$. Trouver les éléments propres de $S \in \mathcal{M}_n(\mathbb{R})$ telle que $s_{i,j} = \left\{ \begin{array}{ll} 1 - a_i^2 & \text{si } i = j \\ -a_i a_j & \text{sinon} \end{array} \right.$ indication : examiner $\operatorname{rg}(S - I_n)$.

TTT Matrices semblables

Exercice 42 (Mines-Ponts PSI 2018) [Solution]

$$A = \begin{pmatrix} 0 & 1 & 3 \\ 2 & 1 & -3 \\ 0 & 2 & 4 \end{pmatrix} \text{ et } B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & -12 \\ 0 & 1 & 5 \end{pmatrix} \text{ sont-elles semblables ?}$$

Exercice 43 (CCP PSI 2024) [Solution]

Deux matrices A et B de $\mathcal{M}_n(\mathbb{K})$ possèdent le même spectre.

- 1. Montrer que si les valeurs propres sont deux à deux distinctes alors A et B sont semblables.
- 2. Donner deux matrices ayant le même spectre mais non semblables.

Exercice 44 (Centrale PSI 2018) [Solution]

- 1. a) Montrer que deux matrices semblables ont le même polynôme caractéristique.
 - b) Monter que si $A \in \mathcal{M}_n(\mathbb{C})$ et $P \in \mathbb{C}[X]$ alors $\operatorname{Sp}(P(A)) = \{P(\lambda), \lambda \in \operatorname{Sp}(A)\}$
- **2.** Déterminer les matrices de $\mathcal{M}_2(\mathbb{C})$ semblables à leur carré.
- 3. Déterminer les matrices de $\mathcal{GL}_2(\mathbb{C})$ semblables à leur inverse.

Sous-espaces stables

Soit
$$A = \begin{pmatrix} 0 & -1 & 1 \\ 2 & 1 & -3 \\ 2 & -1 & -1 \end{pmatrix}$$
. Déterminer les sous-espaces de \mathbb{R}^3 stables par A .

Exercice 46 (Mines-Ponts PC 2015) [Solution]

Déterminer les sous-espaces de
$$\mathbb{R}^3$$
 stables par $M = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.

Exercice 47 (Centrale PSI 2012) [Solution]

Trouver les sous-espaces stables par l'endomorphisme associé à
$$A = \begin{pmatrix} -1 & k & -k \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$
.

Exercice 48 (CCINP PSI 2022) [Solution]

Soient
$$A = \begin{pmatrix} 2 & 2 & -1 \\ -1 & 5 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$
 et a l'endomorphisme de \mathbb{R}^3 canoniquement associé à A .

- 1. A est-elle diagonalisable?
- 2. Déterminer les droites stables par a
- 3. Soient P un plan stable par a et a' l'endomorphisme de P induit par a
 - a) Montrer que $\mathcal{X}_{a'}$ divise \mathcal{X}_a
 - b) En déduire $P \subset \ker(a 3id)^2$
 - c) Trouver les sous espaces de \mathbb{R}^3 stables par a

Exercice 49 (CCP PSI 2018) [Solution]

Soient E un \mathbb{C} -espace vectoriel de dimension finie, H un hyperplan de E et $u \in \mathcal{L}(E)$.

- 1. Montrer que H est stable par u si et seulement si il existe $\lambda \in \mathbb{C}$ tel que $\mathrm{Im}(u-\lambda id) \subset H$.
- **2.** Soit $A = \begin{pmatrix} 3 & 1 & 2 \\ 0 & -1 & 1 \\ -3 & -1 & -2 \end{pmatrix}$. Déterminer les sous-espaces stables par A.

Exercice 50 (Centrale PSI 2009) [Solution]

- 1. $A = \begin{pmatrix} -8 & 1 & 5 \\ 2 & -3 & -1 \\ -4 & 1 & 1 \end{pmatrix}$ est-elle diagonalisable? ^tA l'est-elle?
- **2.** Trouver les droites stables par l'endomorphisme u de \mathbb{R}^3 associé à A.
- **3.** Montrer que si P: ax + by + cz = 0 est stable par u alors (a, b, c) est vecteur propre de tA . En déduire tous les plans stables par u.

Exercice 51 (Centrale PSI 2022) [Solution]

Soient E un K-espace vectoriel de dimension $n \ge 2$ et $f \in \mathcal{L}(E)$

- 1. Montrer qu'il existe au moins deux sous espaces de E stables par f. Donner un exemple d'endomorphisme de \mathbb{R}^2 n'ayant que 2 sous espaces stables.
- 2. On suppose $f \neq 0$ et non injectif. Montrer qu'il existe au moins 3 sous espaces de E stables par f.

 Dans le cas où n est impair, montrer qu'il existe 4 sous espaces de E stables par f. (indication : penser au théorème du rang)

 Donner un exemple d'endomorphisme de \mathbb{R}^2 n'ayant que 3 sous espaces stables.
- 3. On suppose f diagonalisable. Montrer que f admet un nombre fini de sous espaces stables si et seulement si f admet n valeurs propres distinctes.

indication : montrer qu'un sev est stable si et seulement si il est engendré par des vecteurs propres de f

V Commutant et équations matricielles

Exercice 52 (Navale PSI 2019) [Solution]

- **1.** Diagonaliser $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- **2.** Que dire de $X \in \mathcal{M}_2(\mathbb{R})$ telle que $X^2 + X = A$? Donner ses éléments propres et trouver les matrices X solutions

Exercice 53 (Mines-Télécom PSI 2023) [Solution]

Soit
$$A = \begin{pmatrix} -2 & 3 \\ 6 & -5 \end{pmatrix}$$

- 1. Montrer que $\mathcal{X}_A = (X-1)(X+8)$; A est-elle diagonalisable?
- **2.** Déterminer P inversible et D diagonale telles que $A = PDP^{-1}$; calculer P^{-1}
- **3.** Trouver les matrices $B \in \mathcal{M}_2(\mathbb{R})$ telles que $A = B^3$

Exercice 54 (Mines-Télécom PSI 2024) [Solution]

Soit
$$A = \begin{pmatrix} 5 & 3 \\ 1 & 3 \end{pmatrix}$$

- 1. Diagonaliser A
- **2.** Soit $M \in \mathcal{M}_2(\mathbb{R})$ telle que $M^2 + M = A$
 - a) Montrer que $Sp(M) \subset \{1, -2, 2, -3\}$
 - b) Déterminer les matrices M telles que $M^2 + M = A$

Exercice 55 (CCP PSI 2016) [Solution]

Soit
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 2 & -4 & -1 \end{pmatrix}$$
.

- **1.** Diagonaliser A.
- ${\bf 2.}\,$ Montrer que si M commute avec D, matrice diagonale semblable à A, alors M est diagonale.
- **3.** Trouver les matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que $M^7 + M + I_3 = A$.

Exercice 56 (CCINP PSI 2024) [Solution]

Pour
$$\alpha \in \mathbb{R}$$
, on pose $M_{\alpha} = \begin{pmatrix} 1 + 2\alpha & 9 - 2\alpha & -2\alpha \\ 0 & 4 & 0 \\ \alpha & 6 - \alpha & 1 - \alpha \end{pmatrix}$

- 1. Étudier la diagonalisabilité de M_{α}
- **2.** Déterminer $\operatorname{rg}(M_{\alpha})$
- 3. Déterminer $P \in \mathcal{GL}_3(\mathbb{R})$ telle que $M_{-1} = P\Delta P^{-1}$ avec $\Delta = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$
- 4. On cherche à résoudre $A^2=M_{-1}$ et on pose $B=P^{-1}AP$
 - a) Montrer que $A^2 = M_{-1} \Leftrightarrow B^2 = \Delta$
 - b) Montrer que si $B^2 = \Delta$ alors B et Δ commutent
 - c) En déduire les matrices B telles que $B^2 = \Delta$
 - d) Résoudre $A^2 = M_{-1}$

Exercice 57 [Solution]

Soit $A \in \mathcal{M}_3(\mathbb{R})$ telle que $A \neq 0$ et $A^3 + A = 0$. Montrer que A est semblable à $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$. Déterminer toutes les matrices qui commutent avec A.

Exercice 58 (Mines-Télécom PSI 2021) [Solution]

Soit
$$u \in \mathcal{L}(\mathbb{R}^3)$$
 canoniquement associé à $A = \begin{pmatrix} -3 & 2 & 2 \\ 2 & -1 & 0 \\ -6 & 4 & 3 \end{pmatrix}$

- 1. u est-il diagonalisable?
- **2.** Montrer qu'il existe une base \mathcal{B} dans laquelle $\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$
- 3. Déterminer les endomorphismes de \mathbb{R}^3 qui commutent avec u

Exercice 59 (CCINP PSI 2022) [Solution]

Soient E un espace vectoriel de dimension $n, u \in \mathcal{L}(E)$ ayant n valeurs propres distinctes et $Z_u = \{v \in \mathcal{L}(E), u \circ v = v \circ u\}$

- 1. Montrer que Z_u est un espace vectoriel
- **2.** Montrer que si $v \in Z_u$ alors $E_{\lambda}(u)$ est stable par v
- 3. Donner $\dim(E_{\lambda}(u))$ et en déduire que les vecteurs propres de u sont aussi des vecteurs propres de v
- 4. Montrer qu'il existe une base de E dans laquelle les matrices de u et v sont diagonales puis déterminer $\dim(Z_n)$

Exercice 60 (CCINP PSI 2024) [Solution]

Soient E un espace de dimension finie n et $f \in \mathcal{L}(E)$ admettant n valeurs propres distinctes $\lambda_1, \ldots, \lambda_n$. On note C(f) l'ensemble des endomorphismes de E qui commutent avec f.

- **1.** Montrer que $\varphi: P \in \mathbb{R}_{n-1}[X] \mapsto (P(\lambda_1), \dots, P(\lambda_n))$ est un isomorphisme de $\mathbb{R}_{n-1}[X]$ sur \mathbb{R}^n .
- **2.** Soit h = P(f) avec $P \in \mathbb{K}[X]$, montrer que $h \in C(f)$.
- **3.** Soit $g \in C(f)$.
 - a) Montrer que les sous-espaces propres de f sont stables par g
 - b) Déterminer la dimension des sous-espaces propres de f et en déduire que les vecteurs propres de f sont aussi des vecteurs propres de g.
 - c) En déduire qu'il existe une base de vecteurs propres communs à f et g.
 - d) Montrer g puis que g est un polynôme en f
- **4.** En déduire la dimension de C(f).

Exercice 61 (Mines-Ponts PSI 2019) [Solution]

Soit $A \in \mathcal{M}_n(\mathbb{K})$ diagonalisable; on note $\lambda_1, \ldots, \lambda_r$ ses valeurs propres distinctes et m_1, \ldots, m_r leurs ordres de multiplicités.

- 1. Montrer qu'il existe un polynôme annulateur de A de degré r et que tout polynôme annulateur non nul de A est de degré $\geqslant r$.
- **2.** On note $\mathbb{K}[A] = \{P(A), P \in \mathbb{K}[X]\}$; montrer que dim $(\mathbb{K}[A]) = r$.

3. On note
$$C(A) = \{B \in \mathcal{M}_n(\mathbb{K}), AB = BA\}$$
; montrer que $\dim(C(A)) = \sum_{i=1}^r m_i^2$.

4. Montrer que
$$\dim(C(A)) = r \Leftrightarrow \dim(\mathbb{K}[A]) = n \Leftrightarrow n = r \Leftrightarrow C(A) = \mathbb{K}[A]$$

Exercice 62 (Mines-Ponts PSI 2019) [Solution]

Soit
$$f \in \mathcal{L}(\mathbb{R}^3)$$
 de matrice $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 3 & -2 \end{pmatrix}$. Trouver les $g \in \mathcal{L}(\mathbb{R}^3)$ tels que $g^3 + 2g = f$.

Exercice 63 (Mines-Ponts PSI 2021) |Solution|

- **1.** Soient $A \in \mathcal{M}_n(\mathbb{R})$ diagonalisable et $B = A^3 + A + I_n$. Exprimer A comme un polynôme en B. indication: vérifier que B est aussi DZ et trouver les vp de B en fonction de celles de A.
- **2.** Est ce toujours vrai dans $\mathcal{M}_n(\mathbb{C})$?

Exercice 64 (CCINP PSI 2023) [Solution]

Soit
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix}$$
 canoniquement associée à f . On suppose $f = g^2$.

- 1. Déterminer les éléments propres de A; est-elle diagonalisable?
- **2.** Soient e_1 et e_3 des vecteurs propres de f associés à 1 et 3; montrer que $g(e_1)$ et $g(e_3)$ sont aussi des vecteurs propres de f, associés à 1 et 3.
- 3. En déduire que e_1 et e_3 sont aussi des vecteurs propres de g; quelles sont les valeurs propres associées?
- **4.** g est-il diagonalisable?
- **5.** Quelles sont les valeurs propres possibles de g?

Exercice 65 (CCP PC 2013) |Solution|

Soit
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 associée à u .

- 1. Montrer que $E = \ker(u 2id) \oplus \ker(u id)^2$.
- **2.** Soit v de matrice X telle que $X^n = A$. Montrer que $\ker(u 2id)$ et $\ker(u id)^2$ sont stables pas v.
- **3.** En déduire que $X = \begin{pmatrix} \alpha & 0 \\ 0 & Y \end{pmatrix}$ avec $\alpha \in \mathbb{C}$ et $Y \in \mathcal{M}_2(\mathbb{C})$ puis trouver X.

Exercice 66 (CCP PSI 2018) [Solution]

Soient $A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 3 & -3 \\ -2 & 2 & -2 \end{pmatrix}$ et f un endomorphisme de E dont la matrice dans une base \mathcal{B} est A.

- 1. Montrer que $E = \ker(f^2) \oplus \ker(f 2id)$.
- **2.** Trouver un vecteur de $\ker(f^2)$ qui n'appartient pas à $\ker(f)$.
- 3. Trouver une base \mathcal{B}' dans laquelle $\operatorname{Mat}_{\mathcal{B}'}(f) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$
- **4.** Soit g un endomorphisme de E tel que $f=g^2$. Montrer que $\ker(f^2)$ est stable par g. Que peut-on en déduire?

Exercice 67 (IMT PSI 2019) [Solution]

Existe-t-il
$$B \in \mathcal{M}_3(\mathbb{K})$$
 telle que $B^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$?

Exercice 68 (ENSAM PSI 2017) [Solution]

Soit
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1. Trigonaliser A dans $\mathcal{M}_3(\mathbb{R})$.
- **2.** Montrer que si M vérifie $M^2 = A$ alors $Sp(M) \subset \{-1,0,1\}$ et $0 \in Sp(M)$.
- 3. Estimer les dimensions des différents sous espaces propres et résoudre $M^2=A$.

Exercice 69 (Centrale PSI 2007) [Solution]

Exercice 69 (Centrale PSI 2001) [100100101]

Montrer que les matrices qui commutent avec $A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$ sont des polynômes en A de degré au plus 2.

Exercice 70 (CCP PSI 2015) [Solution]

Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $P \in \mathbb{R}[X]$ tels que P(A) soit triangulaire à coefficients diagonaux 2 à 2 distincts. Montrer que A est diagonalisable.

Exercice 71 (Mines-Ponts PSI 2012) [Solution]

Trouver un polynôme annulateur de $A \in \mathcal{M}_n(\mathbb{R})$ avec $a_{i,j} = \begin{cases} 1 & \text{si } i = j+1 \\ -1 & \text{si } j = n \\ 0 & \text{sinon} \end{cases}$ Donner la dimension de $\mathbb{C}[A]$.

Exercice 72 (Mines-Télécom PSI 2018) [Solution]

Soit $u \in \mathcal{L}(\mathbb{R}^3)$ admettant 3 valeurs propres distinctes et $C(u) = \{v \in \mathcal{L}(\mathbb{R}^3), u \circ v = v \circ u\}$ le commutant de u.

- 1. Justifier que u est diagonalisable.
- **2.** Déterminer C(u) lorsque u est canoniquement associé à diag(1,2,3).
- **3.** Montrer que $C(u) = \text{Vect}\{id, u, u^2\}$

Exercice 73 (Mines-Ponts PSI 2017) [Solution]

Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$ telles que AB = BA; on suppose que A possède n valeurs propres distinctes.

- 1. Montrer qu'il existe $P \in \mathcal{GL}_n(\mathbb{C})$ telle que $A = PDP^{-1}$, $B = PD'P^{-1}$ avec D et D' diagonales.
- **2.** On note d_i et d'_i les coefficients diagonaux de D et D'. Montrer que $\exists Q \in \mathbb{C}_{n-1}, \forall i \in [1, n], Q(d_i) = d'_i$.
- 3. Montrer que B est un polynôme en A. Que peut-on en déduire sur le commutant de A?
- 4. Est-ce encore vrai si les valeurs propres de A ne sont plus simples?

Exercice 74 (Centrale PSI 2016) [Solution]

Soit $A \in \mathcal{M}_n(\mathbb{R})$; on cherche la dimension de E, où $E = \{M \in \mathcal{M}_n(\mathbb{R}), AMA = 0\}$

- 1. On suppose A diagonalisable. Montrer que $\dim(E) = \dim\{N \in \mathcal{M}_n(\mathbb{R}), DND = 0\}$, où D est diagonale à expliciter; en déduire $\dim(E)$ en fonction de n et de $\operatorname{rg}(A)$.
- **2.** Est-ce encore vrai si A n'est pas diagonalisable? indication: par blocs avec $A = PJ_rQ^{-1}$.

Exercice 75 (Centrale PSI 2018) [Solution]

- 1. Soient $n \in \mathbb{N}^*$ et $X \in \mathbb{R}^n$ non nul; montrer que E_X , ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ dont X est un vecteur propre, est un espace vectoriel.
- **2.** Déterminer E_X et sa dimension.

Exercice 76 (Mines-Ponts PSI 2017) [Solution]

Soient A et B dans $\mathcal{M}_2(\mathbb{C})$ telles que AB = BA. Montrer que A est un polynôme en B ou B est un polynôme en A. Qu'en est-il si A et B sont dans $\mathcal{M}_n(\mathbb{C})$ avec $n \geq 3$ ou si A et B sont dans $\mathcal{M}_2(\mathbb{R})$?

indication : discuter sur le nombre de valeurs propres distinctes de A et sur sa diagonalisabilité.

${f VI}$ Polynômes annulateurs

Exercice 77 (CCP PSI 2018) [Solution]

Soit
$$A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$$
 avec $a_{i,j} = \begin{cases} 0 & \text{si } i = j \\ 1 & \text{sinon} \end{cases}$

- 1. A est-elle diagonalisable?
- **2.** Calculer $(A + I_n)^2$.
- 3. Montrer que si P annule A alors les valeurs propres de A sont des racines de P. Que peut-on en déduire sur les valeurs propres de A.
- **4.** Déterminer Sp(A).

Exercice 78 (CCP PSI 2008) [Solution]

Trouver les valeurs propres possibles de M telle que $M^2 + M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, puis déterminer toutes les matrices M à l'aide de polynômes annulateurs appropriés.

Exercice 79 (Mines-Ponts PSI 2021) [Solution]

Soient
$$J = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & (1) & \vdots \\ 1 & \dots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}) \text{ et } M \in \mathcal{M}_n(\mathbb{R}) \text{ telle que } M^2 + M = J$$

- 1. Trouver un polynôme annulateur de J et diagonaliser J.
- **2.** Trouver un polynôme annulateur de M et montrer que M est diagonalisable.
- 3. Montrer que les vecteurs propres de M sont aussi des vecteurs propres de J.
- **4.** Déterminer M.

Exercice 80 (Mines-Ponts PSI 2018) [Solution]

Soit u un endomorphisme d'un espace vectoriel réel E de dimension finie tel que $u^3 = u$. Montrer que u^2 est un projecteur ; que dire de u si rg(u) = Tr(u)?

Exercice 81 (Mines-Ponts PSI 2022) [Solution]

Soient $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$ telles que ABAB = 0. A-t-on BABA = 0? indication: calculer $(BA)^3$ puis distinguer $n \leq 2$ et $n \geq 3$.

Exercice 82 (CCINP PSI 2021) [Solution]

Soit $u \in \mathcal{L}(\mathbb{R}^n)$ tel que $u^3 + u^2 + u = 0$

- 1. Étudier $\ker(u) \cap \ker(u^2 + u + id)$
- **2.** Montrer que $\ker(u^2 + u + id) = \operatorname{Im}(u)$ et $\mathbb{R}^n = \ker(u) \oplus \operatorname{Im}(u)$.
- 3. Soit v l'endomorphisme de Im(u) induit par u; que représente le degré du polynôme caractéristique de v?
- **4.** Montrer que $0 \notin \operatorname{Sp}(v)$ et que $\operatorname{rg}(u)$ est pair.

Exercice 83 (CCINP PSI 2023) [Solution] Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 - A^2 + A - I_n = 0$

- 1. Montrer que les valeurs propres de A sont racines de $X^3 X^2 + X 1$
- **2.** Calculer det(A)
- **3.** Que dire de Tr(A)?

Exercice 84 (Mines-Télécom PSI 2023) [Solution]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 - 3A - 5I_n = 0$. Montrer que $\det(A) > 0$

Exercice 85 (Mines-Télécom PSI 2022) [Solution]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 = A + I_n$. Montrer que $\det(A) > 0$.

Exercice 86 (CCINP PSI 2024) [Solution]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 + 9A = 0, n \geqslant 3$.

- **1.** Montrer que $\operatorname{Sp}_{\mathbb{C}}(A) \subset \{0, 3i, -3i\}$
- **2.** A est-elle diagonalisable dans \mathbb{R} ? Dans \mathbb{C} ?
- **3.** Montrer que si n est impair alors A n'est pas inversible.
- 4. Montrer que si A est symétrique réelle et non nulle alors A ne peut pas vérifier $A^3 + 9A = 0$

Exercice 87 (Navale PSI 2022) [Solution]

Trouver les matrices $M \in \mathcal{M}_n(\mathbb{R})$ telles que $M^5 = M^2$ et Tr(M) = n

Exercice 88 (CCP MP 2010) | Solution |

Déterminer toutes les matrices $A \in \mathcal{M}_3(\mathbb{R})$ de trace 7 telles que $A^3 - 5A^2 + 6A = 0$.

Exercice 89 (CCP PSI 2013) [Solution]

Déterminer \mathcal{X}_A pour $A \in \mathcal{GL}_5(\mathbb{R})$ telle que $A^3 - 3A^2 + 2A = 0$ et Tr(A) = 8.

Exercice 90 (CCP PSI 2012) [Solution]

Soit $A \in \mathcal{M}_3(\mathbb{R})$ telle que $\det(A) = 10$, $\operatorname{Tr}(A) = -6$ et $A - I_3 \notin \mathcal{GL}_3(\mathbb{R})$. Exprimer A^{-1} comme un polynôme en A.

Exercice 91 (CCINP PSI 2019) [Solution]

Soit A réelle, carrée, de trace nulle telle que $A^3 - 4A^2 + 4A = 0$.

- 1. Montrer que les valeurs propres de A sont racines de $X^3 4X^2 + 4X$.
- 2. Déterminer toutes les matrices A possibles

Exercice 92 (TPE-EIVP PSI 2019) [Solution]

Soit $n \ge 2$; trouver les matrices $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^4 - A^3 - A + I_n = 0$ et $A^2 - 3A + 2I_n = 0$

Exercice 93 (ENSAM PSI 2016) [Solution]

- 1. Montrer que si $A \in \mathcal{M}_n(\mathbb{R})$ vérifie $A^2 = -I_n$ alors n est pair.
- **2.** Montrer que si $B \in \mathcal{M}_n(\mathbb{R})$ vérifie $B^2 B + I_n = 0$ alors n est pair.
- **3.** Montrer que si $C \in \mathcal{M}_n(\mathbb{R})$ vérifie $C^3 C^2 + C = 0$ alors $\operatorname{rg}(C)$ est pair. indication: montrer que $\ker(C)$ et $\operatorname{Im}(C)$ sont supplémentaires.

Exercice 94 (CCP PSI 2012) [Solution]

Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M^2 + M + I_n = 0$.

- 1. M est-elle diagonalisable? inversible?
- **2.** Donner Tr(M) et det(M) et montrer que n est pair.
- **3.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 = M$; A est-elle diagonalisable? On suppose que n/2 est impair. Montrer que $\mathrm{Tr}(A) \in \mathbb{Z}$ et est impaire.

Exercice 95 (Mines-Ponts PSI 2019) [Solution]

- 1. Factoriser $P = X^5 4X^4 + 2X^3 + 8X^2 8X$
- **2.** Déterminer les matrices $M \in \mathcal{M}_n(\mathbb{R})$ telles que P(M) = 0 et Tr(M) = 0

Exercice 96 (Centrale PSI 2018) [Solution]

- 1. Montrer que si P est un polynôme annulateur de A, matrice réelle de taille n, les valeurs propres de A sont racine sde P; la réciproque est-elle vraie?
- **2.** Montrer que si $P = (X+3)(X^2+X+1)$ annule A, alors Tr(A) est un entier négatif.
- 3. Montrer que l'on peut trouver un polynôme de degré 3 tel que si P est annulateur de A, alors rg(A) est pair.

Exercice 97 (Mines-Ponts PSI 2018) [Solution]

- 1. Trouver un polynôme $P \in \mathbb{Z}[X]$ dont $a = \cos\left(\frac{2\pi}{5}\right)$ est racine. En déduire la valeur de a et celle de $b = \cos\left(\frac{4\pi}{5}\right)$. indication : vérifier que $z = e^{2i\pi/5}$ est solution de $z^2 + z + 1 + z^{-1} + z^{-2} = 0$ et réécrire cette équation en faisant apparaître la variable $z' = z + z^{-1}$.
- **2.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^4 + A^3 + A^2 + A + I_n = 0$ et telle que $Tr(A) \in \mathbb{Q}$. Montrer que n est un multiple de 4.

Exercice 98 (Mines-Ponts PSI 2019) [Solution]

Déterminer le plus petit entier $n \in \mathbb{N}^*$ pour lequel il existe $M \in \mathcal{M}_n(\mathbb{R})$ telle que $\operatorname{Tr}(M) = 0$ et $2M^3 - M^2 - 13M + 5I_n = 0$. indication : $P = (2X + 5)\left(X - \frac{3 + \sqrt{5}}{2}\right)\left(X - \frac{3 - \sqrt{5}}{2}\right)$

Exercice 99 (CCP PC 2010) [Solution]

Montrer que $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $A^2 + A + 4I_n = 0$ n'a pas de valeur propre réelle. En déduire que n est pair. Calculer $\det(A)$ et $\operatorname{Tr}(A)$.

Exercice 100 (CCINP PSI 2023) [Solution]

Soit $M \in \mathcal{GL}_n(\mathbb{R})$ telle que $M + M^{-1} = I_n$

- **1.** Calculer $M^k + M^{-k}$ pour $k \in \{3, 5, 7\}$
- **2.** Montrer que M est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$ et donner une matrice diagonale semblable à M
- **3.** Déterminer $M^k + M^{-k}$ pour tout entier k

Exercice 101 (CCP PSI 2012) |Solution|

Soit $A \in \mathcal{M}_2(\mathbb{R})$ non nulle telle que $A^2 = {}^t A$. Déterminer un polynôme annulateur de A.

Montrer que si 0 est valeur propre de A alors A est semblable à $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Exercice 102 (CCP PSI 2023) [Solution]

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et P annulateur de A; montrer que les valeurs propres de A sont des racines de P.
- **2.** Existe-t-il $A \in \mathcal{M}_3(\mathbb{R})$ telle que $\operatorname{Tr}(A) = 0$ et $A^2 + A^T = I_3$? indication: trouver $\operatorname{Sp}(A)$ puis vérifier A inversible et $A I_3$ non inversible pour aboutir à une contradiction.

Exercice 103 (ENSEA/INSIIE PSI 2024) [Solution]

Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^2 + {}^tM = I_n$

- 1. Montrer que les valeurs propres de M sont racines de tout polynôme annulateur de M.
- **2.** On suppose M symétrique; montrer que M est diagonalisable et que $\det(M) \times \operatorname{Tr}(M) \neq 0$
- 3. Montrer que M est diagonalisable, même si M n'est pas symétrique.
- **4.** Montrer que M est inversible si et seulement si $1 \notin \operatorname{Sp}(M)$

Exercice 104 (CCP PSI 2007) [Solution]

Déterminer $\operatorname{Sp}(A)$ si $A \in \mathcal{M}_n(\mathbb{R})$, telle que $A(A - I_n)^2 = 0$ avec $(A - I_n)^2 \neq 0$ et $A(A - I_n) \neq 0$. A est-elle diagonalisable?

Exercice 105 (ENSEA PSI 2016) | Solution |

Soit $f \in \mathcal{L}(E)$, avec E \mathbb{C} -espace vectoriel de dimension n, tel que $(f - id)^3 \circ (f - 2id) = 0$ et $(f - id)^2 \circ (f - 2id) \neq 0$. f est-il diagonalisable?

Exercice 106 (ENSAM PSI 2011) [Solution]

Soit $A \in \mathcal{M}_2(\mathbb{Z})$ telle que $\exists p \in \mathbb{N}^*, A^p = I_2$. Montrer que $A^{12} = I_2$. indication: montrer qu'il existe $\theta \in \mathbb{R}$ tel que $\operatorname{Tr}(A) = 2\cos\theta$.

Exercice 107 (CCP PC 2011) [Solution]

Soit $(M_j)_{1 \leqslant j \leqslant p} \in \mathcal{M}_n(\mathbb{C})^p$ telle que $M_j^2 = -I_n$ et, pour $j \neq k$, $M_j M_k = -M_k M_j$.

- 1. Trouver un polynôme annulateur de M_j , prouver qu'elle est diagonalisable et que $Sp(M_j) \subset \{i, -i\}$.
- **2.** Montrer que n est pair, que $Sp(M_j) = \{i, -i\}$ et $dim(E_i(M_j)) = dim(E_{-i}(M_j))$.
- **3.** Calculer $\det(M_i)$.
- **4.** Déterminer une telle famille pour n=2 et n=4.

Exercice 108 (CCP PSI 2012) [Solution]

Soient A, B et C trois matrices carrées complexes d'ordre n telles que A = B + C, $A^2 = 3B + C$ et $A^3 = 5B + 6C$. Trouver un polynôme annulateur de A et montrer que ces matrices sont diagonalisables.

Exercice 109 (CCINP PSI 2024) [Solution]

- 1. Soit p un projecteur de E, espace vectoriel de dimension finie. Montrer que $E = \ker(p) \oplus \operatorname{Im}(p)$, puis que p est diagonalisable et donner une matrice diagonale associée à p
- **2.** Soient $\lambda, \mu \in \mathbb{C}^*$ distincts, $A, B, M \in \mathcal{M}_n(\mathbb{C})$ telles que $M = \lambda A + \mu B$, $M^2 = \lambda^2 A + \mu^2 B$ et $M^3 = \lambda^3 A + \mu^3 B$. Montrer que M est diagonalisable.

Exercice 110 (Mines-Ponts PSI 2012) [Solution]

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $1 \notin \operatorname{Sp}(A)$ et $A^2 - 2A$ soit diagonalisable. Montrer que A est diagonalisable. indication: polynôme annulateur et vérifier que -1 n'est pas valeur propre de $A^2 - 2A$.

Exercice 111 (Mines-Ponts PC 2011) [Solution]

Soit $A = (a_{i,j})$ avec $a_{i,j} = 1$ si i = j, ou j = i + 1 ou (i,j) = (1,n) et 0 sinon. Montrer que A est inversible si n est impair et que son inverse est un polynôme en A.

Exercice 112 (Centrale PSI 2017) [Solution]

Soit u endomorphisme de E, espace vectoriel de dimension finie n.

- 1. Donner une relation entre $m_{\lambda}(u)$ et $\dim(E_{\lambda}(u))$, définir \mathcal{X}_u et énoncer le théorème de Cayley-Hamilton.
- **2.** Montrer que si $\mathcal{X}'_u(0) \neq 0$ alors $\ker(u) = \ker(u^2)$.

VII Polynôme caractéristique et autres polynômes

Exercice 113 (Petites Mines PSI 2021) [Solution]

Pour tout polynôme $P \in \mathbb{R}_n[X]$ de la forme $P = X^n \sum_{k=0}^{n-1} a_k X^k$, on associe sa matrice compagnon :

$$C_P = \begin{pmatrix} 0 & \dots & 0 & a_0 \\ 1 & \ddots & (0) & a_1 \\ 0 & \ddots & \ddots & \vdots \\ 0 & \dots & 1 & a_{n-1} \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

- 1. Montrer que C_P est inversible si et seulement si $P(0) \neq 0$
- **2.** Déterminer le polynôme caractéristique de C_P .
- 3. Montrer que les espaces propres de C_P sont de dimension 1
- 4. Montrer que C_P est diagonalisable si et seulement si P est scindé à racines simples

Exercice 114 (Mines-Ponts PSI 2015) [Solution]

Soit A la matrice de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients diagonaux valent $1, 2, \ldots, n$, tous les autres étant égaux à 1. Montrer

que
$$\lambda \in \operatorname{Sp}(A)$$
 si et seulement si $\sum_{i=0}^{n-1} \frac{1}{\lambda - i} = 1$.

En déduire que A admet n valeurs propres distinctes.

Exercice 115 (ENSIIE PSI 2011) [Solution]

Soit $N \in \mathcal{M}_n(\mathbb{C})$ nilpotente d'indice p $(N^p = 0 \text{ et } N^{p-1} \neq 0) \text{ et } A \in \mathcal{M}_n(\mathbb{C})$ commutant avec N.

- 1. Donner le spectre et le polynôme caractéristique de N.
- **2.** On suppose A inversible. Montrer que $A^{-1}N$ est nilpotente et en déduire $\det(A+N) = \det(A)$.
- **3.** On ne suppose plus A inversible. Montrer $\exists M \in \mathcal{M}_n(\mathbb{C}), AM = (A+N)^p$ et en déduire $\det(A+N) = \det(A)$.

Exercice 116 (Mines-Ponts PSI 2014) [Solution]

Soient $A \in \mathcal{M}_n(\mathbb{C})$ et (P) la propriété : $\exists M \in \mathcal{M}_n(\mathbb{C}), \forall \lambda \in \mathbb{C}, \det(M + \lambda A) \neq 0$

- **1.** Montrer que (P) est vraie si $A \notin \mathcal{GL}_n(\mathbb{C})$; on pourra introduire le rang de A.
- **2.** Montrer que (P) est fausse si $A \in \mathcal{GL}_n(\mathbb{C})$.

Exercice 117 (Mines-Ponts PSI 2010) [Solution]

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Trouver les polynômes P tels que P(A) soit nilpotente.

indication: trigonaliser et chercher une CNS sur les valeurs propres de P(A) pour qu'elle soit nilpotente.

Exercice 118 (Mines-Ponts PSI 2019) [Solution]

Montrer que $A \in \mathcal{M}_2(\mathbb{C})$ est diagonalisable si et seulement si pour tout $P \in \mathbb{C}[X]$ non constant, il existe $M \in \mathcal{M}_2(\mathbb{C})$ telle que A = P(M).

Exercice 119 (Mines-Ponts PSI 2016) [Solution]

On donne $\lambda_1, \ldots, \lambda_p$ des réels deux à deux distincts, u, v_1, \ldots, v_p des endomorphismes $(v_i \neq 0)$ d'un \mathbb{R} -espace vectoriel E tels que $\forall k \in \llbracket 0, p \rrbracket$, $u^k = \sum_{i=1}^p \lambda_i^k v_i$.

- 1. Montrer que $\forall P \in \mathbb{R}[X], P(u) = \sum_{i=1}^{p} P(\lambda_i)v_i$. En déduire que u est diagonalisable.
- 2. Montrer que $\lambda_1,\ldots,\lambda_p$ sont les valeurs propres de u et déterminer les polynômes annulateurs de u.
- 3. Montrer que v_i est le projecteur sur $E_{\lambda_i}(u)$ parallèlement à $\bigoplus_{j\neq i} E_{\lambda_j}(u)$.

VIII Réduction simultanée

Exercice 120 (CCINP PSI 2023) [Solution]

Soient E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ dont la matrice A est la même dans toutes les bases.

- **1.** Soit $P \in \mathcal{GL}_n(\mathbb{K})$. Montrer que AP = PA.
- **2.** Soit $B \in \mathcal{M}_n(\mathbb{K})$, montrer qu'il existe $\lambda \in \mathbb{K}$ tel que $B \lambda I_n$ soit inversible. En déduire AB = BA.
- **3.** Déterminer A. Comment appelle-t-on un tel endomorphisme f?

Exercice 121 (Mines-Télécom PSI 2023) [Solution]

Soit E un sous espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ pour lequel on a $\forall A \in E, A \neq 0 \Rightarrow A \in \mathcal{GL}_n(\mathbb{C})$

- 1. Soit A, B inversibles
 - a) Montrer que $x \mapsto \det(xA B)$ est polynômiale et déterminer son degré
 - b) montrer qu'il existe un complexe k tel que kA B ne soit pas inversible
- **2.** En déduire $\dim(E) \leq 1$
- **3.** Trouver E

Exercice 122 (Mines-Ponts PSI 2022) [Solution]

Soit G une partie de $\mathcal{GL}_n(\mathbb{C})$ stable par produit et telle que $\forall A \in G, A^2 = I_n$ et $\forall (A, B) \in G^2, AB = BA$

- 1. Montrer qu'il existe $P \in \mathcal{GL}_n(\mathbb{C})$ telle que $\forall A \in G, P^{-1}AP$ soit diagonale. indication : raisonner par récurrence (forte) sur n on commençant par introduire les sous-espaces propres d'une des matrices de G.
- **2.** En déduire que G est fini et $Card(G) \leq 2^n$.

Exercice 123 (CCINP PSI 2022) |Solution|

Soient
$$A = \begin{pmatrix} 0 & -5 & -4 \\ -1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$
 et $\mathcal{E} = \{M \in \mathcal{M}_3(\mathbb{R}), BM = MA\}$

- 1. Montrer que \mathcal{E} est un espace vectoriel
- ${\bf 2.}\,$ Déterminer les espaces propres de $B.\,B$ est-elle diagonalisable?
- **3.** a) Montrer que B et A^T ont une valeur propre commune
 - b) En déduire $M \neq 0$ dans \mathcal{E}
 - c) Montrer que $\dim(\mathcal{E}) \geqslant 2$
- **4.** Calculer $\dim(\mathcal{E})$.

indication: montrer P(B)M = MP(A) pour $P \in \mathbb{R}[X]$

Exercice 124 (CCINP PSI 2024) | Solution |

- 1. Énoncer le théorème de Cayley-Hamilton
- **2.** Soient $A, B, C \in \mathcal{M}_n(\mathbb{C})$ telles que $C \neq 0$ et AC = CB.
 - a) Montrer que $\forall k \in \mathbb{N}, A^k C = CB^k$
 - b) En déduire P(A)C = CP(B) pour tout $P \in \mathbb{C}[X]$
 - c) Montrer que A et B ont une valeur propre commune.

Exercice 125 (CCINP PSI 2023) [Solution]

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ telles que $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \emptyset$

- 1. Montrer que, si P annule A, alors les valeurs propres de A sont des racines de P.
- **2.** Montrer que $\mathcal{X}_A(B)$ est inversible.
- **3.** Montrer, pour $X \in \mathcal{M}_n(\mathbb{C})$, $AX = XB \Leftrightarrow X = 0$.
- **4.** Montrer que $\forall M \in \mathcal{M}_n(\mathbb{C}), \exists ! X \in \mathcal{M}_n(\mathbb{C}), AX XB = M.$

Exercice 126 (CCINP PSI 2019) |Solution|

Soient f et g deux endomorphismes de E, espace vectoriel de dimension finie, qui vérifient $f^2 = g^2 = id$ et $f \circ g + g \circ f = 0$.

- 1. Montrer que f et g sont des automorphismes, $Sp(f) = Sp(g) = \{-1, 1\}$ et que f est diagonalisable.
- **2.** Montrer que g induit un isomorphisme de $\ker(f-id)$ sur $\ker(f+id)$ et en déduire que $\dim(E)=2n$ est paire.
- **3.** Montrer qu'il existe une base \mathcal{B} de E dans laquelle $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix}$ et $\operatorname{Mat}_{\mathcal{B}}(g) = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$.

Exercice 127 (Centrale PSI 2023) [Solution]

Notons $E = \mathbb{C}^4$. Soient $(u, v) \in \mathcal{L}(E)^2$ telles que $u \circ v = -v \circ u$ et $u^2 = v^2 = id_E$.

- **1.** Montrer que Tr(u) = Tr(v) = 0. indication: montrer que u et v sont bijectifs.
- 2. Montrer que u et v sont diagonalisables et que leurs valeurs propres sont 1 et -1 de multiplicité 2.
- **3.** Soit (x,y) une base de $E_1(u)$, montrer que (v(x),v(y)) est une base de $E_{-1}(u)$.
- **4.** Soit $\mathcal{B} = (x, y, v(x), v(y))$, Montrer que \mathcal{B} est une base de E.
- 5. Montrer de $u \circ v$ est diagonalisable et déterminer ses valeurs propres et ses sous espaces propres en fonction de x et y.

Exercice 128 (Mines-Ponts PSI 2019) [Solution]

Soient A et B dans $\mathcal{M}_n(\mathbb{C})$ diagonalisables. Montrer que AB = BA si et seulement si $\exists C \in \mathcal{GL}_n(\mathbb{C}), \exists (P,Q) \in \mathbb{C}[X]^2, A = P(C)$ et B = Q(C).

Exercice 129 (Centrale PSI 2013) [Solution]

Soient A, B et C 3 matrices complexes de taille n telles que AC = CB.

- 1. Montrer qu'il existe P et Q inversibles telles que $C = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q^{-1}$ où $r = \operatorname{rg}(C)$.
- $\bf 2.$ Montrer que A et B ont au moins r valeurs propres communes comptées avec multiplicité.

Exercice 130 (Mines-Ponts PSI 2022) [Solution]

distinguant si la vp de A associée est nulle ou pas.

Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$ diagonalisables dans $\mathcal{M}_n(\mathbb{C})$ tel que $A^2 = B^2$ et $A^3 = B^3$.

1. Montrer que A = B.

indication: introduire une base de vecteurs propres de A et montrer que ce sont aussi des vecteurs propres de B en

2. Est-ce toujours vrai même si A et B non diagonalisables?

Exercice 131 (Centrale PSI 2015) [Solution]

Soit $(A,B) \in \mathcal{M}_n(\mathbb{C})^2$ telles que AB = 0. Montrer que A et B ont un vecteur propre commun. (distinguer les cas $Sp(B) \neq \{0\} \text{ et } Sp(B) = \{0\})$

En déduire que A et B sont cotrigonalisables ($\exists P \in \mathcal{GL}_n(\mathbb{C})$ telle que $P^{-1}AP$ et $P^{-1}BP$ soient triangulaires supérieures). Généraliser au cas où $AB \in \text{Vect}\{A, B\}$.

IXExercices théoriques

Exercice 132 (Mines-Télécom PSI 2017) [Solution]

Soient u et v deux endomorphismes de E un espace vectoriel.

- 1. Montrer que si $\lambda \neq 0$ est une valeur propre de $v \circ u$, alors λ est aussi valeur propre de $u \circ v$.
- 2. Supposons maintenant que E soit de dimension finie, montrer alors la proposition précédente pour $\lambda=0$.
- **3.** Pour $E = \mathbb{R}[X]$, on pose u(P) = P' et v(P) la primitive de P nulle en zéro. Calculer $\ker(u \circ v)$ et $\ker(v \circ u)$.

Exercice 133 (CCINP PSI 2024) |Solution|

Soit $u \in \mathcal{L}(\mathbb{C}^n)$ avec $n \geqslant 1$

- 1. Montrer que si u est diagonalisable alors u^2 est diagonalisable
- 2. Montrer que la réciproque est fausse
- **3.** Pour $\lambda \in \mathbb{C}^*$, montrer $\ker(u^2 \lambda^2 id) = \ker(u \lambda id) \oplus \ker(u + \lambda id)$
- **4.** Montrer que la réciproque de a) est vraie si u est bijectif ou si $\ker(u) = \ker(u^2)$.

Exercice 134 (Mines-Télécom PSI 2018) [Solution]

- 1. Soient A et B deux matrices réelles. Montrer que si l'une des deux est inversible alors A + tB est inversible pour tout $t \in \mathbb{R}$ sauf en un nombre fini de points.
 - indication: relier det(A+tB) avec $\mathcal{X}_{A^{-1}B}$ ou $\mathcal{X}_{AB^{-1}}$
- **2.** On se donne (a_1,\ldots,a_n) et (b_1,\ldots,b_n) deux familles de \mathbb{R}^n . Montrer que si l'une des deux est libre alors la famille $(a_1 + tb_1, \dots, a_n + tb_n)$ l'est aussi sauf pour un nombre fini de valeurs de t.

Exercice 135 (TPE-EIVP PSI 2018) [Solution]

Soient $A \in \mathcal{M}_{p,q}(\mathbb{R})$ et $B \in \mathcal{M}_{q,p}(\mathbb{R})$.

- 1. On suppose p = q et A inversible; montrer que $\mathcal{X}_{AB} = \mathcal{X}_{BA}$. On admettra que ce résultat reste valable si A n'est pas inversible.
- **2.** Si p < q, montrer que $\mathcal{X}_{BA} = X^{q-p}\mathcal{X}_{AB}$; on pourra justifier qu'il existe $P \in \mathcal{GL}_q(\mathbb{R})$ telle que $A = \begin{pmatrix} A' & 0 \end{pmatrix} P$ avec $A' \in \mathcal{M}_p(\mathbb{R}).$ indication : écrire $B = P^{-1}B'$ en décomposant B' par blocs pour pouvoir faire les produits.
- **3.** Si p = 2, q = 3 et $BA = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, calculer AB.

indication : calculer $(BA)^2$ puis déterminer $\ker(B)$ et $\operatorname{Im}(A)$

Exercice 136 (AADN PSI 2012) [Solution]

- 1. Montrer que si B et C sont deux matrices complexes semblables alors $xI_n B$ et $xI_n C$ sont aussi semblables. En est-il de même pour $(xI_n B)^{-1}$ et $(xI_n C)^{-1}$ (si elles existent)?
- **2.** Pour $A \in \mathcal{M}_n(\mathbb{C})$, on note $P_A(x) = \det(xI_n A)$ et P_A' son polynôme dérivé. Montrer que si x n'est pas une valeur propre de A alors $\operatorname{Tr}\left((xI_n-A)^{-1}\right)=\frac{\dot{P}_A'(x)}{P_A(x)}.$ indication : décomposer la fraction en élément simples et trigonaliser A.

Exercice 137 (CCP PSI 2012) [Solution]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $\forall k \in [1, n], \operatorname{Tr}(A^k) = 0$.

- 1. En calculant $Tr(\mathcal{X}_A(A))$, montrer que $0 \in Sp(A)$ et que A est semblable à A' dont la dernière colonne est nulle.
- 2. On note B la matrice extraite de A' en enlevant la dernière ligne et la dernière colonne. Montrer que $\forall k \in$ [1, n-1], $\operatorname{Tr}(B^k) = 0$ et en déduire que $A^n = 0$.

Exercice 138 (Mines-Ponts PSI 2024) [Solution]

- 1. Soit A une matrice carrée d'ordre n, montrer l'équivalence entre les deux propositions
 - i) A est nilpotente

ii)
$$Tr(A) = Tr(A^2) = \dots = Tr(A^n) = 0$$

2. Soient A et B deux matrices carrées d'ordre n telles que AB - BA = B. Montrer que B est nilpotente.

Exercice 139 (CCINP PSI 2023) [Solution]

Soit $n \in \mathbb{N}^*$, une matrice $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ est dite à diagonale propre si $\mathcal{X}_A = \prod (X - a_{k,k})$. On note E_n

l'ensemble des matrices réelles de $\mathcal{M}_n(\mathbb{R})$ à diagonale propre.

- 1. Soit pour $M \in E_n$ antisymétrique.
 - a) Calculer χ_M . Que vaut M^n ?
 - b) Montrer que M^2 est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$. En déduire que $M^2=0$.
 - c) Calculer $Tr(M^2)$ en fonction des coefficients de M. En déduire que M=0.
- **2.** Soit un sous-espace F de $\mathcal{M}_n(\mathbb{R})$ tel que $F \subset E_n$. Montrer que $\dim(F) \leqslant \frac{n(n+1)}{2}$.

Exercice 140 (CCINP PSI 2019) [Solution]

Soit
$$A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$$
 avec $a_{i,j} > 0$ et $\forall i \in [1, n], \sum_{j=1}^n a_{i,j} = 1$

1. Montrer que 1 est valeur propre de A.

Soient $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, X un vecteur propre associé et k tel que $|x_k| = \max_{1 \leq i \leq n} |x_i|$.

1. Montrer que
$$|\lambda| \leq 1$$
 et $|a_{k,k} - \lambda| \leq \sum_{j \neq k} a_{k,j}$.

indication: commencer par la deuxième inégalité

2. On suppose $|\lambda| = 1$, trouver λ .

Exercice 141 (Centrale PSI 2010) [Solution]

1. Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $\forall i \in \llbracket 1, n \rrbracket$, $|a_{i,i}| > \sum_{j \neq i} |a_{i,j}|$. Montrer que A est inversible. indication : regarder le système AX = 0 et une ligne bien choisie.

2. Montrer que
$$|\det(A)| \ge \prod_{i=1}^{n} \left[|a_{i,i}| - \sum_{j \ne i} |a_{i,j}| \right]$$

\mathbf{X} Matrices par blocs

Exercice 142 (CCINP PSI 2023) [Solution]

Pour
$$A \in \mathcal{M}_n(\mathbb{C})$$
, on pose $B = \begin{pmatrix} A & A \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C})$.

1. Diagonaliser
$$M = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

2. Montrer que A est diagonalisable si et seulement si B l'est et déterminer les valeurs propres de B en fonction de celles de A.

Exercice 143 (CCINP PSI 2024) [Solution]

Soient
$$A \in \mathcal{M}_n(\mathbb{C})$$
 et $B = \begin{pmatrix} A & A \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C})$.

1. Montrer que, pour
$$P \in \mathbb{C}[X]$$
, $P(B) = \begin{pmatrix} P(A) & P(A) \\ 0 & 0 \end{pmatrix} + P(0) \begin{pmatrix} 0 & -I_n \\ 0 & I_n \end{pmatrix}$.

- **2.** Déterminer rg(B) en fonction de rg(A).
- **3.** On suppose A diagonalisable. Montrer que B est diagonalisable. indication: distinguer les cas $0 \in \operatorname{Sp}(A)$ et $0 \notin \operatorname{Sp}(A)$.
- 4. Étudier la réciproque.

Exercice 144 (Centrale PSI 2014) [Solution]

1. Pour
$$A \in \mathcal{M}_n(\mathbb{R})$$
, montrer que $B = \begin{pmatrix} A & 4A \\ A & A \end{pmatrix}$ est semblable à $\begin{pmatrix} -A & 0 \\ 0 & 3A \end{pmatrix}$ (indication : diagonaliser $\begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$.)

2. Montrer que B est diagonalisable si et seulement si A l'est.

Exercice 145 (ENSAM PSI 2011) [Solution]

Soient $M \in \mathcal{M}_n(\mathbb{R})$ et $A = \begin{pmatrix} M & M \\ M & M \end{pmatrix}$. Montrer que $A \notin \mathcal{GL}_n(\mathbb{R})$ et que A est diagonalisable si et seulement si M l'est.

Exercice 146 (Mines-Ponts PSI 2011) [Solution]

A quelle condition sur $A \in \mathcal{M}_n(\mathbb{R})$, $B = \begin{pmatrix} A & 2A \\ 0 & 3A \end{pmatrix}$ est-elle diagonalisable?

Exercice 147 (CCINP PSI 2021) [Solution]

- 1. Énoncer le théorème de Cayley-Hamilton
- 2. Montrer que si A et B sont semblables alors P(A) et P(B) sont semblables.
- **3.** Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $M = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$; calculer M^k , pour $k \in \mathbb{N}$.
- **4.** Calculer P(M) pour $P \in \mathbb{R}[X]$, en fonction de P(A) et P'(A)
- 5. Montrer que si M est diagonalisable alors A l'est aussi.
- **6.** Montrer que si M est diagonalisable alors A est nulle

Exercice 148 (CCINP PSI 2024) [Solution]

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que AB = BA et $M = \begin{pmatrix} A & B \\ 0 & A \end{pmatrix}$

- 1. Montrer que si U et V sont semblables et $R \in \mathbb{R}[X]$ alors R(U) et R(V) sont semblables.
- **2.** Calculer P(M) pour $P \in \mathbb{R}[X]$, en fonction de P(A), P'(A) et B
- **3.** Montrer que si A est diagonalisable et B=0 alors M est diagonalisable.
- **4.** Soit $\lambda \notin \operatorname{Sp}(A)$, justifier que $A \lambda I_n$ est inversible.
- 5. Montrer que si M est diagonalisable alors A est diagonalisable et B est nulle

Exercice 149 (CCINP PSI 2024) [Solution]

1. Soit
$$A = \begin{pmatrix} 1 & -2 & 2 \\ 1 & -2 & 2 \\ -2 & 4 & -4 \end{pmatrix}$$
. A est-elle diagonalisable?

- **2.** Soit $A \in \mathcal{M}_3(\mathbb{R})$ telle que dim $(\ker(A)) = 2$. On pose $B = \begin{pmatrix} \alpha A & \beta A \\ \gamma A & 0 \end{pmatrix}$, pour $\alpha, \beta, \gamma \in \mathbb{R}$, et $C = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$. Calculer \mathcal{X}_C en fonction de \mathcal{X}_A et en déduire le spectre de C en fonction du spectre de A.
- **3.** Calculer \mathcal{X}_B en fonction de \mathcal{X}_A lorsque $\beta \neq 0$, $\gamma \neq 0$ et $\alpha + \beta = \gamma$ puis lorsque $\beta \neq 0$, $\alpha = 2\beta$ et $\gamma = -\beta$. En déduire Sp(B) en fonction de Sp(A) dans ces deux cas.
- **4.** Montrer que si $X \in \ker(A)$ alors $\binom{X}{0} \in \ker(B)$ et en déduire que $\dim(\ker(B)) \geqslant 2\dim(\ker(A))$
- 5. Diagonaliser B pour $\alpha=-1,\,\beta=3$ et $\gamma=2$ avec A la matrice de la première question.

Exercice 150 (Centrale PSI 2018) [Solution]

- 1. Soit F définie de $\mathcal{M}_2(\mathbb{C})^2$ dans $\mathcal{M}_4(\mathbb{C})$ par $F(A,B) = \begin{pmatrix} aB & bB \\ cB & dB \end{pmatrix}$ si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Montrer que $F(A_1A_2, B_1B_2) = F(A_1, B_1)F(A_2, B_2)$
- **2.** Donner $\operatorname{Tr} F(A,B)$, $\operatorname{det} F(A,B)$ et $\operatorname{rg} F(A,B)$ en fonction $\operatorname{de} \operatorname{Tr}(A)$, $\operatorname{Tr}(B)$, $\operatorname{det}(A)$, $\operatorname{det}(B)$, $\operatorname{rg}(A)$ et $\operatorname{rg}(B)$.
- 3. Donner une condition suffisante sur A et B pour que F(A,B) soit diagonalisable.

Exercice 151 (CCINP PSI 2022) |Solution|

Soient $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{C})$ et $B = \begin{pmatrix} 0 & I_n \\ A & 0 \end{pmatrix}$

- 1. Déterminer le rang de B en fonction du rang de A. En déduire que A est inversible si et seulement si B est inversible.
- 2. Déterminer \mathcal{X}_B en fonction de \mathcal{X}_A . Que peut-on en déduire sur les valeurs propres de A et B? indication : calculer $\mathcal{X}_B(\lambda)$ en supposant $\lambda \neq 0$ pour commencer et faire des manipulations par blocs sur le déterminant.
- 3. Montrer que si A est inversible et admet n valeurs propres distinctes alors B est diagonalisable.
- **4.** B est-elle diagonalisable si A n'est plus supposée inversible?
- 5. Si B est diagonalisable, montrer que A l'est aussi.
- **6.** Si A est diagonalisable, montrer que B est diagonalisable si et seulement si A est inversible.

Exercice 152 (Centrale PSI 2023) [Solution]

Soit $A \in \}_n(\mathbb{R})$ et B la matrice par blocs définie par : $B = \begin{pmatrix} A & I_n \\ I_n & 0 \end{pmatrix}$.

- 1. Exprimer \mathcal{X}_B en fonction de \mathcal{X}_A .
- $\bf 2.$ Montrer que si A diagonalisable alors B est diagonalisable.

Exercice 153 (Mines-Ponts PSI 2018) [Solution]

Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $B = \begin{pmatrix} I_n & 0 \\ A & A \end{pmatrix}$. On suppose B diagonalisable. Montrer que A est diagonalisable et $A - I_n$ est inversible.

Étudier la réciproque.

 $indication: elle \ est \ vraie: on \ peut \ construire \ une \ base \ de \ vecteurs \ propres \ de \ B$ à partir d'une base de vecteurs propres de A.

Exercice 154 (ENSAM PSI 2009) [Solution]

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Exprimer le rang de $M = \begin{pmatrix} A & -I_n \\ 0 & A \end{pmatrix}$ en fonction de celui de A. M est-elle diagonalisable?

Exercice 155 (CCINP PSI 2018) | Solution |

- 1. Soit $M = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$ où $A, B \in \mathcal{M}_n(\mathbb{R})$; calculer M^2 .
- 2. Montrer que si P(M) = 0 alors les valeurs propres de M sont des racines de P.
- 3. On suppose $B = A^{-1}$; justifier que M est diagonalisable et préciser les dimensions des espaces propres de M.
- 4. On suppose $A=I_n=-B$; justifier que M est diagonalisable dans $\mathbb C$ et préciser les dimensions des espaces propres de M

Exercice 156 (CCP PSI 2017) [Solution]

- **1.** Soient $(A, B) \in \mathcal{GL}_n(\mathbb{C})^2$ et $N = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$. Montrer que N est inversible et déterminer N^{-1} .
- **2.** Calculer N^2 et $P(N^2)$ pour $P \in \mathbb{C}[X]$.
- 3. Si N est diagonalisable, AB l'est-elle? Étudier la réciproque.
- **4.** (Complément :) montrer que $M \in \mathcal{M}_k(\mathbb{C})$ est diagonalisable si et seulement si M^2 l'est et $\ker(M) = \ker(M^2)$.

Exercice 157 (Mines-Ponts PSI 2018) [Solution]

Soient A et B dans $\mathcal{M}_n(\mathbb{C})$ diagonalisables.

- **1.** Pour $D \in \mathcal{M}_n(\mathbb{C})$, trouver l'inverse de $P = \begin{pmatrix} I_n & D \\ 0 & I_n \end{pmatrix}$
- **2.** On suppose $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \emptyset$; montrer que $C \in \mathcal{M}_n(\mathbb{C})$ peut s'écrire C = DB AD avec $D \in \mathcal{M}_n(\mathbb{C})$ et en déduire que $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ est semblable à $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$.
- 3. Montrer la réciproque.

indication : commencer par le faire lorsque A et B sont diagonales en trouvant C telle que $\operatorname{rg}\begin{pmatrix} A-\lambda I_n & C\\ 0 & B-\lambda I_n \end{pmatrix}$ et $\operatorname{rg}\begin{pmatrix} A-\lambda I_n & 0\\ 0 & B-\lambda I_n \end{pmatrix}$ soient différents, avec $\lambda\in\operatorname{Sp}(A)\cap\operatorname{Sp}(B)$.

Exercice 158 (ENSEA PSI 2014) [Solution]

Soit A une matrice diagonalisable de $\mathcal{M}_n(\mathbb{R})$ et $M = \begin{pmatrix} A & I_n \\ I_n & A \end{pmatrix}$

- 1. Montrer que si A est semblable à D alors M est semblable à $\begin{pmatrix} D & I_n \\ I_n & D \end{pmatrix}$.
- 2. Déterminer les éléments propres de M en fonction de ceux de A. Montrer que M est diagonalisable.

Exercice 159 (Centrale PSI 2012) [Solution]

Soit
$$A \in \mathcal{GL}_n(\mathbb{R})$$
; $B = \begin{pmatrix} A & A^3 \\ A^{-1} & A \end{pmatrix}$ est-elle diagonalisable? (commencer par $n = 1$)

indication: en diagonalisant B dans le cas n=1, trouver une matrice diagonale par blocs semblable à A.

Exercice 160 (Mines-Ponts PSI 2011) [Solution]

Pour
$$(A, B) \in \mathcal{M}_n(\mathbb{K})^2$$
, on pose $C = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$. Montrer que $\mathcal{X}_C = \mathcal{X}_{A+B} \times \mathcal{X}_{A-B}$.

Exercice 161 (Centrale PSI 2014) [Solution]

Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $B = \begin{pmatrix} 0 & A \\ A & 0 \end{pmatrix}$. Déterminer $\operatorname{rg}(B)$ en fonction de $\operatorname{rg}(A)$ puis étudier la diagonalisabilité de B en fonction de celle de A.

XI Endomorphismes matriciels

Exercice 162 (Mines-Télécom PSI 2022) [Solution]

- 1. Montrer que f qui à $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ associe $\begin{pmatrix} d & 2b \\ 2c & a \end{pmatrix}$ est un endomorphisme et déterminer ses éléments propres.
- **2.** f est-il diagonalisable? Inversible?

Exercice 163 (CCP PSI 2013) [Solution]

Déterminer les éléments propres de l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par $\phi(M) = M + 2^t M$. Est-il diagonalisable? Calculer sa trace et son déterminant.

Exercice 164 (CCINP PSI 2024) [Solution]

Soit $a, b \in \mathbb{R}$ et $E = \mathcal{M}_n(\mathbb{R})$. On pose : $\forall M \in E, u(M) = aM + bM^T$.

- 1. Montrer que u est un endomorphisme.
- $\mathbf{2}$. Montrer que u est diagonalisable et déterminer ses valeurs propres.
- **3.** Calculer $\operatorname{Tr} u$ et $\det u$.

Exercice 165 (CCP PSI 2017) [Solution]

Donner les éléments propres de $f: M \mapsto M + \text{Tr}(M)I_n$. Est-il diagonalisable? Bijectif? Si oui, calculer f^{-1} .

Exercice 166 (CCP PSI 2018) [Solution]

Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$, non nulles, et $\varphi : M \in \mathcal{M}_n(\mathbb{R}) \longrightarrow M + \text{Tr}(AM)B$.

- 1. Montrer que φ est linéaire.
- **2.** Déterminer $\dim(\ker(\varphi))$ et $\dim(\operatorname{Im}(\varphi))$.
- 3. Montrer que si M est un vecteur propre de φ associé à $\lambda \neq 1$, alors M est colinéaire à B.
- 4. Déterminer les valeurs propres de φ ; φ est-il diagonalisable?

Exercice 167 (Mines-Ponts PSI 2010) [Solution]

Montrer que f_A défini par $f_A(M) = \text{Tr}(A)M - \text{Tr}(M)A$, où A est une matrice fixée de $\mathcal{M}_n(\mathbb{R})$ de trace non nulle, est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$. Quel est son noyau, son image? f_A est-il diagonalisable? Donner ses éléments propres.

Exercice 168 (CCINP PSI 2024) [Solution]

Soit
$$A = \begin{pmatrix} 1 & j & j^2 \\ j & j^2 & 1 \\ j^2 & 1 & j \end{pmatrix}$$
 où $j = \exp\left(\frac{2i\pi}{3}\right)$

- 1. a) Trouver les valeurs propres de A.
 - b) A est-elle diagonalisable?
 - c) Déterminer la dimension du novau de A.
- **2.** Pour $X \in \mathcal{M}_3(\mathbb{C})$, on pose $\phi(X) = AXA$
 - a) Trouver les valeurs propres de ϕ .
 - b) ϕ est-il diagonalisable?
 - c) Déterminer l'image de ϕ . indication : écrire $A = CC^T$ avec C un vecteur colonne

Exercice 169 (CCINP PSI 2019) [Solution]

- 1. Donner une CNS pour qu'une matrice soit diagonalisable.
- **2.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 5A + 6I_n = 0$; montrer que A est diagonalisable; que dire de ses valeurs propres?
- **3.** Soient D diagonale semblable à A et $f: M \mapsto DM + MD$; montrer que f est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$ diagonalisable (on pourra décomposer les matrices par blocs).
- **4.** Montrer que $g: M \mapsto AM + MA$ est diagonalisable.

Exercice 170 (Centrale PSI 2023) [Solution]

Soit
$$S = \begin{pmatrix} 4 & -3 \\ -3 & -4 \end{pmatrix}$$

- 1. Montrer que S est semblable à une matrice diagonale à préciser et à une matrice de diagonale nulle
- **2.** Soit $\phi: M \in \mathcal{M}_2(\mathbb{R}) \mapsto \operatorname{diag}(1,2)M M\operatorname{diag}(1,2)$. Déterminer $\operatorname{Im} \phi$ et en déduire $\exists (C,D) \in \mathcal{M}_2(\mathbb{R}), S = CD DC$
- **3.** Soient $(x,y) \in \mathbb{R}^2$ et $A, B \in \mathcal{M}_2(\mathbb{R})$ telles que $AB = \begin{pmatrix} 25 & 11 \\ 11 & 5 \end{pmatrix}$ et $BA = \begin{pmatrix} x & 14 \\ 14 & y \end{pmatrix}$. Déterminer les valeurs possibles de x et y.

indication : Calculer $\operatorname{Tr}(AB)$, $\operatorname{Tr}(BA)$, $\det(AB)$ et $\det(BA)$. Vérifier que pour les valeurs de x,y trouvées, AB et BA sont semblables à la même matrice diagonale et construire A et B à partir des matrices de passage et de la matrice diagonale.

Exercice 171 (CCINP PSI 2022) [Solution]

Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $f_A : M \in \mathcal{M}_n(\mathbb{R}) \mapsto AM$

- 1. Montrer que f_A est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- **2.** Montrer que si $A^2 = A$ alors f_A est un projecteur.
- 3. Montrer que A est diagonalisable si et seulement si f_A est diagonalisable
- 4. Construire une matrice propre de f_A à partir d'un vecteur propre de A.
- **5.** Faire de même dans le sens inverse et conclure $Sp(A) = Sp(f_A)$ indication : introduire les colonnes d'un vecteur propre de f_A .

Exercice 172 (Centrale PSI 2024) [Solution]

Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $\phi_A : M \in \mathcal{M}_n(\mathbb{R}) \longrightarrow AM - MA$

- 1. Montrer que ϕ_A est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$ non injectif. Déterminer le rang de ϕ_A dans le cas où le polynôme caractéristique de A est scindé à racines simples
- 2. On définit $\Phi: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{L}(\mathcal{M}_n(\mathbb{R})) \longrightarrow \phi_B$. Montrer que Φ est une application linéaire et déterminer son noyau
- 3. Déterminer les puissances de ϕ_A

Exercice 173 (ENSAM PSI 2014) [Solution]

Soient A et B dans $\mathcal{M}_n(\mathbb{R})$ diagonalisables et $f: X \in \mathcal{M}_n(\mathbb{R}) \mapsto AX - XB$.

- 1. Montrer que f est un endomorphisme de E.
- **2.** Montrer que ${}^{t}B$ est diagonalisable.
- **3.** Soient (U_1, \ldots, U_n) et (V_1, \ldots, V_n) des bases de vecteurs propres de A et tB . On pose $M_{i,j} = U_i {}^tV_j$. Calculer $f(M_{i,j})$ et en déduire que f est diagonalisable.

Exercice 174 (CCINP PSI 2022) [Solution]

Soient $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$ tel que A = AB - BA et $f : X \in \mathcal{M}_n(\mathbb{R}) \longmapsto XB - BX$

- 1. Montrer que f est un endomorphisme
- **2.** Calculer Tr(A) et $Tr(A^k)$ pour $k \in \mathbb{N}^*$
- **3.** Montrer que $f(A^k) = kA^k$ pour $k \in \mathbb{N}^*$
- 4. En déduire que A est nilpotente. $indication: raisonner\ par\ l'absurde\ et\ s'intéresser\ à\ {\rm Sp}(f)$

Exercice 175 (Mines-Télécom PSI 2023) [Solution]

Soit E un espace vectoriel de dimension finie. Soit s une symétrie de E. Soit $\phi: u \in \mathcal{L}(E) \longmapsto \phi(u) = \frac{1}{2}(u \circ s + s \circ u)$.

- 1. Montrer que ϕ est un endomorphisme de $\mathcal{L}(E)$.
- **2.** Déterminer un polynôme annulateur de ϕ .
- 3. ϕ est-il diagonalisable? Déterminer ses éléments propres.

Exercice 176 (Mines-Ponts PSI 2012) [Solution]

Soit f défini sur $\mathcal{M}_n(\mathbb{C})$ par $f(M) = (C_1 + C_2, C_2 + C_3, \dots, C_{n-1} + C_n, C_n + C_1)$, où C_n, \dots, C_n sont les colonnes de M. f est-il diagonalisable? Déterminer ses éléments propres.

XII Endomorphismes de $\mathbb{K}[X]$

Exercice 177 (CCP PSI 2013) [Solution]

Déterminer les éléments propres de $\phi: P \in \mathbb{R}[X] \mapsto 2XP - (X^2 - 1)P'$.

indication : commencer par chercher le degré des événtuels vecteurs propres.

Exercice 178 (Mines-Ponts PSI 2019) [Solution]

Soit
$$f: P \in \mathbb{R}_2[X] \mapsto (X+1)P'(X) - (bX^2 + X - 1)P(0), b \in \mathbb{R}$$
.

- 1. Montrer que f est un endomorphisme de $\mathbb{R}_2[X]$ et écrire sa matrice dans la base canonique.
- 2. Montrer que le polynôme caractéristique de f induit une bijection de \mathbb{R} sur \mathbb{R} .
- **3.** f est-il diagonalisable?

Exercice 179 (CCINP PSI 2021) [Solution]

Soient
$$a \in \mathbb{R}$$
 et $f(P) = (X - a)P' + P - P(a)$.

1. Déterminer la matrice de f dans la base canonique de $\mathbb{R}_n[X]$.

2. Déterminer le noyau, l'image et les éléments propres de f.

Exercice 180 (Centrale PC 2015) [Solution]

Soit $M \in \mathcal{M}_n(\mathbb{R})$ dont les coefficients juste au dessus de la diagonale sont $\frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}$, ceux juste en dessous $\frac{n-1}{n}, \dots, \frac{2}{n}, \frac{1}{n}$, les autres étant nuls. En considérant l'endomorphisme de $\mathbb{R}_{n-1}[X]$ canoniquement associé à M, dire si M est diagonalisable.

Exercice 181 (ENTPE-EIVP PSI 2015) [Solution]

Soit $a \in \mathbb{R}$. Trouver les éléments propres de $\phi : P \in \mathbb{R}[X] \mapsto (X - a)P'$.

Quels sont les polynômes divisibles par leur dérivée?

Exercice 182 (CCINP PSI 2023) [Solution]

Soit φ l'application qui à tout polynôme P de $\mathbb{R}_3[X]$ associe le reste de la division euclidienne de X^2P par X^4-1 .

- 1. Montrer que φ est un endomorphisme de $\mathbb{R}_3[X]$
- 2. Montrer que φ est diagonalisable et donner ses éléments propres
- **3.** Calculer $Tr(\varphi)$ et $det(\varphi)$.

Exercice 183 (TPE-EIVP PSI 2019) [Solution]

Soient $E = \mathbb{C}_{n-1}[X]$, F et G de degrés n avec G scindé à racines simples a_1, \ldots, a_n .

- 1. Montrer que φ qui à $P \in E$ associe le reste de la division euclidienne de FP par G est un endomorphisme de E.
- **2.** On pose $L_i = \prod_{j \neq i} \frac{X a_j}{a_i a_j}$. Montrer que (L_1, \dots, L_n) est une base de E.
- **3.** φ est-il diagonalisable?

Exercice 184 (ENSEA-ENSIIE PSI 2013) [Solution] Soit ϕ défini sur $\mathbb{R}_n[X]$ par $\phi(P) = \frac{1}{2^{n/2}}(1+X)^n P\left(\frac{1-X}{1+X}\right)$.

- 1. Montrer que ϕ est un endomorphisme de $\mathbb{R}_n[X]$.
- **2.** Résoudre l'équation $\phi(P) = Q$. Montrer que ϕ est un automorphisme et déterminer ϕ^{-1} .
- 3. En déduire que ϕ est diagonalisable.

Exercice 185 (ENSAM PSI 2007) [Solution]

Soit u défini sur $\mathbb{R}_n[X]$ par $u(P)(x) = e^x \int_{-\infty}^{+\infty} e^{-t} P(t) dt$. Montrer que u est un endomorphisme et donner sa matrice dans la base canonique. u est-il diagonalisable

Exercice 186 (Centrale PSI 2013) [Solution]

Soit $A \in \mathbb{R}_n[X]$ tel que $\int_0^1 A(t) dt \neq 0$ et $u : P \mapsto A \int_0^1 P(t) dt - P \int_0^1 A(t) dt$. Montrer que u définit un endomorphisme de $\mathbb{R}_n[X]$; u est-il diagonalisable?

Exercice 187 (Mines-Ponts PSI 2013) [Solution]

- 1. Donner les éléments propres de $\phi \in \mathcal{L}(\mathbb{R}[X])$ défini par $\phi(P) = P\left(\frac{X+1}{2}\right)$. On pourra utiliser $(X+a)^k$.
- **2.** Idem pour $\phi \in \mathcal{L}(\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R}))$ défini par $\phi(f)(x) = f\left(\frac{x+1}{2}\right)$. On pourra utiliser la suite $u_0 = x$, $u_{n+1} = \frac{1+u_n}{2}$.

Exercice 188 (Mines-Télécom PSI 2023) [Solution]

Soit ϕ l'application de $\mathbb{R}_3[X]$ dans $\mathbb{R}^4: P \mapsto (P(0), P'(0), P(-1), P'(-1))$.

- 1. Montrer que ϕ est linéaire.
- **2.** Déterminer $\ker \phi$. L'application est-elle bijective?
- **3.** Exprimer M, matrice de ϕ dans la base canonique.
- a) Montrer que M est diagonalisable.
 - b) Donner un polynôme annulateur de M.
 - c) M est-elle inversible? Si oui, donner son inverse.
- a) Montrer qu'il existe un unique polynôme Q tel que $\phi(Q) = (0, 1, 0, 1)$.
 - b) Déterminer Q.
 - c) En déduire la valeur de la somme $\sum_{k=0}^{n} k^2$.

indication: comparer X^2 et Q(X) - Q(X-1)

XIII Endomorphismes sur les espaces de fonctions

Exercice 189 (Mines-Ponts PSI 2015) | Solution |

Soit E l'espace vectoriel des fonctions continues de $\mathbb R$ dans $\mathbb R$ admettant une limite finie en $\pm \infty$. Déterminer les éléments propres de T qui, à $f \in E$ associe T(f), définie par T(f)(x) = f(x+1).

Exercice 190 (Mines-Ponts PSI 2016) [Solution]

Soit $D(f): x \mapsto xf'(x)$. Montrer que D est un endomorphismes de $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$; trouver son novau et ses éléments propres.

Exercice 191 (CCP PSI 2015) | Solution |

Soient $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et ϕ défini sur E par $\phi(f)(x) = f'(x) - xf(x)$.

- 1. Montrer que ϕ est un endomorphisme de E.
- **2.** Déterminer ses éléments propres puis $\ker(\phi^2)$.

Exercice 192 (CCINP PSI 2022) [Solution]

Exercice 192 (CCINP PSI 2022) [Solution]
Soient
$$E = \mathcal{C}^0([0,1],\mathbb{R})$$
 et φ définie sur E par $\varphi(f): x \in [0,1] \longmapsto \begin{cases} \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t & \text{si } x \in]0,1] \\ f(0) & \text{si } x = 0 \end{cases}$

- 1. Montrer que φ est un endomorphisme de E. indication: DL de f avec Taylor-Young
- **2.** Montrer que $0 \notin \operatorname{Sp}(\varphi)$
- **3.** Montrer que $1 \in \operatorname{Sp}(\varphi)$ et déterminer $E_1(\varphi)$. indication : montrer qu'un vecteur propre est nécessairement de classe \mathcal{C}^1 sur]0,1]
- 4. Déterminer les autres valeurs propres et sous-espaces propres de φ .

Exercice 193 (Mines-Ponts PSI 2014) [Solution]

Soient
$$E = \mathcal{C}^0([0,1],\mathbb{R})$$
 et $f \in E$. On pose $T(f): x \in [0,1] \mapsto \int_0^1 \min(x,t) f(t) dt$.

Montrer que T est un endomorphisme de E. Trouver ses éléments propres.

Exercice 194 (CCP PSI 2007) [Solution]

Montrer que u défini par $u(f)(x) = \int_0^x \cos(x-t)f(t) dt$ est un endomorphisme de $\mathcal{C}^0(\mathbb{R},\mathbb{R})$. Calculer u(f)(0). Trouver les fonctions f telles que u(f) soit constant. Déterminer les valeurs propres de u.

XIVApplications et autres

Exercice 195 (CCP PSI 2012) | Solution |

Soit
$$(u_n)_{n\in\mathbb{N}}$$
 une suite réelle telle que pour tout $n\in\mathbb{N}$, on a $u_{n+3}=6u_{n+2}-11u_{n+1}+6u_n$. On pose $X_n=\begin{pmatrix}u_n\\u_{n+1}\\u_{n+2}\end{pmatrix}$.

Déterminer $A \in \mathcal{M}_3(\mathbb{R})$ telle que $X_{n+1} = AX_n$ et en déduire u_n en fonction de u_0 , u_1 , u_2 et n.

$$\begin{aligned} &\textbf{Exercice 1} \quad [\textit{sujet}] \ \, A^n = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix} P^{-1}, \, B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 16^n \end{pmatrix} P^{-1}, \\ \, C^n = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2^n & 0 & 2^n - 1 \\ 0 & 1 & -2n \\ 0 & 0 & 1 \end{pmatrix} P^{-1}, \, D^n = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 4^n & 0 & n4^{n-1} \\ 0 & 4^n & n4^{n-1} \\ 0 & 0 & 4^n \end{pmatrix} P^{-1}. \end{aligned}$$

Exercice 2 [sujet]
$$A = P \operatorname{diag}(-1, -1, 2) P^{-1} \text{ avec } P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$

Exercice 3 [sujet] **1.** $C_2 = 2C_1$ et $C_3 = -3C_1 \neq 0$ donc rg(A) = 1

- **2.** $0 \in \operatorname{Sp}(A)$ et $m_0(A) \geqslant \dim(\ker(A)) = 2$. Comme $\operatorname{Tr}(A) = -7$, on a $\mathcal{X}_A = X^2(X+7)$
- **3.** $E_0(A) = \text{Vect}\{(2, -1, 0), (3, 0, 1)\} \text{ et } E_{-7}(A) = \text{Vect}\{(1, 2, 4)\}$
- **4.** DZ

Exercice 4 [sujet] **1.** $C_2 = C_3 = C_4$, $C_1 = C_2 + C_5$ et (C_1, C_2) libre donc $\operatorname{rg}(D) = 2$, $\operatorname{Im}(D) = \operatorname{Vect}\{C_1, C_2\}$ et $\ker(D) = \operatorname{Vect}\{(0, 1, -1, 0, 0), (0, 1, 0, -1, 0), (1, -1, 0, 0, -1)\}\$

2. 0 est racine triple de \mathcal{X}_D donc on développe directement et $\mathcal{X}_D = X^3(X+2)(X-3), E_3(D) = \text{Vect}\{(3,2,2,2,3)\}$ et $E_{-2}(D) = \text{Vect}\{(-1, 1, 1, 1, -1)\}$

Exercice 5 [sujet] 1. $\mathcal{X}_A = (X-2)^3$

- **2.** Non car sinon elle serait semblable à $2I_3$ et $P2I_3P^{-1}=2I_3\neq A$.
- **3.** u = (1, 2, 0), v = (0, 3, -1) et w = (0, 0, 1) par ex

4.
$$A = P \begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & -3 \\ 0 & 0 & 2 \end{pmatrix}$$
 si $P = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

Exercice 6 [sujet]
$$A^n = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2^n & 0 & 2^n - 1 \\ 0 & 1 & -2n \\ 0 & 0 & 1 \end{pmatrix} P^{-1}$$

Exercice 7 [sujet] **1.** $\mathcal{X}_A = (X-1)(X-2)^2 \text{ et } rg(A-2I_3) = 2$

- **2.** $E_2(A) = \text{Vect}\{(1,0,1)\} \text{ et } E_1(A) = \text{Vect}\{(1,-1,1)\}$
- **3.** u = (1,0,1) et v = (0,1,0) puis $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ si $P = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

4.
$$T^k = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^k & k2^{k-1} \\ 0 & 0 & 2^k \end{pmatrix}$$
 et $A^k = PT^kP^{-1}$

1. $\mathcal{X}_M = (X-1)(X^2 - 2\alpha X + \alpha^2 - 1)$ donc $Sp(M) = \{1, \alpha - 1, \alpha + 1\}$ Exercice 8 | sujet|

- **2.** M_{α} est sym réelle. $P = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix}$ et $D = \text{diag}(1, \alpha + 1, \alpha 1)$ (distinguer $\alpha = 0$ et $\alpha = 2$ pour les dimensions des espaces propres)
- **3.** $\det(M_{\alpha}) = \alpha^2 1$
- **4.** $\ker(M_1) = \operatorname{Vect}\{(1,0,-1)\} \text{ et } \operatorname{Im}(M_1) = \operatorname{Vect}\{(1,0,1),(0,1,0)\}.$ Puis $\ker(M_{-1}) = \operatorname{Vect}\{(1,0,1)\} \text{ et } \operatorname{Im}(M_{-1}) = \operatorname{Vect}\{(1,0,1)\}$ $Vect\{(-1,0,1),(0,1,0)\}$

Exercice 9 [sujet] $\operatorname{rg}(A) = \operatorname{rg}(A - I_3) = 2 \operatorname{donc} \{0, 1\} \subset \operatorname{Sp}(A)$; comme $\operatorname{Tr}(A) = 1$, $\mathcal{X}_A = X^2(X - 1) \operatorname{donc} A$ n'est pas DZ puisque $\dim(E_0(A)) = 1$. $A = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}$.

Exercice 10 [sujet]
$$\mathcal{X}_A = X(X-1)(X-a)$$
; si $a \notin \{0,1\}$ \mathcal{X}_A est SARS donc A est DZ, pour $a = 0$ rg $(A) = 2$ donc pas DZ et pour $a = 1$, rg $(A - I_3) = 1$ donc pas DZ : $\Omega = \{0,1\}$.
Pour $a = 0$, $A = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}$ et pour $a = 1$, $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} P^{-1}$

Exercice 11 [sujet] On a $\mathcal{X}_M = (X-1)[(X-1)^2 + z]$ SARS si $z \neq 0$ donc M est DZ. Pour z = 0 la seule vp est 1 donc si M était DZ, on aurait $M = PI_3P^{-1} = I_3$, absurde. M est DZ si et seulement si $z \neq 0$.

Exercice 12 [sujet] On a $\mathcal{X}_A = (X+a)(X+b)(X-a-b)$; si $a \neq b$ et $-a \neq a+b$ et $-b \neq a+b$ alors \mathcal{X}_A est SARS donc A est DZ. Si $a = b \neq 0$, on vérifie $\operatorname{rg}(A+aI_3) = 1$ donc A est DZ. Si 2a+b=0 et $a \neq 0$ on vérifie $\operatorname{rg}(A+aI_3) = 2$ donc A n'est pas DZ (idem si a+2b=0 et $b \neq 0$). Enfin, si a=b=0 A est nulle.

Exercice 13 [sujet] $\mathcal{X}_A = X^3 - aX - a$ donc $\mathcal{X}_A' = 3X^2 - a$. Si a < 0 alors \mathcal{X}_A est strictement croissant sur \mathbb{R} donc $\operatorname{Sp}(A) = \{\lambda\}$ et A ne peut pas être DZ car sinon on aurait $A = \lambda I_3$. Si a = 0 alors $\mathcal{X}_A = X^3$ donc A ne peut pas non plus être DZ. Si a > 0, $\mathcal{X}_A\left(\sqrt{\frac{a}{3}}\right) < 0$ et $\mathcal{X}_A\left(-\sqrt{\frac{a}{3}}\right) = a\left(\frac{2}{3}\sqrt{\frac{a}{3}} - 1\right)$ donc \mathcal{X}_A est SARS si et seulement si $a > \frac{27}{4}$; on en déduit A DZ si $a > \frac{27}{4}$, par contre si $0 < a \leqslant \frac{27}{4}$, \mathcal{X}_A n'est pas SARS et comme $\operatorname{rg}(A - \lambda I_3) \geqslant 2$ donc $\dim(E_\lambda(A)) \leqslant 1$ et A ne peut pas être DZ. Ainsi, A est DZ si et seulement si $a > \frac{27}{4}$.

Exercice 14 [sujet] **1.** $\mathcal{X}_A = (X-1)(X-2)(X-3)$

2.
$$A^n = \left(\frac{3^n+1}{2} - 2^n\right)A^2 + \left(2^{n+2} - \frac{3^{n+1}+5}{2}\right)A + \left(3^n - 3 \times 2^n + 3\right)I_3$$

Exercice 15 [sujet] **1.** $A = aI_3 + cJ + bJ^2$

2. $\mathcal{X}_J = X^3 - 1$ est SARS

3.
$$J = P \operatorname{diag}(1, j, j^2)$$
 avec $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j \end{pmatrix}$ donc $A = P \operatorname{diag}(a + b + c, a + cj + bj^2, a + cj^2 + bj)P^{-1}$

Exercice 16 [sujet] **1.** $X_M = (X - b)(X - a - c)(X - a + c)$

- **2.** $\ker(M(a,0,a)) = \operatorname{Vect}\{(1,0,-1),(0,1,0)\} \text{ et } \ker(M(a,b,a)) = \operatorname{Vect}\{(1,0,-1)\}$
- 3. det(M(a,b,c)) = b(a-c)(a+c). Si b=0 et $|a| \neq |c|$ ker $(M(a,0,c)) = \text{Vect}\{(1,0,-1)\}$ et $\text{Im}(M(a,b,c)) = \text{Vect}\{(a,0,c),(c,0,a)\}$. Si b=0 et a=c, ker $(M(a,0,a)) = \text{Vect}\{(1,0,-1),(0,1,0)\}$ et $\text{Im}(M(a,0,a)) = \text{Vect}\{(1,0,1)\}$. Si b=0 et a=-c, ker $(M(a,0,-a)) = \text{Vect}\{(1,0,1),(0,1,0)\}$ et $\text{Im}(M(a,0,a)) = \text{Vect}\{(1,0,-1)\}$. Si $b\neq 0$ et a=c, ker $(M(a,b,a)) = \text{Vect}\{(1,0,-1)\}$ et $\text{Im}(M(a,b,a)) = \text{Vect}\{(1,0,1),(0,1,0)\}$. Si $b\neq 0$ et a=-c, ker $(M(a,b,-a)) = \text{Vect}\{(1,0,1)\}$ et $\text{Im}(M(a,b,a)) = \text{Vect}\{(1,0,-1),(0,1,0)\}$.
- **4.** M(a,b,c) est DZ car symétrique réelle et $M(a,b,c) = P \operatorname{diag}(b,a+c,a-c)P^{-1}$ avec $P = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 1 \\ \sqrt{2} & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix} \in \mathcal{O}_3(\mathbb{R})$ donc $P^{-1} = {}^tP$

Exercice 17 |sujet| 1. M est symétrique réelle

- **2.** $R = aI_3 + bM = P(aI_3 + bD)P^{-1}$ si $M = MDP^{-1}$ donc R est DZ
- **3.** $\operatorname{rg}(M+I_3)=1$ donc $m_1(M)\stackrel{\operatorname{DZ}}{=} \dim(E_1(M))=2$ et $\operatorname{Tr}(M)=0$ donc $\mathcal{X}_M=(X-1)^2(X-2)$. En DZ, on trouve $u_n=2\times 1^n+1\times 2^n\in\mathbb{N}$ et $\lim u_n=+\infty$.
- **4.** $v_n = 2 \times (a-b)^n + 1 \times (a+2b)^n$ donc (v_n) CV si et seulement si $\begin{cases} |a-b| < 1 \text{ ou } a-b=1 \\ \text{et} \\ |a+2b| < 1 \text{ ou } a+2b=1 \end{cases}$

Exercice 18 [sujet] $\mathcal{X}_A = (X-1)^2(X-2)$ donc A est DZ si et seulement si $\operatorname{rg}(A-I_3) = 1$ ce qui est vrai si et seulement si a = 0. Dans ce cas (X-1)(X-2) annule A donc $A^n = (2^n-1)A + (2-2^n)I_3$.

Exercice 19 [sujet] **1.** $\mathcal{X}_A = (X-1)(X-2)(X-n)$

2. Si $n \notin \{1,2\}$ A est DZ; si n = 1, $rg(A - I_3) = 2$ donc non DZ; si n = 2, $rg(A - 2I_3) = 1$ donc DZ

Exercice 20 [sujet] $\mathcal{X}_A = (X+1)^3$ et $A \neq I_3$ donc A_m n'est pas DZ.

Exercice 21 [sujet] 1. $\mathcal{X}_A = (X-1)(X+m-1)^2$. Si m=0 alors $\mathrm{Sp}(A_0) = \{1\}$ et $E_1(A_0) = \mathrm{Vect}\{(0,1,0),(1,0,1)\}$. Sinon, $\mathrm{Sp}(A_m) = \{1,1-m\}$; $E_1(A_m) = \mathrm{Vect}\{(1,1,1)\}$ et $E_{1-m}(A_m) = \mathrm{Vect}\{(1,0,1)\}$ sauf pour m=2 où $E_{-3}(A_2) = \mathrm{Vect}\{(1,0,1),(1,1,0)\}$

- **2.** A_m est DZ si et seulement si m=2 et inversible si et seulement si $m\neq 1$
- **3.** Pour m = 2, $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

1. En développant directement le déterminant par la première colonne, on trouve D_{n+2} $2\cos\theta D_{n+1} - D_n$ puis le résultat donné par récurrence sur n (double)

2. Si $\theta_k = \frac{k\pi}{n+1}$ pour $k \in [1,n]$ alors $2\cos\theta_k$ est une vp de A_n ; ces vp sont distinctes puisque $\theta_k \in]0,\pi[$ sur lequel cos est strictement décroissante donc bijective. A_n possède n vp distinctes donc est DZ.

Exercice 23 [sujet] 1. $u_n = \alpha \cos(n\theta) + \beta \sin(n\theta)$ donc $E = \text{Vect}\{(\sin(n\theta)), (\cos(n\theta))\}$ est de dimension 2

- **2.** $u_0 = u_{p+1} = 0 \Leftrightarrow \begin{cases} \alpha = 0 \\ \beta \cos((p+1)\theta) = 0 \end{cases}$ donc il existe une telle suite si et seulement si $\theta = \frac{(2k+1)\pi}{2(p+1)}$ avec
- 3. On vérifie que si on pose $X = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$ alors la suite (u_n) est dans E et doit vérifier $u_0 = u_{p+1} = 0$ donc on a une

solution non nulle si et seulement si $\lambda = 2\cos\frac{(2k+1)\pi}{2(n+1)}$ avec $k \in [1,p]$ ce qui donne p valeur propres distinctes (car cos est strictement décroissante sur $]0,\pi[)$. On en déduit que \mathcal{X}_A est SARS donc A est DZ et que ses espaces propres sont des droites (engendrées pas les suites (u_n) de E avec $u_0 = 0$ et $u_1 = 1$ pour les différentes valeurs de θ précédentes)

Exercice 24 [sujet] **1.** $\mathcal{X}_f = (X-1)^2(X-2)^2$ donc f est DZ si et seulement si $\operatorname{rg}(f-id) = \operatorname{rg}(f-2id) = 2$ ce qui est le cas si et seulement si a = b + c.

2. Dans ce cas, P = (X - 1)(X - 2) annule f et on aura $f^n = \alpha f + \beta id$ si $R = \alpha X + \beta$ est le reste de la division euclidienne de X^n par P.

Exercice 25 /sujet/ 1. symétrique réelle

- **2.** Sp(A_2) = $\left\{ \frac{3 \pm \sqrt{5}}{2} \right\}$
- 3. Successivement : $C_j \leftarrow C_j C_1$ pour $j \geqslant 2$ puis développer par rapport à C_n ; le deuxième déterminant se ramène à un déterminant diagonal après dvt par rapport à la dernière ligne
- **4.** $(-1)^{n-k}P_n(k) = (n-k-1)(-1)^{n-1-k}P_{n-1}(k)$ si $k \in [0, n-2]$ donne le résultat par récurrence si $k \in [0, n-2]$ et $P_n(n-1) = -(n-1)! < 0$. Cela veut dire que P_n change de signe sur tout intervalle de la forme]k, k+1[pour $k \in [\![0,n-2]\!]$ donc (TVI) s'annule au moins une fois sur ces n-1 intervalle.
- 5. De plus $P_n(n-1) < 0$ et $P_n(x) \underset{x \to +\infty}{\sim} x^n \xrightarrow[x \to +\infty]{} +\infty$ donc P_n s'annule aussi une fois sur $]n-1, +\infty[$. P_n est de degré n et possède au moins n racines distinctes donc est SARS
- **Exercice 26** [sujet] **1.** On effectue $L_i \leftarrow L_i L_1$ pour $i \ge 2$ (il n'y aura plus de t dans les autres lignes que L_1) et si on développe par rapport à L_1 , Δ est affine. Il existe α , β tels que $\Delta(t) = \alpha t + \beta$; on a $\Delta(-c) = (a-c)^n$ et $\Delta(-b) = (a-b)^n$ donc $\begin{cases} -\alpha c + \beta = (a-c)^n \\ -\alpha b + \beta = (a-b)^n \end{cases}$ on trouve alors $\alpha = \frac{(a-b)^n - (a-c)^n}{b-c}$ et $\beta = \frac{b(a-c)^n - c(a-c)^n}{b-c}$ puis on en déduit $\mathcal{X}_M = \frac{-b(X-a+c)^n + c(X-a+b)^n}{-b+c}$ 2. $\mathcal{X}_M(\lambda) = 0 \Leftrightarrow \left(\frac{\lambda-a+b}{\lambda-a+c}\right)^n = \frac{b}{c}$, soit $\delta \in \mathbb{C}$ tel que $\delta^n = \frac{b}{c}$; on trouve alors $\lambda = \frac{a-b+(c-a)\delta_k}{1-\delta_k}$ avec
 - $\delta_k = \delta e^{\frac{2ik\pi}{n}} \neq 1$ car $\delta_k^n = \frac{b}{c} \neq 1$. On vérifie que ces valeurs de λ (pour $k \in [0, n-1]$) sont 2 à 2 distinctes donc \mathcal{X}_M

Exercice 27 [sujet] On vérifie $\operatorname{rg}(A) = 2$ et $E_0(A) = \operatorname{Vect}\{E_{2i+1} - E_1, E_{2i+2} - E_2, 1 \leqslant i \leqslant n-1\}$ puis AX = nX si $X = \sum_{i=1}^{n} E_{2i}$ ou $X = \sum_{i=1}^{n} E_{2i-1}$ donc A est bien DZ.

Exercice 28 [sujet] On vérifie $\mathcal{X}_A = X^n - \prod_{i=1}^n \alpha_i$. S'il existe i tel que $\alpha_i = 0$ alors $\mathrm{Sp}(A) = \{0\}$ donc si A est DZ si et

seulement si A=0. Sinon \mathcal{X}_A est SARS sur \mathbb{C} et les vp de A sont les racines $n^{\text{ème}}$ de $\prod_{i=1}^n \alpha_i$. Un vecteur propre associé à

un tel λ est $\left(1, \frac{\alpha_1}{\lambda}, \frac{\alpha_1 \alpha_2}{\lambda^2}, \dots, \frac{\alpha_1 \dots \alpha_{n-1}}{\lambda^{n-1}}\right)$.

Exercice 29 [sujet] **1.** Si $x_n = 0$ alors la dernière ligne du système $AX = \lambda X$ donne $a_{n-1}x_{n-1} = 0$ donc $x_{n-1} = 0$ puis $x_i = 0$ par récurrence descendante

- 2. Si $\dim(E_{\lambda}(A)) \ge 2$, on prend deux vecteurs propres X, Y linéairement indépendants; le $x_n Y y_n X$ est alors un vecteur propre dont la dernière coordonnée est nulle, ce qui est absurde avec Q1
- 3. A est sym réelle donc DZ, $m_{\lambda}(A) = \dim(E_{\lambda}(A)) = 1$ donc \mathcal{X}_A est SARS

Exercice 30 [sujet] 1. a) $M \in A \Leftrightarrow M = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & -\alpha \end{pmatrix}$ avec $\alpha \in \mathbb{R}$ donc on vérifie (par \mathbb{R} -linéarité de la conjugaison) que A est un \mathbb{R} -ev puis (avec $\beta = a + ib$), on trouve $A = \mathrm{Vect}_{\mathbb{R}}\{E_{1,1} - E_{2,2}, E_{1,2} - E_{2,1}, iE1, 2 + iE_{2,1}\}$ donc $\dim_{\mathbb{R}}(A) = 3$

b)
$$M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in A \text{ mais } iM = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \notin A$$

$$\mathbf{2.}\ \ M\in A\cap B\Leftrightarrow \left\{\begin{array}{ll} \alpha^2+|\beta|^2=1\\ \alpha\overline{\beta}=0\\ -\alpha^2+|\beta|^2=1 \end{array}\right. \Leftrightarrow \alpha=0 \ \mathrm{et} \ \beta=e^{i\theta} \ \mathrm{donc} \ A\cap B=\left\{\begin{pmatrix} 0 & e^{i\theta}\\ -e^{-i\theta} & 0 \end{pmatrix}, \theta\in \mathbb{R}\right\}$$

3. On vérifie
$$M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in B \Leftrightarrow \begin{cases} |\alpha|^2 + |\beta|^2 = 1 \\ |\gamma|^2 + |\delta|^2 = 1 \\ \alpha \overline{\gamma} + \beta \overline{\delta} = 0 \\ \alpha \delta - \beta \gamma = 1 \end{cases} \Leftrightarrow \begin{cases} \delta = \overline{\alpha} \\ \gamma = -\overline{\beta} \\ |\alpha|^2 + |\beta|^2 = 1 \end{cases}$$
 On a donc $M = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ avec

 $|\alpha|^2 + |\beta|^2 = 1$. On a alors $\mathcal{X}_M = X^2 - 2X \operatorname{Re}(\alpha) + 1$, $\Delta = 4(\operatorname{Re}(\alpha)^2 - 1)$ et comme $\operatorname{Re}(\alpha)^2 \leq |\alpha|^2 = 1 - |\beta|^2$, si $\beta \neq 0$, on a $\Delta \neq 0$ donc M est DZ. Reste les cas $\beta = 0$ qui sont évidents car M est déjà diagonale.

Exercice 31 [sujet] 1. $X^k - 1$ est SARS donc DZ et $Sp(M) = \{\lambda_1, \lambda_2\}$ avec $\lambda_i^k = 1$ donc $|\lambda_i| = 1$ donc $|Tr(M)| = |\lambda_1 + \lambda_2| \le 2$

- **2.** On a Sp(M) $\subset \{\pm 1\}$ donc soit Sp(M) = $\{1\}$ et $M = I_2$ (car DZ) donc d = 1, soit Sp(M) = $\{-1\}$ et $M = -I_2$ donc d = 2, soit Sp(M) = $\{-1, 1\}$ puis $\mathcal{X}_M = X^2 1$ et $M^2 = I_2$ donc d = 2 (car $M \neq I_2$)
- **3.** On a $\operatorname{Sp}(M) = \{\lambda, \overline{\lambda}\}$ car M est réelle avec $|\lambda| = 1$ donc $\det(M) = \lambda \overline{\lambda} = 1$ et $\mathcal{X}_M = X^2 X\operatorname{Tr}(M) + 1$. De plus $\operatorname{Tr}(M) \in \mathbb{Z} \cap [-2, 2]$ et $\operatorname{Tr}(M) \neq \pm 2$ car sinon on aurait $\mathcal{X}_M = (X \pm 1)^2$ donc $\lambda \in \mathbb{R}$. On a donc $\operatorname{Tr}(M) \in \{-1, 0, 1\}$

4. Si
$$\mathcal{X}_M = X^2 + 1$$
 alors M est semblable à $D = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ donc $M^4 = I_2$ et $M^k \neq I_2$ pour $k \in \{1, 2, 3\}$ donc $d = 4$ Si $\mathcal{X}_M = X^2 + X + 1$ alors M est semblable à $D = \begin{pmatrix} j & 0 \\ 0 & j^2 \end{pmatrix}$ donc $M^3 = I_2$ et $M^k \neq I_2$ pour $k \in \{1, 2\}$ donc $d = 3$ Si $\mathcal{X}_M = X^2 - X + 1$ alors M est semblable à $D = \begin{pmatrix} -j & 0 \\ 0 & -j^2 \end{pmatrix}$ donc $M^6 = I_2$ et $M^k \neq I_2$ pour $k \in [1, 5]$ donc

Pour finir, on est soit dans le cas de la question $\mathbf{2}$, soit dans le cas se la question $\mathbf{3}$ car M est réelle donc ne peut pas avoir une seule racine complexe non réelle.

Exercice 32 [sujet] **1.** Comme $a \neq 0$, $\ker(u - id) = \ker(f)$ est un hyperplan donc $\dim(E_1(u)) = n - 1$.

2. u est donc DZ si et seulement si u admet une autre vp λ ; si $u(x) = \lambda x$ avec $\lambda \neq 1$ alors $x \in \text{Vect}\{a\}$ donc u est DZ si et seulement si a est vecteur propre de u pour une valeur propre autre que 1 donc si et seulement si $f(a) \neq 0$.

Exercice 33 /sujet/ 1. Facile

2. on a
$$x = \frac{\ell(x)}{\ell(a)} a \operatorname{car} \ell(a) \in \mathbb{R}^*$$
.

- 3. $f(x) = -\ell(a)x$ (donc vp si $x \neq 0$)
- **4.** $f^2(x) = -\ell(a)f(x)$ donc $X(X + \ell(a))$ annule f. Si $\ell(a) \neq 0$, il est SARS et si $\ell(a) = 0$ alors $f^2 = 0$ donc non DZ (0 est la seule valeur propre possible et $f \neq 0$)
- **5.** si $\ell(a) = 0$ alors $\mathcal{X}_f = X^n$; sinon $E_0(f) = \text{Vect}\{a\}$ et $E_{-\ell(a)}(f) = \ker(\ell)$ est un hyperplan donc $\mathcal{X}_f = X(X + \ell(a))^{n-1}$. Dans tous les cas, $\text{Tr}(f) = -(n-1)\ell(a)$.

Exercice 34 [sujet] 1. $\operatorname{rg}(A) = 1$ si $X \neq 0$ (et A = 0 si X = 0); donc $m_0(A) \geqslant n - 1$ et $\operatorname{Sp}(A) = \{0, \operatorname{Tr}(A)\}$ (et $\operatorname{Tr}(A) = {}^t XX$)

- **2.** $\mathcal{X}_A = X^{n-1}(X \text{Tr}(A)) = X^{n-1}(X {}^tXX)$
- **3.** $\det(A+I_n)=(-1)^n\mathcal{X}_A(-1)$

Exercice 35 [sujet] 1. rg(M) = 1

- **2.** $\det(M \lambda I_n) = (-1)^n \mathcal{X}_M(\lambda) = (-1)^n X^{n-1} (X \operatorname{Tr}(M))$ (matrice de rang 1) et $\operatorname{Tr}(M) = {}^t Y X$.
- 3. $\det(X^t X + A) = \det(A) \det(M + I_n) = \det(A)(-1)^n (-1)^{n-1} (-1 {}^t X A^{-1} X).$

Exercice 36 [sujet] **1.** (C_1, C_2) est libre puis $C_j = \frac{j}{2}C_2$ donc $\operatorname{rg}(A) = 2$ et $\ker(A) = \operatorname{Vect}\{je_2 - 2e_j\}$

- **2.** A est symétrique réelle donc DZ (à voir plus tard; on ne va pas s'en servir pour la suite); on a $m_0(A) \ge \dim(\ker(A)) = n 2$ (si on sait déjà A DZ, c'est même = n 2).
- 3. Si on note \mathcal{X}_n le polynôme caractéristique de $A \in \mathcal{M}_n(\mathbb{R})$, en dvant par la dernière colonne puis la dernière ligne, on a $\mathcal{X}_n(\lambda) = \lambda \mathcal{X}_{n-1}\lambda n^2$; on en déduit $\chi_A(\lambda) = \lambda^{n-2}(\lambda^2 \lambda s)$ avec $s = \sum_{i=2}^n i^2$ comme $\Delta = 1 + 4s^2 > 0$ et que $s \neq 0$, on a bien $\mathrm{Sp}(A) = \{0, \lambda, 1 \lambda\}$ (car Tr(A) = 1). On peut alors retrouver A DZ puisque $m_0(A) = n 2 = \dim(\ker(A))$.
- 4. $X(X^2 X s) = X(X \lambda)(X 1 + \lambda)$ convient puisque A est DZ

Exercise 37 [sujet] 1. $L_i = iL_1 \neq 0$ donc $\operatorname{rg}(A) = 1$; on a donc $0 \in \operatorname{Sp}(A)$ et $m_0(A) \geqslant \dim(E_0(A)) = n - 1$. Comme $\operatorname{Tr}(A) = \sum_{i=1}^n i^3 = \left(\frac{n(n+1)}{2}\right)^2$, on a $\mathcal{X}_A = X^{n-1}\left(X - \frac{n^2(n+1)^2}{4}\right)$ et A est DZ car $m_0(A) = n - 1 = \dim(E_0(A))$

- **2.** fait
- 3. $j^2C_1 = C_j$ donc on trouve $E_0(A) = \text{Vect}\{j^2e_j e_1, j \in [2, n]\}$ et $E_{\frac{n^2(n+1)^2}{4}}(A) = \text{Vect}\left\{\sum_{i=1}^n ie_i\right\}$

Exercice 38 /sujet/ 1. Facile

- **2.** $rg(a_n) = 2$ s'il existe $i \ge 2$ tel que $a_i \ne 0$ (ce que l'on supposera par la suite car sinon A_n est déjà diagonale), $rg(a_n) = 1$ sinon et si $a_1 \ne 0$ et $A_n = 0$ si tous les a_i sont nuls. On en déduit $0 \in Sp(A_n)$ et $m_0(A_n) \ge \dim(E_0(A_n)) = n 2$.
- **3.** Facile (rec par exemple)
- 4. $\Delta = a_1^2 4b_n$; si $\Delta \neq 0$ et $b_n \neq 0$ (possible dans \mathbb{C}) alors A_n possède trois valeurs propres, deux simples et 0 d'ordre n-2 avec $\dim(E_0(A_n)) = n-2$ donc A_n est DZ. Si $\Delta \neq 0$ et $b_n = 0$ alors $P_n = X^{n-1}(X-a_1)$ donc $m_0(A_n) = n-1 \neq \dim(E_0(A_n))$ et A_n n'est pas DZ. Enfin, si $\Delta = 0$ et $b_n \neq 0$ alors $P_n = X^{n-2}\left(X \frac{a_1}{2}\right)^2$; rg $\left(A_n \frac{a_1}{2}I_n\right) \geqslant n-1$ car $a_1 \neq 0$ donc les colonnes C_2, \ldots, C_n sont linéairement indépendantes et A_n n'est pas DZ.

Exercice 39 [sujet] 1. sym réelle

- **2.** $C_k = \alpha^{k-1}C_1$ et $C_1 \neq 0$ donc $\operatorname{rg}(A) = 1$ puis (fait en cours) $\mathcal{X}_A = X^{n-1}(X \operatorname{Tr}(A))$
- 3. Comme $\dim(E_0(A)) = n 1$, A est DZ si et seulement si $\operatorname{Tr}(A) \neq 0$ et $\operatorname{Tr}(A) = \sum_{k=0}^{2n-2} \alpha^{2k} = \frac{1 \alpha^{2n}}{1 \alpha^2}$ (pour $\alpha^2 \neq 1$, déjà vu : cas réel) donc A est DZ si et seulement si α n'est pas une racine non réelle $2n^{\text{ème}}$ de l'unité

Exercice 40 [sujet] Comme (a,b) est libre $u(x) = 0 \Leftrightarrow (a|x) = (b|x) = 0$ donc $\ker(u) = P = \operatorname{Vect}\{a,b\}^{\perp}$. Si (e_3,\ldots,e_n) est une base de P, dans $\mathcal{B} = (a,b,e_3,\ldots,e_n)$, on a $\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ avec $A = \begin{pmatrix} 1 & (a|b) \\ (a|b) & 1 \end{pmatrix}$ donc u est DZ si et seulement si A est DZ. Comme $\mathcal{X}_A = X^2 - 2X + 1 - (a|b)^2$ et $\Delta = 4(1 - (a|b)^2) > 0$ d'après Cauchy-Schwarz, \mathcal{X}_A est SARS donc A est DZ

Exercice 41 [sujet] Si $A = S - I_n$, on a rg(A) = 1 donc $\mathcal{X}_A = X^{n-1}(X - \text{Tr}(A)) = X^{n-1}(X+1)$; on en déduit $\mathcal{X}_S = (X-1)^{n-1}(X)$ puis $E_1(S) = E_0(A) = \text{Vect}\{a_1e_1 - a_ie_i, i \ge 2\}$ et $E_0(S) = E_{-1}(A) = \text{Vect}\{a_1e_1 + \dots + a_ne_n\}$

Exercice 42 [sujet] $\operatorname{rg}(A-2I_3) \neq \operatorname{rg}(B-2I_3)$ donc A et B ne sont pas semblables (A n'est pas DZ alors que B l'est)

Exercice 43 [sujet] **1.** A et B sont alors DZ et semblables à la même matrice diagonale donc semblables entre elles **2.** A = 0 et $B = E_{1,2}$ ne sont pas semblables mais $Sp(A) = Sp(B) = \{0\}$.

Exercice 44 [sujet] 1. a) Cours

- b) Fait en cours (trigonaliser)
- **2.** On a Sp(A) = $\{\lambda_1, \lambda_2\}$ = Sp(A²) = $\{\lambda_1^2, \lambda_2^2\}$, on a donc deux cas :
 - $-\lambda_1 = \lambda_1^2 \text{ et } \lambda_2 = \lambda_2^2 \text{, ce qui donne } \operatorname{Sp}(A) \subset \{0,1\} : \operatorname{si } \operatorname{Sp}(A) = \{0\} \text{ alors } \mathcal{X}_A = X^2 \text{ puis (C-Ham) } A^2 = 0 \text{ donc } A = 0 \text{ aussi (récip OK), si } \operatorname{Sp}(A) = \{0,1\} \text{ alors } \mathcal{X}_A = X(X-1) \text{ donc (C-Ham) } A^2 = A \text{ (récip OK), ou bien } \operatorname{Sp}(A) = \{1\} \text{ et dans ce cas } A \text{ est semblable à } T = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \text{ et comme } T^2 = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} T \begin{pmatrix} 1/2 & 0 \\ 0 & 1 \end{pmatrix} \text{ la réciproque } \text{ est OK}$
 - $\lambda_1 = \lambda_2^2$ et $\lambda_2 = \lambda_1^2$ ce qui donne $\operatorname{Sp}(A) = \{0\}$ puis A = 0 (OK), ou $\operatorname{Sp}(A) = \{1\}$ (donc OK) ou enfin $\operatorname{Sp}(A) = \{j, j^2\}$ et A est semblable à $D = \begin{pmatrix} j & 0 \\ 0 & j^2 \end{pmatrix}$ et comme $D^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} D \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ c'est OK aussi.

Les solutions sont donc les matrices de projections, celles dont le spectre est $\{1\}$ et celles qui sont semblables à D.

3. Si $\lambda \neq \pm 1$ est vp de A alors $\operatorname{Sp}(A) = \{\lambda, \lambda^{-1}\}$; A et A^{-1} sont DZ et semblables à $\operatorname{diag}(\lambda, \lambda^{-1})$ donc semblables entre elles. Si 1 est vp simple de A alors -1 est l'autre vp, A et A^{-1} sont semblables à $\operatorname{diag}(1, -1)$ donc OK. Si 1 est vp double alors soit A est DZ et $A = I_2$ (donc OK) soit A est TZ, semblable à $\begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$ avec $\alpha \neq 0$. A^{-1} est alors semblable à $\begin{pmatrix} 1 & -\alpha \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}^{-1}$ donc OK aussi (idem pour -1).

Exercice 45 [sujet] $\mathcal{X}_A = X(X-2)(X+2)$ donc on a 3 droites stables : $E_0(A) = \text{Vect}\{(1,1,1)\}, E_2(A) = \text{Vect}\{(1,-1,1)\}$ et $E_{-2}(A) = \text{Vect}\{(0,1,1)\}.$

Si P est un plan stable et v l'endomorphisme induit par A sur P alors v est DZ et $\mathcal{X}_v | \mathcal{X}_A$. On a donc $\mathcal{X}_v = X(X-2)$ et dans ce cas $P = \ker(v \circ (v-2id))$ (C-H) donc $P \subset \ker(A^2-2A) = \{(x,y,z), x=z\}$ qui est un plan stable; avec $\mathcal{X}_v = X(X+2)$ on trouve $P_2 = \{(x,y,z), y=z\}$ et avec $\mathcal{X}_v = (X-2)(X+2)$, $P_3 = \{(x,y,z), 2x+y-z=0\}$

Exercice 46 [sujet] $\mathcal{X}_M = (X-2)(X-1-i)(X-1+i)$ donc dans \mathbb{R}^3 , une droite stable $E_2(M) = \text{Vect}\{(1,1,1)\}$. Si P est un plan stable et v l'endomorphisme induit par M sur P alors \mathcal{X}_v est réel et divise \mathcal{X}_M donc $\mathcal{X}_v = X^2 - 2X + 2$ puis pas C-H, $P \subset \ker(M^2 - 2M + 2I_3) = \{(x, y, z), y + z = 0\}$ qui est bien un plan stable.

Exercice 47 [sujet]
$$\mathcal{X}_A = (X+1)^3$$
 et $\operatorname{rg}(A+I_3) = \begin{cases} 1 & \text{si } k=0 \\ 2 & \text{sinon} \end{cases}$

Si k=0 toute droite incluse dans $E_{-1}(A)=\{(x,y,z),x=0\}$ est stable; si $k\neq 0$, une droite stable $E_{-1}(A)=\mathrm{Vect}\{(0,1,1)\}$. Si P est un plan stable et v l'endomorphisme induit sur P alors $\mathcal{X}_v=(X+1)^2$ donc (C-H) $P=\ker(v+id)^2\subset\ker(A+I_3)^2$; si $k\neq 0$ alors $\ker(A+I_3)^2=\{(x,y,z),y-z=0\}$ est un plan stable alors que si k=0, $(A+I_3)^2=0$ donc son noyau est \mathbb{R}^3 donc pas un plan (et $P\subset\mathbb{R}^3$ n'apporte pas grand chose). Si k=0, $\ker(A+I_3)=\mathrm{Vect}\{e_2,e_3\}$ est un plan stable; si P est un autre plan stable, il existe $x_0\in P$ tel que $(A+I_3)x_0\in\mathrm{Im}(A+I_3)\setminus\{0\}$ et comme $\mathrm{Im}(A+I_3)=\mathrm{Vect}\{(0,1,1)\},\ (0,1,1)\in P$ On a donc $P=\mathrm{Vect}\{x_0,(0,1,1)\}$ avec $x_0\notin\ker(A+I_3)$, on vérifie alors que tous ces plans sont stables.

Exercice 48 [sujet] **1.** $\mathcal{X}_A = (X-3)^3$ et dim $(E_3(A)) = 1$

- **2.** Une seule droite stable : $E_3(A)$
- **3.** a) cours
 - b) $\deg(\mathcal{X}_{a'}) = \dim(P) = 2 \operatorname{donc} \mathcal{X}_{a'} = (X-3)^2 \operatorname{et} \operatorname{avec} \operatorname{C-Ham}, P = \ker(a'-3id)^2 \subset \ker(a-3id)^2$
 - c) On vérifie que $ker(a 3id)^2$ est bien un plan (donc = P) et c'est le seul plan stable.

Exercice 49 [sujet] **1.** Si $x \in H$ et $\text{Im}(u - \lambda id) \subset H$ alors $u(x) = (u - \lambda id)x + \lambda x \in H$ donc H est stable; si H est un hyperplan stable alors $E = H \oplus \text{Vect}\{e\}$ donc $u(e) = x_H + \lambda e$ et on vérifie que $\text{Im}(u - \lambda id) \subset H$.

2. $\mathcal{X}_A = X^3$ donc 1 droite stable $E_0(A) = \text{Vect}\{(1, -1, -1)\}$; si P est un plan (donc hyperplan) stable par A alors $\text{Im}(A - \lambda I_3) \subset P$ donc $A - \lambda I_3$ n'est pas inversible, ie $\lambda \in \text{Sp}(A) = \{0\}$, puis $\text{Im}(A) \subset P$ donc P = Im(A) car rg(A) = 2. On vérifie ensuite que Im(A) est bien un plan stable.

Exercice 50 [sujet] 1. $\mathcal{X}_A = (X+4)^2(X+2)$ et $\operatorname{rg}(A+4I_3) = 2$ donc A et tA ne sont pas DZ.

- **2.** Deux droites stables $E_{-2}(A)$ et $E_{-4}(A)$.
- 3. Si R^3 est muni du produit scalaire canonique $(X|Y) = {}^t XY$ alors $P = N^{\perp}$ si n = (a,b,c); si P est stable par A alors pour $X \in P$, on a $AX \in P$ donc (AX|N) = 0 et on vérifie $(AX|N) = (X|{}^t AN)$ donc ${}^t AN \perp X$ pour tout $X \in P$, ce qui signifie que ${}^t AN \in P^{\perp} = \text{Vect}\{N\}$ puis ${}^t AN = \lambda N$ donc N est un vecteur propre de ${}^t A$ (car $N \neq 0$). On a donc deux plans stables $E_{-4}({}^t A)^{\perp}$ et $E_{-2}({}^t A)$ (pour lesquels on vérifie que ce sont bien des plans stables vu que le début de la question ne faisait pas prouver l'équivalence, qui est pourtant vraie).

Exercice 51 [sujet] 1. $\{0\}$ et E sont stables. Si f est une rotation de \mathbb{R}^2 d'angle $\pi/2$, alors f n'a pas de valeur propre donc il n'existe pas de droite stable et $\{0\}$ et \mathbb{R}^2 sont les seuls sev stables

- 2. ker(f) ≠ {0} et ker(f) ≠ E (car f ≠ 0) est aussi un sev stable.
 Si n est impair alors f admet 4 espaces stables : {0}, ker(f), Im(f) et E. ker(f) = Im(f) est impossible en dimension impaire avec le th du rang.
 f associé à E_{1,2} (nilpotent) possède 3 espaces stables : {0}, ker(f) = Im(f) = Vect{e₁} et ℝ².
- 3. Si \mathcal{X}_f est SARS, on vérifie qu'un sev est stable si et seulement si il est engendré par une famille de vecteurs propres de f: si F est stable alors g induit par f sur F est DZ donc $F = \mathrm{Vect}\{u_i\}$ avec u_i des vp de g, ie des vp de f qui appartiennent à F (récip facile). On a donc $\binom{n}{k}$ sev de dimension k stables par f. Si λ est vp multiple de f alors toute droite incluse dans $E_{\lambda}(f)$ (il y en a une infinité) est stable par f.

Exercice 52 [sujet] **1.**
$$A = PDP^{-1}$$
 avec $D = \text{diag}(0,2)$ et $P = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$

2. X commute avec A donc, comme les vp de A sont simples, on a $X = P\Delta P^{-1}$ avec $\Delta = \operatorname{diag}(\alpha, \beta)$ telle que $\left\{ \begin{array}{l} \alpha^2 + \alpha = 0 \\ \beta^2 + \beta = 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \alpha \in \{0, -1\} \\ \beta \in \{1, -2\} \end{array} \right.$ On a donc 4 solutions : $X = P\operatorname{diag}(0, 1)P^{-1} = \frac{1}{2}A, \ X = P\operatorname{diag}(-1, 1)P^{-1} = \frac{1}{2}A \right\}$ $A - I_2$, $X = P \operatorname{diag}(0, -2)P^{-1} = -A$ et $X = P \operatorname{diag}(-1, -2)P^{-1} = \frac{1}{2}A - I_2$

Exercice 53 [sujet] 1. facile puis \mathcal{X}_A est SARS

2.
$$P = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$$
, $D = \text{diag}(1, -8)$ et $P^{-1} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$

3. $B^3=A$ si et seulement si $\Delta^3=D$ avec $\Delta=P^{-1}BP$ donc une seule solution $\Delta=\mathrm{diag}(1,-2)$ et $B=P\Delta P^{-1}BP$

Exercice 54 [sujet] 1. $A = PDP^{-1}$ avec $D = \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix}$ et $P = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix}$

2. a) $(A - 2I_2)(A - 6I_2) = 0$ donc $Q = (X^2 + X - 2)(X^2 + X - 6) = (X - 1)(X + 2)(X - 2)(X + 3)$ annule Mb) Q est SARS donc M est DZ; si $M = R\Delta R^{-1}$ alors $M^2 + M = R(\Delta^2 + \Delta)R^{-1}$ donc si $\Delta = \text{diag}(\lambda_1, \lambda_2)$ on a $\begin{cases} \lambda_1^2 + \lambda_1 = 2 \\ \lambda_2^2 + \lambda_2 \end{cases} = 6 \Leftrightarrow \begin{cases} \lambda_1 \in \{1, -2\} \\ \lambda_2 \in \{2, -3\} \end{cases}$ (ou l'inverse). On a donc 4 cas: si $\{\lambda_1, \lambda_2\} = \{1, 2\}$ alors $\mathcal{X}_M = (X - 1)(X - 2) = X^2 - 3X + 2$ puis (C-Ham) $M^2 = 3M - 2I_2$ donc $A = M^2 + M = 4M - 2I_2$ et $M = \frac{1}{4}(A + 2I_2)$ et on vérifie que M est bien solution. Si $\{\lambda_1, \lambda_2\} = \{1, -3\}$, on trouve $M = 3I_2 - A$; si $\{\lambda_1, \lambda_2\} = \{-2, 2\}$, on trouve $M = A - 4I_2$; et si $\{\lambda_1, \lambda_2\} = \{-2, -3\}$, on trouve $M = -\frac{1}{4}(A + 6I_2)$ donc au total 4 solutions

1. $A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 2 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} P^{-1}$

- 2. Facile (grâce aux coefficients diagonaux de D qui sont distincts 2 à 2)
- 3. On pose $M = PNP^{-1}$ puis $M^7 + M + I_3 = A$ si et seulement si $N^7 + N + I_3 = D$, N commute avec D donc est diagonale; N = diag(a,b,c) est solution si et seulement si $\begin{cases} a^7 + a + 1 = -1 \\ b^7 + b + 1 = 1 \\ c^7 + c + 1 = 3 \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = 0 \\ c = -1 \end{cases}$ x^7+x+1 est bijective donc il n'y a à chaque fois qu'une solution). La seule solution est donc $M=P\mathrm{diag}(1,0,-1)P^{-1}$.

Exercice 56 [sujet] 1. $\mathcal{X}_{M_{\alpha}} = (X-1)(X-4)(X-1-\alpha)$ SARS si $\alpha \notin \{0,3\}$ puis $\operatorname{rg}(M_0-I_3) = 1$ donc $\dim(E_1(M_0)) = m_1(M_0)$ et M_0 est DZ; de même, $\operatorname{rg}(M_3 - 4I_3) = 2$ donc $\dim(E_4(M_3)) = 1 \neq m_4(M_3)$ donc M_3 est DZ. Ainsi M_{α} est DZ si et seulement si $\alpha \neq 3$

- **2.** Si $\alpha \neq -1$, $0 \notin \operatorname{Sp}(M_{\alpha})$ donc M_{α} est inversible et $\operatorname{rg}(M_{\alpha}) = 3$; M_{-1} est DZ donc $\operatorname{rg}(M_{-1})) = 3 \dim(E_0(M_{-1})) = 3$
- **3.** $P = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$
- **4.** a) $A^2 = M_{-1} \Leftrightarrow PB^2P^{-1} = P\Delta P^{-1} \Leftrightarrow B^2 = \Delta P^{-1}$
 - b) $B\Delta = B^3 = \Delta B$
 - c) si $B\Delta = \Delta B$ alors B est diagonale (car les coeff diagonaux de Δ sont 2 à 2 distincts) donc B = diag(a,b,c) puis $B^2 = \Delta \Leftrightarrow \begin{cases} a^2 = 0 \\ b^2 = 1 \end{cases}$ on a donc 4 solutions : $B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 2 \end{pmatrix}$
 - d) 4 solutions aussi : PBP^{-1} avec les 4 matrices B précédentes (les 4 solutions sont différentes car $B \mapsto PBP^{-1}$ est bijective)

Exercice 57 [sujet] On a $B^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ donc si A est semblable à B e_2 et e_3 sont des vecteurs

 $\mathrm{de}\,\ker(A^2+I_3). \text{ On v\'erifie que } \ker(A^2+I_3)\neq\{0\}: \mathrm{sinon, comme}\,\,(A^2+I_3)A=0, \text{ on aurait } \mathrm{Im}(A)\subset \ker(A^2+I_3)\,\,\mathrm{donc}\,\,\mathrm{de}\,\,\mathrm$ A=0. On choisit $e_2 \in \ker(A+I_3)$ non nul, on pose $e_3=Ae_2$ et on choisit $e_1 \in \ker(A)$ non nul, ce qui est possible car si $\ker(A) = \{0\}$, A est inversible donc $A^2 + I_3 = 0$ puis $\det(A)^2 = \det(-I_3) = -1$ ce qui est absurde avec une matrice réelle. Reste à vérifier que (e_1, e_2, e_3) est libre : si $\alpha e_1 + \beta e_2 + \gamma A e_2 = 0$ alors (en composant par A), $\beta A e_2 - \gamma e_2 = 0$ puis $-\beta e_2 - \gamma A e_2 = 0$ donc $\alpha = \beta = \gamma = 0$.

Exercice 58 [sujet] **1.** $\mathcal{X}_A = (X-1)(X+1)^2$ et dim $(E_{-1}(A)) = 1$ donc pas DZ

- **2.** on prend e_1 vp ass à 1, e_2 vp ass à -1 et e_3 tel que $u(e_3) + e_3 = e_2$ donc $P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & -2 & 0 \end{pmatrix}$ convient.
- **3.** u commute avec v si et seulement si $\operatorname{Mat}_{\mathcal{B}}(v) = \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & 0 & b \end{pmatrix}$

Exercice 59 [sujet] 1. facile

- 2. cours
- 3. $E_{\lambda}(u)$ est une droite. Si e est un vp de u alors $D = \text{Vect}\{e\}$ est une droite stable par v donc e est aussi un vp de v
- 4. toute base de vp de u convient; Z_u est donc isomorphe (se placer dans une telle base) à l'ensemble des matrices diagonales donc $\dim(Z_u) = n$

Exercice 60 [sujet] 1. φ est injectif (si $P \in \ker(\varphi)$ alors $\deg(P) \leqslant n-1$ et P a au moins n racines distinctes) et égalité des dimensions

- **2.** cours : $\mathbb{K}[f]$ est commutatif (pour la composition)
- 3. a) cours
 - b) $\dim(E_{\lambda}(f)) = 1$ car \mathcal{X}_f est SARS puis $E_{\lambda}(f) = \text{Vect}\{e\}$ est une droite stable par g donc e est aussi un vecteur propre de g
 - c) une base de vp de f convient
 - d) $\operatorname{Mat}_B(f) = \operatorname{diag}(\lambda_i)$, $\operatorname{Mat}_B(g) = \operatorname{diag}(\mu_i)$, les λ_i sont 2 à 2 distincts donc on prend $P = \varphi^{-1}(\mu_1, \dots, \mu_n)$
- **4.** On vient de prouver, par double inclusion $C(f) = \mathbb{K}[f]$ puis $\mathbb{K}[f] = \mathrm{Vect}\{id, f, \dots, f^{n-1}\}$ par C-Ham: si $P \in \mathbb{K}[X]$ alors $P = Q\mathcal{X}_f + R$ avec $\deg(R) \leqslant n-1$ et $P(f) = R(f) \in \mathrm{Vect}\{id, f, \dots, f^{n-1}\}$; et pour finir (id, f, \dots, f^{n-1}) est libre car si $\sum_{i=0}^{n-1} \alpha_i f^i = 0$ alors $P = \sum_{i=0}^{n-1} \alpha_i X^i$ annule f donc $\mathrm{Sp}(f) \subset Z(P)$ donc $\deg(P) \leqslant n-1$ et P possède au moins n racines distinctes donc P = 0, ie $\alpha_i = 0$. Au final $\dim(C(f)) = n$

Exercice 61 [sujet] 1. $P_0 = \prod_{i=1}^r (X - \lambda_i)$ convient (cours) et si P(A) = 0 alors $\lambda_1, \dots, \lambda_r$ sont r racines distinctes de P donc $\deg(P) \geqslant r$.

- 2. Si B = P(A) alors on écrit $P = P_0Q + R$ avec $\deg(R) \leqslant r 1$ et on a B = R(A) car $P_0(A) = 0$. On a donc $B \in \operatorname{Vect}\{I_n, A, \dots, A^{r-1}\}$; l'inclusion réciproque est évidente donc $\mathbb{K}[A] = \operatorname{Vect}\{I_n, A, \dots, A^{r-1}\}$ puis on vérifie que (I_n, A, \dots, A^{r-1}) est libre car si $\alpha_0 I_n + \alpha_1 A + \dots + \alpha_{r-1} A^{r-1} = 0$ alors $P = \alpha_0 + \alpha_1 X + \dots + \alpha_{r-1} X^{r-1}$ annule A et est de degré < r donc est nul, ie $\alpha_i = 0$.
- 3. Si B commute avec A alors les espaces propres de A sont stables par B donc si $A = P \operatorname{diag}(\lambda_1 I_{m_1}, \dots, \lambda_r I_{m_r}) P^{-1}$ alors $B = P \operatorname{diag}(B_1, \dots, B_r) P^{-1}$ (diag par blocs); le réciproque étant évidente, on en déduit que $(B_1, \dots, B_r) \mapsto P \operatorname{diag}(B_1, \dots, B_r) P^{-1}$ est un isomorphisme de $\mathcal{M}_{m_1}(\mathbb{K}) \times \dots \times \mathcal{M}_{m_r}(\mathbb{K})$ sur $\mathbb{C}(A)$, ce qui donne $\operatorname{dim}(C(A)) = \sum_{i=1}^r \operatorname{dim}(\mathcal{M}_{m_i}(\mathbb{K})) = \sum_{i=1}^r m_i^2$.
- 4. $\dim(C(A)) = r \Leftrightarrow \sum_{i=1}^r m_i^2 = r$ ce qui arrive si et seulement si $m_i = 1$ et comme $n = \sum_{i=1}^r m_i$, ceci équivaut à n = r (A possède n vp simples); les autres équivalences sont évidentes avec ce qui précède, en particulier car $\mathbb{K}[A] \subset C(A)$ donc $\mathbb{K}[A] = C(A)$ si et seulement si $\dim(\mathbb{K}[A]) = \dim(C(A))$.

Exercice 62 [sujet] On vérifie $A = PDP^{-1}$ avec D = diag(0, 3, -3), on vérifie que si $M^3 + 2M = A$ alors $AM = MA = M^4 + 2M^2$ donc $P^{-1}MP$ commute avec D. Comme les coefficients diagonaux de D sont 2 à 2 distincts, on en déduit

$$P^{-1}MP$$
 est diagonale. On pose alors $M = P \operatorname{diag}(a, b, c) P^{-1}$, M est alors solution si et seulement si
$$\begin{cases} a^3 + 2a = 0 \\ b^3 + 2b = 3 \\ c^3 + 2c = -3 \end{cases} \Leftrightarrow$$

 $\begin{cases} a=0\\ b=1\\ c=-1 \end{cases}$ (car a,b,c sont réels). Il existe donc une seule solution $M=P\mathrm{diag}(0,1,-1)P^{-1}=\frac{1}{3}A.$

Exercice 63 [sujet] 1. Si $A = PDP^{-1}$ avec $D = \operatorname{diag}(a_iI_{n_i})$ (vp distinctes) alors $B = P\Delta P^{-1}$ avec $\Delta = D^3 + D + I_n = \operatorname{diag}(b_iI_{n_i})$ et $b_i = a_i^3 + a_i + 1$. On aura A = Q(B) si et seulement si $D = Q(\Delta)$ donc si et seulement si $a_i = Q(b_i)$ pour tout i (c'est donc un problème d'interpolation). Comme $x \mapsto x^3 + x + 1$ est injective sur \mathbb{R} (car strictement croissante), les b_i sont deux à deux distinctes donc un tel polynôme Q existe.

2. Le problème est que dans \mathbb{C} , $x \mapsto x^3 + x + 1$ n'est plus injective; si on prend $A = \begin{pmatrix} 0 & 0 \\ 0 & i \end{pmatrix}$, on a B = 0 et il est impossible de trouver Q tel que A = Q(B)

Exercice 64 [sujet] **1.** $\mathcal{X}_A = X(X-1)(X-3)$ SARS donc A est DZ. $E_1(A) = \text{Vect}\{(2,-1,1)\}$ et $E_3(A) = \text{Vect}\{(2,-1,1)\}$ $Vect\{(0,1,1)\}\ donc\ A$ n'est pas DZ

- **2.** si $f(e_i) = \lambda_i e_i$ alors $f(g(e_i)) = g^3(e_i) = g(f(e_i)) = \lambda_i g(e_i)$ et $g(e_i) \neq 0$ car si $g(e_i) = 0$ alors $g^2(e_i) = f(e_i) = 0$
- **3.** Comme $E_1(f)$ et $E_3(f)$ sont deux droites, engendrées par e_1 et e_3 , on a $g(e_i) \in \text{Vect}\{e_i\}$ donc $g(e_i) = \mu_i e_i$ puis $f(e_i) = mu_i^2 e_i$ donc e_1 est associé à ± 1 et e_3 à ± 3 .
- 4. g possède donc deux vp distinctes non nulles et $\det(g)^2 = \det(f) = 0$ donc 0 est aussi vp de g; \mathcal{X}_g est SARS donc g est DZ
- **5.** Dans la base (e_0, e_1, e_3) , la matrice de g est diag $(0, \pm 1, \pm \sqrt{3})$ donc il y a 4 endomorphismes g solutions.

1. $\ker(u-2id) = \operatorname{Vect}\{e_1\} \text{ et } \ker(u-id)^2 = \operatorname{Vect}\{e_2,e_3\}$ Exercice 65 | sujet |

- **2.** v commute avec u donc avec (u-2-i) et $(u-id)^2$.
- 3. X est diagonale par blocs car les 2 espaces sont stables. On vérifie que Y commute avec $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ si et seulement si

$$Y = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}; \text{ on a alors } Y^n = \begin{pmatrix} a^n & na^{n-1}b \\ 0 & a^n \end{pmatrix} \text{ donc les solutions sont } X = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & \gamma \\ 0 & 0 & \beta \end{pmatrix} \text{ avec } \alpha^n = 2 \text{ (une racine } n^{\text{ème}} \text{ de 2)}, \\ \beta^n = 1 \text{ et } n\beta^{n-1}\gamma = 1 \Leftrightarrow \gamma = \frac{\alpha}{n}.$$

Exercice 66 [sujet] **1.** $\ker(f^2) = \{xe_1 + ye_2 + ze_3, x + y - z = 0\}$ et $\ker(f - 2id) = \operatorname{Vect}\{e_1 + e_2\}$

- **2.** $e_1 e_2$
- **3.** $P = P(\mathcal{B} \to \mathcal{B}') = \begin{pmatrix} 0 & 1 & 1 \\ -4 & -1 & 1 \\ -4 & 0 & 0 \end{pmatrix}$
- **4.** g commute avec f^2 ; on a $h^4 = 0$ donc h est nilpotent puis $\mathcal{X}_h = X^2$ donc $h^2 = 0$ ce qui donnerait $\ker(f) = \ker(f^2)$.

Exercice 67 [sujet] Si B existe, on a $B^6 = 0$ donc B est nilpotente, donc $B^3 = 0$ (C-Ham). On en déduit $Im(B^2) \subset$ $\ker(B)$ ce qui est absurde car $\operatorname{rg}(B^2) = 2$ donc $\operatorname{rg}(B) \geqslant 2$ et $\dim(\ker(B)) \geqslant 2$ qui contredit le th du rg

Exercice 68 [sujet] 1. $A = PTP^{-1}$ avec $P = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $T = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$.

- **2.** $\mathcal{X}_A = X(X-1)^2 \text{ donc } M^2(M^2-I_3)^2 = 0, \ X^2(X^2-1)^2 \text{ annule } M \text{ donc } \operatorname{Sp}(M) \subset \{-1,0,1\}. \ \det(M)^2 = \det(A) = 0$
- 3. Si $\operatorname{Sp}(M) = \{-1,0,1\}$ alors M est DZ et A le serait aussi donc $\operatorname{Sp}(M) \neq \{-1,0,1\}$. Si $\operatorname{Sp}(M) = \{0\}$ alors $\operatorname{Sp}(M) = \{0\}$ ce qui est faux. On a donc $\operatorname{Sp}(M) = \{0,1\}$ ou $\operatorname{Sp}(M) = \{0,-1\}$. Les deux espaces propres de M sont forcément des droites (sinon M serait DZ), on a donc $E_0(M) = E_0(A)$ et $E_{\pm 1}(M) = E_1(A)$ ce qui donne $P^{-1}MP = \begin{pmatrix} 0 & 0 & \alpha \\ 0 & \pm 1 & \beta \\ 0 & 0 & \pm 1 \end{pmatrix} = T'$. On trouve deux solutions opposées $T' = \pm \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

$$P^{-1}MP = \begin{pmatrix} 0 & 0 & \alpha \\ 0 & \pm 1 & \beta \\ 0 & 0 & \pm 1 \end{pmatrix} = T'. \text{ On trouve deux solutions opposées } T' = \pm \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Exercice 69 [sujet] $\mathcal{X}_A = (X-1)(X-2)(X-3)$ donc $A = PDP^{-1}$ avec D = diag(1,2,3). AM = MA si et seulement si DN = ND avec $M = PNP^{-1}$; on vérifie que ND = DN si et seulement si N est diagonale (car les vp de A sont distinctes) donc la dimension du commutant de D est 3, celle du commutant de A est 3 aussi (car $N \mapsto PNP^{-1}$ est un isomorphisme du commutant de D sur celui de A). Comme I_3 , A et A^2 sont 3 matrices libres qui commutent avec A, elles forment une base du commutant de A qui est donc $\mathbb{R}_2[A]$.

Exercice 70 [sujet] P(A) est DZ et ses espaces propres sont des droites; comme A et P(A) commutent, toutes ces droites sont stables par A. Toute base de vecteurs propres de P(A) est aussi une base de vecteurs propres de A donc Aest DZ (et on peut vérifier aussi que les valeurs propres de A sont elles aussi deux à deux distinctes puisque P est une application donc $P(\lambda) \neq P(\mu) \Rightarrow \lambda \neq \mu$).

Exercice 71 [sujet] On vérifie que $\mathcal{X}_A = X^n + X^{n-1} + \dots + X + 1$ donc les vp de A sont les racines n+1ème de 1 autres que 1 donc n vp distinctes. Tout polynôme annulateur de A est donc divisible par \mathcal{X}_A (puisque $\mathrm{Sp}(A)$ est inclus dans les racines d'un tel polynôme) on en déduit que $(I_n, A, \ldots, A^{n-1})$ sont libres et comme A possède un polynôme annulateur de degré n, dim $\mathbb{C}[A] \leq n$ donc dim(C[A]) = n.

Exercice 72 |sujet| 1. \mathcal{X}_u est SARS

2. On vérifie $M \operatorname{diag}(1,2,3) = \operatorname{diag}(1,2,3)M$ si et seulement si M est diagonale

- 3. Comme les vp sont 2 à 2 distinctes, on vérifie comme à la question précédente que $\dim(C(u)) = 3$, (id, u, u^2) sont dans C(u) et libres (car sinon on aurait un polynôme annulateur de degré ≤ 2 , ce qui absurde car les 3 vp doivent être racines de ce polynôme) donc c'est une base de C(u)
- Exercice 73 |sujet| 1. Les espaces propres de A sont des droites stables par B donc engendrées par des vecteurs propres de B; toute base de vecteurs propres de A est donc aussi une base de vecteurs propres de B.
 - 2. Polynôme interpolateur de Lagrange
 - **3.** On a Q(D) = D' donc Q(A) = B.
 - 4. C'est faux : si $A = I_2$ alors A commute avec toute matrice B mais toute matrice n'est pas un polynôme en I_2 (les polynômes en I_2 sont des matrices scalaires donc forcément diagonales).
- Exercice 74 [sujet] 1. Si $A = PDP^{-1}$ alors $AMA = 0 \Leftrightarrow DND = 0$ avec $N = P^{-1}MP$ et comme $N \mapsto P^{-1}MP$ est un isomorphisme on a l'égalité des dimension annoncée. On a $(DND)_{i,j} = \lambda_i d_{i,j} \lambda_j$ donc $\dim(E) = n^2 - \operatorname{rg}(D)^2 = n^2 - \operatorname{rg}(D)$ $n^2 - \operatorname{rg}(A)^2$
 - **2.** Rien ne change : $M \mapsto Q^{-1}MP$ reste un isomorphisme.
- 1. X est vecteur propre de la matrice nulle et si $AX = \lambda X$, $BX = \mu X$ alors $(\alpha A + \beta B)X =$ Exercice 75 /sujet/ $(\alpha\lambda + \beta\mu)X$.
 - **2.** On complète X en une base \mathcal{B} de \mathbb{R}^n et on note la matrice de passage de la base canonique de \mathbb{R}^n à cette base \mathcal{B} ;

on a $M \in E_X$ si et seulement si $M = PNP^{-1}$ où N est une matrice dont la première colonne est $\begin{pmatrix} \ddots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$. Comme

 $M\mapsto PMP^{-1}$ est un isomorphisme, on en déduit que $\dim(E_X)=1+n(n-1)$ car $\{E_{1,1}\}\cup\{E_{i,j},i\geqslant 1,j\geqslant 2\}$ est une base de $P^{-1}E_XP$ (ensemble des matrices N).

Exercice 76 /sujet/ Si A est DZ avec des vp distinctes alors comme les espaces propres de A sont des droites stables par B, ils sont engendrés par des vecteurs propres de B donc toute base de vecteurs propres de A est aussi une base de vecteurs propres de B. Il existe P tel que $D = P^{-1}AP$ et $D' = P^{-1}BP$ sont diagonales puis il existe $Q \in \mathbb{R}_1[X]$ tel que Q(D) = D' donc B = Q(A) est un polynôme en A.

Si B est DZ avec des vp distinctes, c'est A qui est un polynôme en B.

Reste donc à étudier les cas où A et B n'ont qu'une seule valeur propre. Si A est DZ alors A est semblable à λI_2 donc $A = \lambda I_2 = \lambda B^0$ est un polynôme en B.

Reste le cas où A et B ne sont que trigonalisables : l'espace propre de A est une droite stable par B donc est engendrée par un vecteur propre de B et il existe P telle que $T = P^{-1}AP$ et $T' = P^{-1}BP$ sont toutes deux triangulaires supérieures.

$$T = \begin{pmatrix} \alpha & \alpha' \\ 0 & \alpha \end{pmatrix} \text{ et } T' = \begin{pmatrix} \beta & \beta' \\ 0 & \beta \end{pmatrix} \text{ avec } \alpha' \neq 0; \text{ on v\'erifie alors } T' = \beta I_2 + \frac{\beta'}{\beta} (T - \alpha I_2) \text{ donc } B \text{ est un polyn\^ome en } A.$$

 $T = \begin{pmatrix} \alpha & \alpha' \\ 0 & \alpha \end{pmatrix} \text{ et } T' = \begin{pmatrix} \beta & \beta' \\ 0 & \beta \end{pmatrix} \text{ avec } \alpha' \neq 0; \text{ on v\'erifie alors } T' = \beta I_2 + \frac{\beta'}{\beta} (T - \alpha I_2) \text{ donc } B \text{ est un polynôme en } A.$ $Dans \ \mathcal{M}_3(\mathbb{C}), \text{ cela devient faux : si } A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \text{ on v\'erifie } AB = BA = 0 \text{ mais } A^2 = 0 \text{ donc } B$

n'est pas un polynôme en A et $B^2 = 0$ donc A n'est pas non plus un polynôme en B.

Dans $\mathcal{M}_2(\mathbb{R})$, la démonstration précédente reste valable sauf dans le cas où \mathcal{X}_A et \mathcal{X}_B ne seraient pas scindés dans \mathbb{R} , il y a alors 2 vp complexes conjuguées pour A et B donc A et B sont DZ dans $\mathcal{M}_2(\mathbb{C})$ (on est donc dans le premier cas traité au dessus), on peut trouver un polynôme réel tel que P(D) = D' donc B est encore un polynôme en A : si $D = \operatorname{diag}(\alpha, \overline{\alpha})$ et $D' = \operatorname{diag}(\beta, \overline{\beta})$, il suffit de prendre $P = \lambda(X - \alpha) + \beta$ avec $\lambda = \operatorname{Im}(\beta) / \operatorname{Im}(\alpha)$.

Exercice 77 [sujet] 1. Symétrique réelle ou P SARS qui suit

- **2.** $(A+I_n)^2 = n(A+I_n)$
- **3.** P = (X+1)(X+1-n) annule A donc $Sp(A) \subset \{1, 1-n\}$
- 4. Tr(A) = 0 donc les deux valeurs propres possibles sont effectivement des valeurs propres; $rg(A + I_n) = 1$ donc $m_1(A) \stackrel{\mathrm{DZ}}{=} \dim(E_1(A)) = n-1$; la deuxième est donc simple

Exercice 78 [sujet] Notons $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. On a $\det(M) \det(M + I_2) = \det(A) = 0$ donc $0 \in \operatorname{Sp}(M)$ ou $-1 \in \operatorname{Sp}(M)$; de même $\det(M-I_2)\det(M+2I_2)=\det(A-2I_2)=0$ donc $1\in \operatorname{Sp}(M)$ ou $-2\in\operatorname{Sp}(M)$. On a donc 4 possibilité pour Sp(M):

- si $\operatorname{Sp}(M) = \{0,1\}$ alors $\mathcal{X}_M = X(X-1)$ et (C-H) $M^2 = M$ donc $M = \frac{1}{2}A$ qui est bien une solution.
- si $Sp(M) = \{0, -2\}$ alors $M^2 = -2M$ donc M = -A qui est solution.
- si $\operatorname{Sp}(M) = \{-1, 1\}$ alors $M^2 = I_2$ donc $M = A I_2$ qui est solution.

— si $Sp(M) = \{-1, -2\}$ alors $M^2 = -3M - 2I_2$ donc $M = \frac{1}{2}A - I_2$ qui est solution.

Exercice 79 [sujet] 1. $J^2 = nJ$ puis $\operatorname{Sp}(J) = \{0, n\}$, $E_0(J) = \operatorname{Vect}\{e_1 - e_i, i \geq 2\}$ (hyperplan) et $E_n(J) = \operatorname{Vect}\{(1, \dots, 1)\}$ (= $E_0(J)^{\perp}$ par th spectral si besoin)

- **2.** $P = (X^2 + X)^2 n(X^2 + X) = X(X + 1)(X^2 + X n)$ est SARS
- **3.** $MX = \lambda X \Rightarrow JX = (\lambda^2 + \lambda)X$
- **4.** On a $\operatorname{Sp}(M) \subset \{0, -1, \lambda_1, \lambda_2\}$ avec $\lambda_{1,2} = \frac{-1 \pm \sqrt{1 + 4n}}{2}$. $MJ = JM = M^3 + M^2$ donc les espaces propres de J sont stables par M; si $J = P\operatorname{diag}(0I_{n-1}, n)P^{-1}$ alors $M = P\operatorname{diag}(N, \mu)P^{-1}$ (matrices diagonales par blocs) puis $N^2 + N = 0$ et $\mu^2 + \mu = n$ donc $\mu = \lambda_{1,2}$; les solutions sont donc $M = P\operatorname{diag}(N, \lambda_{1,2})P^{-1}$ où $N \in \mathcal{M}_{n-1}(\mathbb{R})$ est DZ avec $\operatorname{Sp}(N) \subset \{-1, 0\}$.

Exercice 80 [sujet] $u^4 = u^3 \circ u = u^2$. On a Sp(u) $\subset \{0, 1, -1\}$, Tr(u) = $m_1(u) - m_{-1}(u)$ et rg(u) = $m_1(u) + m_{-1}(u)$ donc si rg(u) = Tr(u), on a $m_{-1}(u) = 0$ puis $u + id \in \mathcal{GL}(E)$ donc $0 = u^3 - u = (u + id) \circ (u^2 - u)$ puis $u^2 - u = 0$; u est un projecteur (récip OK).

Exercice 81 [sujet] On a $(BA)^3 = 0$ donc $\operatorname{Sp}_{\mathbb{C}}(BA) = \{0\}$ (car non vide) donc $\mathcal{X}_{BA} = X^n$. Si $n \ge 2$, on a (C-Ham) $(BA)^2 = 0$. Par contre, si $n \ge 3$, on prend $A = E_{1,2} + E_{2,3}$ et $B = E_{1,1} + E_{1,2}$, on vérifie $(AB)^2 = E_{1,2}^2 = 0$ alors que $(BA)^2 = (E_{1,2} + E_{2,3})^2 = E_{1,3} \ne 0$.

Exercice 82 [sujet] **1.** Si u(x) = 0 alors $u^2(x) + u(x) + x = 0$ donc $\ker(u) \cap \ker(u^2 + u + id) = \{0\}$

- **2.** Si $x \in \ker(u^2 + u + id)$ alors $x = -u(x) u^2(x) \in \operatorname{Im}(u)$ et $(u^2 + u + id) \circ u = 0$ donc $\operatorname{Im}(u) \subset \ker(u^2 + u + id)$
- **3.** On a prouver $\ker(u) \cap \operatorname{Im}(u) = \{0\}$ et le th du rg permet de conclure
- 4. $deg(\mathcal{X}_v) = dim(Im(u)) = rg(u)$
- 5. $X^2 + X + 1$ annule v donc $0 \notin \operatorname{Sp}(v)$; On en déduit aussi que v ne possède pas de vp (réelle) donc $\operatorname{rg}(u) = \operatorname{deg}(\mathcal{X}_v)$ est pair

Exercice 83 [sujet] 1. cours

- **2.** $X^3 X^2 + X 1 = (X 1)(X^2 + 1)$ donc $\operatorname{Sp}_{\mathbb{C}}(A) \subset \{1, i, -i\}$ avec (A r'eelle) $m_i(A) = m_{-i}(A)$ donc $\det(A) = 1^{m_1} \times |i|^{2m_i} = 1$
- **3.** $\operatorname{Tr}(A) = m_1 + m_i(i-i) = m_1 = n 2m_i$ donc, en particulier, $\operatorname{Tr}(A) \in \llbracket 0, n \rrbracket$

Exercice 84 [sujet] $X^3 - 3X - 5 = (X - r)(X - \lambda)(X - \overline{\lambda})$ avec r > 1 (étudier la fonction polynômiale) et A est réelle donc $\det(A) = r^{n_1} |\lambda|^{2n_2} > 0$

Exercice 85 [sujet] $P = X^3 - X - 1$ annule A donc les vp de A font partie des racines de P; on vérifie (étude de fct) que P admet une seule racine réelle r et qu'elle est > 0. Comme A est réelle ses valeurs propres complexes sont conjuguées avec les mêmes ordre de multiplicité donc si $P = (X - r)(X - s)(X - \overline{s})$ alors $\mathcal{X}_A = (X - r)^{\alpha}(X - s)^{\beta}(X - \overline{s})^{\beta}$ (avec α et β nuls éventuellement). On a donc $\det(A) = r^{\alpha}|s|^{\beta} > 0$.

Exercice 86 [sujet] 1. P = X(X - 3i)(X + 3i) annule A

- **2.** Si A est DZ sur \mathbb{R} alors $Sp(A) = \{0\}$, A est semblable à 0 donc A = 0. Sur \mathbb{C} oui car P est SARS
- 3. $m_{3i}(A) = m_{-3i}(A)$ donc $m_0(A) = n 2m_{3i}(A)$ ne peut pas être nul si n est impair
- 4. A est DZ donc cf 1.b

Exercice 87 [sujet] $X^5 - X^2 = X^2(X-1)(X-j)(X-j^2)$ donc $\operatorname{Sp}_{\mathbb{C}}(M) \subset \{0,1,j,j^2\}$; A est réelle donc $m_j = m_{j^2}$ puis $\operatorname{Tr}(M) = m_1 + m_j(j+j^2) - m_1 - m_j$ donc $m_1 = n, \ m_0 = m_j = 0$ (ie $\chi_M = (X-1)^n$). On a ensuite $M^2(M-jI_n)(M-j^2I_n)(M-I_n) = 0$ et M, M_jI_n , $M-j^2I_n$ sont inversibles donc $M = I_n$ (récip évidente)

Exercice 88 [sujet] P = X(X-2)(X-3) annule A donc $Sp(A) \subset \{0,2,3\}$, A possède 3 vp (en les répétant) dont la somme est 7; la seule possibilité est 2, 2, 3 donc $\mathcal{X}_A = (X-2)^2(X-3)$. De plus P est SARS donc A est DZ. Les solutions sont donc toutes les matrices semblables à diag(2,2,3).

Exercice 89 [sujet] A est inversible donc $A^2 - 3A + 2I_5 = 0$; P = (X - 1)(X - 2) annule A donc les vp possibles de A sont 1 et 2 (et A en possède 5), leur somme est 8 donc $\mathcal{X}_A = (X - 1)^2(X - 2)^3$

Exercice 90 [sujet] $A - I_3 \notin \mathcal{GL}_3(\mathbb{R})$ donc $1 \in \operatorname{Sp}(A)$, si α et β sont les deux autres vp complexes de A, on a $1 + \alpha + \beta = \operatorname{Tr}(A) = -6$ et $1 \times \alpha \times \beta = \det(A) = 10$ donc $\{\alpha, \beta\} = \{2, 5\}$ puis $\mathcal{X}_A = (X - 1)(X + 2)(X + 5) = X^3 + 6X^2 + 3X - 10$ et par C-H, on a un polynôme annulateur permettant de calculer $A^{-1} = \frac{1}{10}(A^2 + 6A + 3I_3)$.

Exercice 91 [sujet] 1. Cours

- 2. $P = X(X-2)^2$ annule A donc les vp possibles de A sont 0 et 2; comme $Tr(A) = 2m_2(A) = 0$, la seule vp possible est 0. La matrice $A 2I_n$ est donc inversible et $A(A 2I_n)^2 = 0 \Leftarrow A = 0$ (récip évidente).
- **Exercice 92** [sujet] $X^2 3X + 2 = (X 1)(X 2)$ SARS donc A est DZ (dans \mathbb{R}) et $Sp(A) \subset \{1, 2\}$ puis $X^4 X^3 X + 1 = (X 1)^2(X^2 + X + 1)$ donc $Sp(A) = \{1\}$ et comme A est DZ, on a $A = I_n$ (récip OK)

Exercice 93 [sujet] **1.** $\det(A)^2 = \det(-I_n) = (-1)^n \ge 0$ car A est réelle donc n est pair.

- 2. $X^2 X + 1 = (X + j)(X + j^2)$ annule B donc les vp possibles de B sont -j et $-j^2$; comme B est réelle, -j et $-j^2$ sont effectivement vp avec le même ordre de multiplicité α et $n = 2\alpha$ est pair.
- 3. Si $X \in \ker(C) \cap \operatorname{Im}(C)$ alors CX = 0 et X = CY donc $C^3Y C^2Y + CY = 0$ qui donne X = 0; le théorème du rang assure alors $R^n = \ker(C) \oplus \operatorname{Im}(C)$. $\operatorname{Im}(C)$ est un sev stable par C sur lequel l'endomorphisme induit est bijectif donc vérifie $v^2 v + id = 0$ donc $\operatorname{rg}(C)$ est pair d'après la question précédente.

Exercice 94 [sujet] 1. $P = X^2 + X + 1 = (X - j)(X - j^2)$ annule M donc $\operatorname{Sp}_{\mathbb{R}}(M) = \emptyset$ donc M n'est pas DZ dans $\mathcal{M}_n(\mathbb{R})$; par contre P est SARS dans \mathbb{C} donc M est DZ dans \mathbb{C} . $M^{-1} = -(M + I_n)$

- 2. M est réelle donc j et j^2 sont vp de M avec le même ordre de multiplicité α . On a $n=2\alpha$ pair, ${\rm Tr}(M)=\alpha(j+j^2)=-\alpha=-\frac{n}{2}$ et ${\rm det}(M)=j^\alpha j^{2\alpha}=1$
- 3. A est annulée par X^4+X^2+1 SARS dans $\mathbb C$ donc A est DZ dans $\mathbb C$ mais pas dans $\mathbb R$ sinon M le serait aussi. Les vp possibles de A sont $\pm j$ et $\pm j^2$ avec les même ordres de multiplicité pour j et j^2 et pour -j et $-j^2$ donc $\mathrm{Tr}(A)=a(j+j^2)-b(j+j^2)=b-a\in\mathbb Z$; de plus $\frac{n}{2}=a+b$ est l'ordre de multiplicité de j comme vp de M (diagonaliser A dans $\mathbb C$ et calculer A^2) donc a+b est impair et b-a=(a+b)-2a sera impair aussi.

Exercice 95 [sujet] **1.** $P = X(X-2)^2(X-\sqrt{2})(X+\sqrt{2})$

2. $\operatorname{Sp}(M) \subset \{0,2,\sqrt{2},-\sqrt{2}\}$ et $\operatorname{Tr}(M)=2m_2+m_3\sqrt{2}-m_4\sqrt{2}$ donc, comme $\sqrt{2} \notin \mathbb{Q}$, on a $m_3=m_4$ puis $\operatorname{Tr}(M)=2m_2$ donc $m_2=0$. Comme $2 \notin \operatorname{Sp}(M), \ M-2I_n$ est inversible puis $X(X-\sqrt{2})(X+\sqrt{2})$ est SARS et annule M. On en déduit M DZ et semblable à $D=\operatorname{diag}(0I_{m_1},\sqrt{2}I_{m_3},-\sqrt{2}I_{m_3})$; on vérifie réciproquement que toute matrice de la forme PDP^{-1} convient

Exercice 96 | sujet | 1. Cours

- **2.** Sp(A) $\subset \{-3, j, j^2\}$ et Tr(A) = $-3m_{-3}(A) + m_j(A)(j+j^2)$ car A est réelle donc $m_j(A) = m_{j^2}(A)$ puis Tr(A) $\in \mathbb{Z}^-$ car $j+j^2=-1$.
- 3. $P = X(X^2 + 1)$ convient : on a alors $rg(A) = m_i(A) + m_{-i}(A) = 2m_i(A)$ si A est réelle
- Exercice 97 [sujet] 1. $e^{2i\pi/5}$ est racine de $X^5-1=(X-1)(X^4+X^3+X^2+X+1)$ donc de $X^4+X^3+X^2+X+1=X^2\left[\left(X+\frac{1}{X}\right)^2+\left(X+\frac{1}{X}\right)-1\right]$; on en déduit que $e^{2i\pi/5}+e^{-2i\pi/5}=2a$ est racine de X^2+X-1 et a est racine de $4X^2+2X-1$. Comme $a\geqslant 0$, on a $a=\frac{-1+\sqrt{5}}{4}$ et $b=2a^2-1=\frac{-1-\sqrt{5}}{4}$.
 - 2. On a Sp(A) $\subset \{e^{2ik\pi}/5, k \in [1,4]\}$ et A est réelle donc Tr(A) = $m_1 \left(e^{2i\pi/5} + e^{-2i\pi/5}\right) + m_2 \left(e^{4i\pi/5} + e^{-4i\pi/5}\right) = m_1 a + m_2 b = -\frac{1}{4}(m_1 + m_2) + \frac{\sqrt{5}}{4}(m_1 m_2)$. Comme $\sqrt{5} \notin \mathbb{Q}$, on a $m_1 m_2 = 0$. Enfin, $n = 2m_1 + m_2 = 4m_1$ (la somme des ordres de multiplicité est égal à n).

Exercice 98 [sujet] Il faut sans doute dire qu'on a besoin de la factorisation de P pour localiser les valeurs propres (et on peut penser que l'examinateur donne alors cette factorisation, ou une racine « évidente »); M est forcément DZ car P est SARS et M possède au plus 3 valeurs propres. Une seule est impossible pour avoir $\mathrm{Tr}(M)=0$, deux aussi car $\sqrt{5}\notin\mathbb{Q}$ donc $\mathrm{Sp}(M)=\{\lambda_1,\lambda_2,\lambda_3\}$ (dans l'ordre de la factorisation de P); on doit avoir $n_1\lambda_1+n_2\lambda_2+n_3\lambda_3=0$ donc $n_2=n_3$ (car $\sqrt{5}\notin\mathbb{Q}$) et $-5n_1+3(n_2+n_3)=0$ ie $5n_1=6n_2$. On a donc au minimum $n_1=6,\,n_2=n_3=5$ puis $n=n_1+n_2+n_3\geqslant 16$. Réciproquement $M=\mathrm{diag}(\lambda_1I_6,\lambda_2I_5,\lambda_3I_5)$ convient.

Exercice 99 [sujet] $P = X^2 + X + 4$ n'a pas de racine réelle donc A possède 2 racines complexes conjuguée avec le même ordre de multiplicité α ; $n = 2\alpha$ est pair, $\det(A) = (r_1r_2)^{\alpha} = 4^{n/2} = 2^n$ (produit des racines de P) et $\operatorname{Tr}(A) = \alpha(r_1 + r_2) = -\alpha = -\frac{n}{2}$ (somme des racines de P).

Exercice 100 [sujet] **1.** Utiliser le binôme pour $(M + M^{-1})^k$ car M et M^{-1} commutent; résultats cf c)

- **2.** On a $M^2 + I_n = M$ et $X^2 X + 1$ est SARS dans \mathbb{C} , M est réelle donc semblable à $D = \operatorname{diag}(-jI_p, -j^2I_p)$ avec n = 2p (forcément pair)
- 3. $M^k + M^{-k} = P(D^k + D^{-k})P^{-1}$ puis $(-j)^k + (-j^2)^k = (-1)^k \left(e^{\frac{2ik\pi}{3}} + e^{-\frac{2ik\pi}{3}}\right) = (-1)^k 2\cos\frac{2ik\pi}{3}$ donc $M^k + M^{-k} = (-1)^k 2\cos\frac{2ik\pi}{3}I_n$

Exercice 101 [sujet] $A = {}^t(A^2) = ({}^tA)^2 = A^4$ donc $P = X(X^3 - 1)$ annule A; les racines de P sont $0, 1, j, j^2$; si 0 est vp alors j et j^2 ne peuvent plus l'être (car A est réelle et possède au plus 2 vp). On a donc $\det(A^2 + A + I_2) = \det(A - jI_2) \det(A - j^2I_2) \neq 0$ puis, en simplifiant la relation initiale $A(A - I_2) = 0$. Si 1 n'est pas vp de A alors $A - I_2$ est aussi inversible et on arrive à A = 0 donc $\operatorname{Sp}(A) = \{0,1\}$, A est DZ donc semblable à $E_{2,2}$.

Exercice 102 [sujet] 1. cours

2. On a
$$(A^T)^2 = (I_3 - A)$$
 et $(A^2)^T = (I_3 - A^2)^2$ donc $P = X(X - 1)(X^2 + X - 1) = X(X - 1)\left(X - \frac{-1 + \sqrt{5}}{2}\right)\left(X - \frac{-1 - \sqrt{5}}{2}\right)$ annule A ; $0 = \text{Tr}(A) = m_1(A) + m_{\lambda}(A)\frac{-1 + \sqrt{5}}{2} + m_{\lambda'}(A)\frac{-1 - \sqrt{5}}{2}$ donc $(2m_1 - m_{\lambda} - m_{\lambda'}) + \sqrt{5}(m_{\lambda} - m_{\lambda'}) = 0$. Comme $\sqrt{5} \notin \mathbb{Q}$, on doit avoir $m_{\lambda} = m_{\lambda'}$ et $2m_1 = m_{\lambda} + m_{\lambda'}$ et $m_1 + m_{\lambda} + m_{\lambda'} = 3 - m_0 \leqslant 3$ donc $m_0 = 0$, $m_1 = m_{\lambda} = m_{\lambda'} = 1$. Mais comme $1 \in \text{Sp}(A)$, on aurait $A - I_3$ non inversible alors que $A - I_3 = (A^T)^2$ qui serait inversible car $0 \notin \text{Sp}(A)$ donc absurde

Exercice 103 [sujet] 1. Cours

- 2. On a $M^2+M-I_n=0$ donc $X^2+X-1=\left(X-\frac{-1+\sqrt{5}}{2}\right)\left(X-\frac{-1-\sqrt{5}}{2}\right)$ est SARS et annule M donc M est DZ. On a $\det(M)=\left(\frac{-1+\sqrt{5}}{2}\right)^k\left(\frac{-1-\sqrt{5}}{2}\right)^{n-k}\neq 0$ et $\mathrm{Tr}(M)=k\left(\frac{-1+\sqrt{5}}{2}\right)+(n-k)\left(\frac{-1-\sqrt{5}}{2}\right)$ donc, comme $\sqrt{5}\notin\mathbb{Q}$, on a $\mathrm{Tr}(M)=0\Rightarrow n=0$ ce qui est absurde.
- 3. ${}^{t}M = I_{n} M^{2}$ donc ${}^{t}M^{2} = (I_{n} M^{2})^{2}$ et ${}^{t}M^{2} = {}^{t}(I_{n} {}^{t}M) = I_{n} M$ donc $X(X 1)(X^{2} + X 1)$ annule M et est SARS
- **4.** $\det(M^2) = \det(I_n {}^tM) = \det(I_n M)$ et $\det(M^2) = \det(M)^2$.

Exercice 104 [sujet] $X(X-1)^2$ annule A donc $\operatorname{Sp}(A) \subset \{0,1\}$; $(A-I_n)^2 \neq 0$ donc A n'est pas inversible et $0 \in \operatorname{Sp}(A)$; de même $A(A-I_n) \neq 0$ donc $A-I_n \notin \mathcal{GL}_n(\mathbb{R})$ et $\operatorname{Sp}(A) = \{0,1\}$. Comme X(X-1) n'annule pas A, A n'est pas DZ.

Exercice 105 [sujet] $(X-1)^3(X-2)$ annule f donc $\operatorname{Sp}(f) \subset \{1,2\}$ puis f serait DZ si (X-1)(X-2) annulait f, ce qui n'est pas le cas.

Exercice 106 [sujet] X^p-1 annule A donc les vp de A sont des racines $p^{\text{ème}}$ de 1, conjuguées si elles sont complexes puisque A est réelle. P est SARS dans $\mathbb C$ donc A est DZ dans $\mathcal M_2(\mathbb C)$. Si $\operatorname{Sp}(A)=\{1\}$ alors $A=I_2$ et $A^{12}=I_2$; si $\operatorname{Sp}(A)=\{-1\}$ (donc p pair) alors $A=-I_2$ donc $A^{12}=I_2$ et si $\operatorname{Sp}(A)=\{-1,1\}$ alors $A^2=I_2$ donc $A^{12}=I_2$. Reste les cas où $\operatorname{Sp}(A)=\{z,\overline{z}\}$ avec $z=e^{i\frac{2k\pi}{p}}$, on a $\operatorname{Tr}(A)=z+\overline{z}=2\cos\frac{2k\pi}{p}\in\mathbb Z\cap]-2,2[$ donc $\operatorname{Tr}(A)\in\{-1,0,1\}$; on a alors (C-H) $A^2=\operatorname{Tr}(A)A-I_2$ (car $\det(A)=|z|^2=1$) qui donne $A^{12}=I_2$ dans les 3 cas.

Exercice 107 /sujet/ 1. $X^2 + 1$ annule M_i

- **2.** Si $p \ge 2$, $\det(M_1 M_2) = (-1)^n \det(M_2 M_1) = (-1)^n \det(M_1 M_2)$ donne n pair puisque $\det(M_1 M_2) \ne 0$; on vérifie que $X \mapsto M_j X$ est un isomorphisme de $E_i(M_k)$ sur $E_{-i}(M_k)$ pour $k \ne j$ donc $\dim(E_i(M_j)) = \dim(E_{-i}(M_j))$.
- **3.** $\det(M_j) = |i|^n = 1$
- 4. pour n=2, il existe $P\in\mathcal{GL}_2(\mathbb{C})$ telle que $P^{-1}M_1P=\begin{pmatrix}i&0\\0&-i\end{pmatrix}$ puis $M_1M_k=-M_kM_1$ et $M_k^2=-I_2$ donne $P^{-1}M_kP=\begin{pmatrix}0&b_k\\c_k&0\end{pmatrix}$ avec $b_kc_k=-1$ puis on vérifie que M_2 étant définie, on a $M_3=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ et qu'il est impossible de trouver une $4^{\text{ème}}$ matrice donc $p\leqslant 3$. On trouve un exemple avec p=3 si $M_1=\begin{pmatrix}i&0\\0&-i\end{pmatrix}$ et $M_2=\begin{pmatrix}0&i\\i&0\end{pmatrix}$ et $M_3=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ Pour n=4 $P^{-1}M_1P=\begin{pmatrix}iI_2&0\\0&-iI_2\end{pmatrix}$ puis $M_i=P^{-1}\begin{pmatrix}0&A_i\\B_i&0\end{pmatrix}$ pour $i\geqslant 2$ avec $A_iB_i=-I_2$ puis en remplaçant P par $Q=P\begin{pmatrix}I_2&0\\0&A_2\end{pmatrix}$ d'inverse $Q=\begin{pmatrix}I_2&0\\0&-B_2\end{pmatrix}$ P^{-1} , on trouve $Q^{-1}M_1Q=\begin{pmatrix}iI_2&0\\0&-iI_2\end{pmatrix}$, $Q^{-1}M_2Q=\begin{pmatrix}0&-I_2\\I_2&0\end{pmatrix}$ puis $Q^{-1}M_kQ=\begin{pmatrix}0&M_k'\\M_k'&0\end{pmatrix}$ pour $k\geqslant 3$ avec M_k' qui vérifient les conditions pour n=2; on en déduit $p\leqslant 5$ et on trouve un exemple pour p=5 avec $M_1=\begin{pmatrix}iI_2&0\\0&-iI_2\end{pmatrix}$, $M_2=\begin{pmatrix}0&-I_2\\I_2&0\end{pmatrix}$ et $M_3=M_k=\begin{pmatrix}0&M_k'\\M_k'&0\end{pmatrix}$ en prenant pour M_3 une des trois matrices du cas n=2.

Exercice 108 [sujet] On a $A^2 - A = 2B$ et $A^3 - 6A = -B$ donc $2X^3 + X^2 + 13X$ annule A, SARS dans $\mathbb C$ donc A est DZ; $B = 6A - A^3$ est aussi DZ, de même pour C.

1. cours et dans une base adaptée à $E = \ker(p) \oplus \operatorname{Im}(p)$, on a $\operatorname{Mat}_{\mathcal{B}}(p) = \begin{pmatrix} 0 & 0 \\ 0 & I_{-} \end{pmatrix}$ avec $r = \operatorname{rg}(p)$ Exercice 109 |sujet|

2. On vérifie $M(M-\lambda I_n)(M-\mu I_n)=0$ (chercher à éliminer A et B avec les 3 équations) puis $X(X-\lambda)(X-\mu)$ est

Exercice 110 [sujet] $A^2 - 2A$ est DZ donc $P = \prod_{i=1}^p (X - \lambda_i)$ avec $\operatorname{Sp}(A^2 - 2A) = \{\lambda_1, \dots, \lambda_p\}$ annule $A^2 - 2A$ alors $Q(X) = P(X^2 - 2X) = \prod_{i=1}^p (X^2 - 2X - \lambda_i)$ annule A; en trigonalisant A, on vérifie que si 1 n'est pas vp de A alors -1

n'est pas vp de $A^2 - 2A$ (car la seule solution de $X^2 - 2X = -1$ est X = 1) donc $\lambda_i \neq -1$ et $\Delta_i = 4(1 + \lambda_i) \neq 0$. Le polynôme Q est donc SARS et A est DZ.

Exercice 111 [sujet] On a $\mathcal{X}_A = (X-1)^n - 1$ donc A est inversible si et seulement si n est impair et le théorème de C-H fournit un polynôme annulateur permettant de calculer A^{-1} (classique)

Exercice 112 /sujet/ 1. Cours

2. Si u est bijectif alors $\ker(u) = \ker(u^2) = \{0\}$. On suppose $\det(u) = 0$; on a donc $\mathcal{X}_u = X^n + \cdots + \alpha X$ avec $\alpha = \mathcal{X}'_u(0) \neq 0$. Si $x \in \ker(u^2)$ alors le théorème de C-H donne $\alpha u(x) = 0$ donc $x \in \ker(u)$; l'inclusion inverse est évidente.

Exercice 113 [sujet] **1.** $\det(C_P) = (-1)^n a_0 = (-1)^{n+1} P(0)$

- **2.** $\mathcal{X}_{C_P} = P$
- 3. $\operatorname{rg}(C_P \lambda I_n) \geqslant n 1$ car les n 1 premières colonnes sont libres
- 4. si C_P est DZ alors comme les espaces propres sont des droites, il doit y avoir n telles droites donc n vp distinctes et P est SARS. Récip évidente puisque $\mathcal{X}_{C_P} = P$

Exercice 114 [sujet] On a $AX = \lambda X \Leftrightarrow \begin{cases} \sum_{j=1}^{n} x_j - \lambda x_1 = 0 \\ (i-1-\lambda)x_i = -\lambda x_1 \text{ si } i \geqslant 2 \end{cases}$ S'il existe $i \geqslant 2$ tel que $\lambda = i-1$ alors $x_1 = 0$ puis $x_j = 0$ pour $j \neq i$ et la première ligne donne $x_i = 0$; X est donc nul donc $\lambda \notin \operatorname{Sp}(A)$. On poursuit donc la

résolution en reportant x_i dans la première ligne et on obtient $AX = \lambda X \Leftrightarrow \begin{cases} \lambda \left(\sum_{i=0}^{n-1} \frac{1}{\lambda - i} - 1\right) x_1 = 0 \\ x_i = \frac{\lambda}{\lambda - i + 1} x_1 \end{cases}$ $\lambda = 0 \text{ alors } x_i = 0 \text{ pour } i \geqslant 2 \text{ et la première ligne donne aussi } x_1 = 0 \text{ done } 0 \notin S^{-1}(A) \xrightarrow{R} X^{-1}(A)$ Si

 $\lambda = 0$ alors $x_i = 0$ pour $i \geqslant 2$ et la première ligne donne aussi $x_1 = 0$ donc $0 \notin \operatorname{Sp}(A)$. Pour finir, ce système admet donc une solution non nulle si et seulement si $\sum_{i=1}^{n-1} \frac{1}{\lambda - i} = 1$.

En dessinant le tableau de variations de $\phi: \lambda \mapsto \sum_{i=0}^{n-1} \frac{1}{\lambda - i}$ (continue sur $\mathbb{R} \setminus [0, n-1]$) et strictement décroissante sur tout intervalle où elle est continue λ (in the properties of the set continue). intervalle où elle est continue), on vérifie que $\phi(\lambda) = 1$ admet une solution sur chaque intervalle [i, i+1[pour $i \in [0, n-2]]$ et une sur $n-1,+\infty$ ce qui donne n vp distinctes donc A est DZ.

Exercice 115 [sujet] **1.** X^p annule N donc $Sp(N) = \{0\}$ (il est non vide puisque c'est le spectre complexe). On a donc $\mathcal{X}_N = X^n$.

- **2.** Par C-H, on a $N^n = 0$ puis $AN = NA \Rightarrow A^{-1}N = NA^{-1}$ donc $(A^{-1}N)^n = (A^{-1})^n N^n = 0$. On a $\det(A + N) = 0$ $\det(A)\mathcal{X}_{-A^{-1}N}(1) = \det(A) \operatorname{car} \mathcal{X}_{-A^{-1}N} = X^n.$
- 3. Par la formule du binôme, on a $(A+N)^p=AM$ avec $M=\sum_{k=0}^{p-1}\binom{p}{k}N^kA^{p-k-1}$ car $N^p=0$. On se contente de traiter le cas où $\det(A)=0$ car a $\det(A)=0$ car $\det(A)=0$ traiter le cas où $\det(A) = 0$: on a $(\det(A+N))^p = \det(A)\det(M) = 0$ donc $\det(A+N) = 0 = \det(A)$

Exercice 116 [sujet] **1.** On écrit $A = PJ_rQ^{-1}$ avec $r \le n-1$ et on choisit $M = PBQ^{-1}$ avec $b_{i,j} = 1$ si i = j+1 ou (i,j) = (1,n) et 0 sinon. On a $\det(M + \lambda A) = (-1)^{n+1} \det(PQ^{-1})$

2. $\det(M+\lambda A) = \det(A)\mathcal{X}_{-A^{-1}M}(\lambda)$ s'annule toujours dans \mathbb{C} puisque c'est un polynôme non constant.

Exercice 117 [sujet] En trigonalisant A, on trouve que si les vp de A sont $\lambda_1, \ldots, \lambda_n$ alors celles de P(A) sont $P(\lambda_1), \ldots, P(\lambda_n)$. On vérifie P(A) nilpotente si et seulement si $Sp(P(A)) = \{0\}$ donc P(A) est nilpotente si et seulement si $P(\lambda_i) = 0$ pour tout i.

Exercice 118 [sujet] Si A est DZ, alors $A = Q \operatorname{diag}(\alpha, \beta)Q^{-1}$; le polynôme $P - \alpha$ est non constant donc admet une racine complexe z_1 , ie $P(z_1) = \alpha$; de même il existe z_2 tel que $P(z_2) = \beta$. On pose alors $M = Q \operatorname{diag}(z_1, z_2)Q^{-1}$ et on a A = P(M).

Si A n'est pas DZ alors $\mathcal{X}_A = (X - \alpha)^2$ et on peut donc écrire $A = \alpha I_2 + N$ avec $N = A - \alpha I_2 \neq 0$ et $N^2 = 0$ (C-Ham). On choisit $P = X^2 + \alpha$: il existe M telle que $A = \alpha I_2 + N = P(M) = M^2 + \alpha I_2$ donc $N = M^2$. On a alors $M^4 = N^2 = 0$ donc M est nilpotente, puis $M^2 = 0$; or $M^2 = N \neq 0$.

Exercice 119 [sujet] 1. La relation est vraie si $P = X^k$ pour $k \leq n$ donc pour $P \in \mathbb{R}_p[X]$. Avec $P = \prod_{i=1}^p (X - \lambda_i)$, on trouve P(u) = 0 et P est SARS donc u est DZ. En utilisant la division euclidienne de $Q \in \mathbb{R}[X]$ par P, on trouve Q(u) = P(u) et $Q(\lambda_i) = P(\lambda_i)$ donc la relation est vraie pour tout polynôme $Q \in \mathbb{R}[X]$.

- 2. P annule u donc $\operatorname{Sp}(u) \subset \{\lambda_1, \dots, \lambda_p\}$; si on suppose $\lambda_p \notin \operatorname{Sp}(u)$ par exemple alors $Q = \prod_{i=1}^{p-1} (X \lambda_i)$ annule u (car u est DZ), on a donc $Q(\lambda_p)v_p = 0$ ce qui est absurde puisque $v_p \neq 0$. On a donc $\operatorname{Sp}(u) = \{\lambda_1, \dots, \lambda_p\}$. P annule u donc tout multiple de P aussi; si Q annule u, on a $Q = PP_1 + R$ avec $\deg(R) \leq p 1$, Q(u) = 0 donc R(u) = 0; R admet donc au moins p racines distinctes (les vp de u) donc R = 0 et les polynômes annulateurs de u sont les multiples de P.
- 3. Si (L_i) est la famille des polynômes d'interpolation de Lagrange aux points (λ_i) , on vérifie que $v_i = L_i(u)$ est le projecteur donné en prenant une base de vecteurs propres de u (écrire la matrice de v_i).

Exercice 120 [sujet] **1.** On a $a = PAP^{-1}$ si P est la matrice d'un chet de base

- 2. Il suffit de prendre $\lambda \notin \operatorname{Sp}(B)$, ce qui est possible car $\operatorname{Sp}(B)$ contient au plus n valeurs. On a donc $A(B \lambda I_n) = (B \lambda I_n)B$ donc AB = BA
- **3.** Avec $B = E_{i,j}$, on en déduit $a_{i,j} = 0$ si $i \neq j$ et $a_{i,i} = a_{j,j}$ donc $A = \mu I_n$ et f est une homothétie.

Exercice 121 [sujet] **1.** a) $P(x) = \det(xA - B) = \det(A)\mathcal{X}_{A^{-1}B}(x)$ est un polynôme de degré n

- b) P admet une racine complexe
- 2. si $\dim(E) \ge 2$, on choisit A, B linéairement indépendantes dans E et k tel que M = kA B ne soit pas inversible. C'est absurde car E est un sev donc $M \in E$; par liberté de (A, B), on a $M \ne 0$ et M n'est pas inversible.
- **3.** on a donc $E = \text{Vect}\{A\}$ avec A inversible (qui convient bien)
- Exercice 122 [sujet] 1. on suppose le résultat vrai pour tout $G \subset \mathcal{GL}_k(\mathbb{C})$ avec $k \leqslant n$ et on choisit $G \subset \mathcal{GL}_{n+1}(\mathbb{C})$. Pour $A \in G$, on a $\operatorname{Sp}(A) \subset \{-1,1\}$ et A est DZ; si pour tout $A \in G$, on a $\operatorname{Card}(\operatorname{Sp}(A)) = 1$ alors tous les éléments de G sont des homothéties (donc déjà diagonales). Sinon, on choisit $A \in G$ avec $\operatorname{Sp}(A) = \{-1,+1\}$, on a $\mathbb{C}^n = E_1(A) \oplus E_{-1}(A)$. Par commutativité, $E_1(A)$ et $E_{-1}(A)$ sont stables par $B \in G$ donc si \mathcal{B} est une base de vp de A, pour tout $B \in G$, on a $Q^{-1}BQ = \operatorname{diag}(B_1, B_2)$ (diag par blocs et $Q = P(\mathcal{B}_c \to \mathcal{B})$). On vérifie que $G_1 = \{B_1, B \in G\}$ et $G_2 = \{B_2, B \in G\}$ satisfont les mêmes hypothèses que G (avec $k \leqslant n$) donc par HR, il existe P_1, P_2 telles que $P_1^{-1}B_1P_1 = D_1$ et $P_2^{-1}B_2P_2 = D_2$ sont diag pour tout (B_1, B_2) . On pose alors $P = \operatorname{diag}(P_1, P_2)$, on vérifie $P^{-1} = \operatorname{diag}(P_1^{-1}, P_2^{-1})$ et $P^{-1}Q^{-1}BQP = \operatorname{diag}(D_1, D_2)$
 - **2.** On a $A = P^{-1}DP$ avec $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ et $\lambda_i \in \{-1, +1\}$ donc 2^n choix pour les λ_i au plus et P est fixée.

Exercice 123 [sujet] 1. facile

- **2.** $\mathcal{X}_B = X(X-2)^2$ puis $E_0(B) = \text{Vect}\{(1,0,1)\}$ et $E_2(B) = \text{Vect}\{(1,1,0),(1,0,-1)\}$ donc B est DZ
- **3.** a) $\mathcal{X}_A = (X-2)(X^2 + 2X 1)$ (SARS)
 - b) Si X est un vp de B et Y un vp de A^T associés à 2, on pose $M = XY^T \neq 0$ (à vérifier) et on a $M \in \mathcal{E}$
 - c) Avec $X_1 = (1, 1, 0)$ et Y = (0, 1, 1) puis $X_2 = (1, 0, -1)$ et Y on a deux matrices de \mathcal{E} linéairement indépendantes
- 4. par récurrence $B^kM=MA^k$ puis P(B)M=MP(A). Avec $P=\mathcal{X}_A$ et C-Ham, on a $\mathcal{X}_A(B)M=0$ donc comme B^2+2B-I_3 est inversible, on a $(B-2I_3)M=0$ puis $\mathrm{Im}(M)\subset E_2(B)$. On fait de même avec $P=\mathcal{X}_B$: on arrive à $M(A-2I_3)^2=0$, ie $(A^T-2I_3)^2M^T=0$; comme A est DZ, on a $\ker(A^T-2I_3)^2=\ker(A^T-2I_3)=\mathrm{Vect}\{Y\}$ puis $\mathrm{Im}\,M^T\subset\ker(A^T-2I_3)$. On en déduit que M^T est de rang 1 donc peut s'écrire $M^T=YC^T$ avec $C\in\mathcal{M}_{3,1}(\mathbb{R})$. On revient à $M=CY^T$ qui donne $C\in\mathrm{Im}(M)$ donc $C\in\mathrm{Vect}\{X_1,X_2\}$. Toutes les matrices de cette forme $(M=\alpha X_1Y^T+\beta X_2Y^T)$ conviennent comme on l'a vu avant donc $\dim(\mathcal{E})=2$.

Exercice 124 | sujet | 1. cours

- a) par récurrence
- b) facile avec $P = \sum_{k=1}^{d} a_k X^k$
- c) Avec $P = \mathcal{X}_A$ et C-Ham, on a $C\mathcal{X}_A(B) = 0$ donc $\mathcal{X}_A(B)$ n'est pas inversible et $\operatorname{Sp}(B) \cap Z(\mathcal{X}_A) \neq \emptyset$ qui donne le résultat car $Z(\mathcal{X}_A) = \operatorname{Sp}(A)$

Exercice 125 /sujet/ 1. Cours

- **2.** $\det(\mathcal{X}_A(B)) = \prod_{\lambda \in \operatorname{Sp}(A)} \left[(-1)^n \mathcal{X}_B(\lambda) \right]^{m_{\lambda}(A)} \neq 0 \text{ car } \mathcal{X}_B(\lambda) \neq 0 \text{ si } \lambda \in \operatorname{Sp}(A)$
- **3.** On prouve P(A)X = XP(B) pour tout $P \in \mathbb{C}[X]$ donc (C-Ham) $XX_A(B) = 0$ puis X = 0; récip facile
- **4.** $\varphi: X \in \mathcal{M}_n(\mathbb{C}) \mapsto AX XB$ est un endomorphisme injectif en dimension finie donc bijectif.

Exercice 126 [sujet] **1.** $f^{-1} = f$, $g^{-1} = g$, $X^2 - 1 = (X - 1)(X + 1)$ annule f et g et est SARS donc $Sp(f) \subset \{-1, 1\}$ et f est DZ (idem pour g). Si $Sp(f) = \{1\}$ alors f = id (car DZ) donc 2g = 0, ce qui contredit $g^2 = id$; de même $Sp(f) = \{-1\}$ est absurde.

- 2. si f(x) = x alors f(g(x)) = -g(f(x)) = -g(x) donc g induit une application linéaire de $\ker(f id)$ vers $\ker(f + id)$; on vérifie que la réciproque de cette application est g elle-même donc cette application induite est un isomorphisme et $\dim(E_1(f)) = \dim(E_{-1}(f))$; comme $E = E_{-1}(f) \oplus E_1(f)$, on a $\dim(E) = 2\dim(E_1(f))$
- 3. Soit \mathcal{B}_1 une base $E_1(f)$, $g(\mathcal{B}_1)$ est alors une base de $E_{-1}(f)$, $\mathcal{B} = (\mathcal{B}_1, g(\mathcal{B}_1))$ est alors une base de E qui répond à la question.

Exercice 127 [sujet] 1. $u^2 = id$ donc $u = u^{-1}$ puis $v = -u^{-1} \circ v \circ u$ donc $\operatorname{Tr}(v) = -\operatorname{Tr}(v)$ et $\operatorname{Tr}(v) = 0$

- **2.** $X^2 1 = (X 1)(X + 1)$ est SARS donc u et DZ et $\mathrm{Sp}(u) \subset \{-1, 1\}$; comme $\mathrm{Tr}(u) = 0$, on a forcément $m_1(u) = m_{-1}(u) = 2$
- **3.** u(v(x)) = -v(u(x)) = -v(x) donc $v(x) \in E_{-1}(u)$, idem pour y; reste à prouver que (v(x), v(y)) est libre : si $\alpha v(x) + \beta v(y) = 0$ alors $\alpha v(v(x)) + \beta v(v(y)) = 0$ donc $\alpha x + \beta y = 0$ donc $\alpha = \beta = 0$
- 4. Mat $\mathcal{B}(u \circ v) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$ donc $\mathcal{X}_{u \circ v} = (X^2 + 1)^2$; $E_i(u \circ v) = \text{Vect}\{x + iv(x), y + iv(y)\}$ et $E_{-i}(u \circ v) = \text{Vect}\{x iv(x), y iv(y)\}$

Exercice 128 [sujet] Si AB = BA alors A et B sont codiagonalisables, ie $A = R \operatorname{diag}(\lambda_i) R^{-1}$ et $B = R \operatorname{diag}(\mu_i) R^{-1}$; on pose $C = R \operatorname{diag}(1, 2, ..., n) R^{-1}$ (donc inversible), il existe P et Q tels $P(i) = \lambda_i$ et $Q(i) = \mu_i$ et on a A = P(C) et B = Q(C).

Réciproquement, si A = P(C) et B = Q(C) alors AB = BA car $\mathbb{K}[C]$ est commutative.

Exercice 129 | sujet | 1. Fait en cours

- **2.** On a $P^{-1}APJ_r = J_rQ^{-1}BQ$ puis en écrivant $P^{-1}AP = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$ et $Q^{-1}BQ = \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}$, on trouve $A_1 = B_1$ et $A_3 = B_2 = 0$ (donc les matrices sont triangulaires par blocs); on en déduit \mathcal{X}_{A_1} divise \mathcal{X}_A et \mathcal{X}_B .
- Exercice 130 [sujet] 1. Si X est un vp de A associé à $\lambda \neq 0$ alors $AX = \lambda X$ donc $B^3X = A^3X = \lambda^3 X$ et $B^3X = B(A^2X) = B(\lambda^2X) = \lambda^2 BX$. En divisant par $\lambda^2 \neq 0$, on a $BX = \lambda X$; on en déduit (l'autre inclusion se fait de même) $\ker(A \lambda I_n) \ker(B \lambda I_n)$ si $\lambda \neq 0$. Comme A est DZ, on a $\ker(A) = \ker(A^2) = \ker(B^2) = \ker(B)$ car B est DZ. Ainsi, A et B ont les mêmes espaces propres et les mêmes valeurs propres donc sont égales (semblables à la même matrice diagonale dans la même base).
 - **2.** Non : prendre A = 0 et $B = E_{1,2}$ (nilpotente d'indice 2)

Exercice 131 [sujet] Si Sp(B) \neq {0} alors il existe $X \neq 0$ tel que $BX = \lambda X \neq 0$ donc $AX = \frac{1}{\lambda}ABX = 0$ et X est aussi un vecteur propre de B. Si Sp(B) = {0} alors B est nilpotente, on introduit p tel que $B^p = 0$ et $B^{p-1} \neq 0$ puis X_0 tel que $Y = B^{p-1}X_0 \neq 0$. On a BY = 0 et $AY = AB(B^{p-2}X_0) = 0$ car on peut supposer $p \geqslant 2$ (sinon B = 0 et le résultat est évident).

On prouve le résultat par récurrence sur n: évident si n=1 puisque toute matrice de taille 1 est diagonale. On suppose que dans $\mathcal{M}_{n-1}(C)$, si AB=0 alors A est B sont cotrigonalisables et on choisit A et B dans $\mathcal{M}_n(\mathbb{C})$ telles que AB=0.

On introduit X un vecteur propre commun que l'on complète en une base, A et B sont donc semblables à $A_1 = \begin{pmatrix} \alpha & L_1 \\ 0 & A' \end{pmatrix}$

et $B_1 = \begin{pmatrix} \beta & L_2 \\ 0 & B' \end{pmatrix}$, AB = BA donne A'B' = B'A' donc on peut appliquer l'HR : il existe $P \in \mathcal{GL}_{n-1}(\mathbb{C})$ tel que

 $P^{-1}A'P = T_1$ et $P^{-1}B'P = T_2$. On vérifie que $Q = \begin{pmatrix} 1 & 0 \\ P \end{pmatrix}$ est inversible, d'inverse $Q^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & P^{-1} \end{pmatrix}$ et que $Q^{-1}A_1Q$ et $Q^{-1}B_1Q$ sont triangulaires.

On a $(A - \beta I_n)(B - \alpha I_n) = \alpha \beta I_n$ donc le raisonnement s'applique à $A - \beta I_n$ et $B - \alpha I_n$ si $\alpha \beta = 0$ puis on vérifie que si $A - \beta I_n$ et $B - \alpha I_n$ sont cotrigonalisables alors A et B aussi; par contre si $\alpha \beta \neq 0$, alors $B - \alpha I_n$ est proportionnelle à $(A - \beta I_n)^{-1}$ donc toute trigonalisation de $A - \beta I_n$ trigonalisera aussi $B - \alpha I_n$.

Exercice 132 [sujet] **1.** Il existe $x \neq 0$ tel que $v \circ u(x) = \lambda x$ donc $y = u(x) \neq 0$ et on vérifie que $u \circ v(y) = \lambda y$.

- **2.** 0 est vp de $u \circ v$ si et seulement si $\det(u \circ v) = 0$, ce qui donne le résultat puisque $\det(u \circ v) = \det(v \circ u)$.
- **3.** $u \circ v = id$ donc $0 \notin \operatorname{Sp}(u \circ v)$ et $\ker(v \circ u) = \mathbb{R}_0[X]$ donc $0 \in \operatorname{Sp}(v \circ u)$.

Exercice 133 [sujet] **1.** Si $Mat_{\mathcal{B}}(u) = D$ alors $Mat \mathcal{B}(u^2) = D^2$ reste diagonale

- **2.** $E_{1,2}$ n'est pas DZ mais $E_{1,2}^2=0$ l'est
- 3. analyse : si $x = a + b \in \ker(u^2 \lambda^2 id)$ alors $u(x) = \lambda(a b)$ donc $a = \frac{1}{2}\left(x + \frac{1}{\lambda}u(x)\right)$ et $b = \frac{1}{2}\left(x \frac{1}{\lambda}u(x)\right)$) donc la déc est unique si elle existe. Récip, pour un tel choix de a et b, on a x = a + b, $u(a) = \frac{1}{2}\left(u(x) + \frac{1}{\lambda}u^2(x)\right) = \frac{1}{2}(u(x) + \lambda x) = \lambda a$; de même $u(b) = -\lambda b$. On a donc $\ker(u^2 \lambda^2 id) \subset \ker(u \lambda id) \oplus \ker(u + \lambda id)$ (récip facile)
- **4.** Soient $\lambda_1, \ldots, \lambda_r$ les vp distinctes de u^2 . Il existe des complexes μ_i tels que $\mu_i^2 = \lambda_i$ et on a $\mathbb{C}^n = \bigoplus_{1 \leq i \leq r} E_{\lambda_i}(u^2)$
 - si u est bijectif alors $\lambda_i \neq 0$ donc $E_{\lambda_i}(u^2) = E_{\mu_i}(u) \oplus E_{-\mu_i}(u)$ donc $\mathbb{C}^n = \bigoplus_{1 \leqslant i \leqslant r} (E_{\mu_i}(u) \oplus E_{-\mu_i}(u))$ et u est DZ
 - sinon, on suppose $\lambda_1 = 0$ et on a $\mathbb{C}^n = \ker(u^2) \oplus \bigoplus_{2 \leqslant i \leqslant r} E_{\lambda_i}(u^2)$; avec $\ker(u) = \ker(u^2)$ et ce qui précède, on a $\mathbb{C}^n = \ker(u) \oplus \bigoplus_{2 \leqslant i \leqslant r} (E_{\mu_i}(u) \oplus E_{-\mu_i}(u))$ donc u est DZ
- Exercice 134 [sujet] 1. si B est inversible, $\det(A + tB) = \det(B)\mathcal{X}_{-AB^{-1}}(t)$ s'annule pour au plus n valeurs; si A est inversible et $t \neq 0$, $\det(A + tB) = \det(A)t^n\mathcal{X}_{-A^{-1}B}\left(\frac{1}{t}\right)$ donc $\det(A + tB)$ s'annule pour au plus n + 1 valeurs de t (0 et les inverses des vp de $-A^{-1}B$)
 - **2.** Appliquer la question précédente avec $A = (a_1 \dots a_n)$ et $B = (b_1 \dots b_n)$

Exercice 135 [sujet] **1.** $AB = A(BA)A^{-1}$ donc AB et BA sont semblables

- 2. Soit $f: \mathbb{R}^q \to \mathbb{R}^p$ canoniquement associée à A et \mathcal{B} base de \mathbb{R}^q adaptée à $\mathbb{R}^q = E_0 \oplus \ker(f)$ (E_0 un supplémentaire de $\ker(f)$); si $P = P(B_q \to \mathcal{B})$ (\mathcal{B}_q base canonique de \mathbb{R}^q) alors $A = \begin{pmatrix} A_1 & 0 \end{pmatrix} P$ avec $A_1 \in \mathcal{M}_{p,r}(\mathbb{R})$ où $r = \operatorname{rg}(A) \leqslant \min(p,q) = p$ donc il suffit de redécouper pour obtenir A' (en rajoutant à A_1 des colonnes nulles si besoin). On décompose $B = P^{-1} \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}$ avec $B_1 \in \mathcal{M}_p(\mathbb{R})$ et on a $AB = A'B_1$ alors que BA est semblable à $\begin{pmatrix} B_1A' & 0 \\ B_2A' & 0 \end{pmatrix}$
- **3.** On a $\mathcal{X}_{AB} = (X-1)^2$ donc AB est inversible, ce qui donne $\ker(B) = \{0\}$ et $\operatorname{Im}(A) = \mathbb{R}^2$ comme $(BA)^2 = BA$, on a $B(AB-I_2)A = 0$; $\operatorname{Im}(A) = \mathbb{R}^2$ donne $B(AB-I_2) = 0$ et $\ker(B) = \{0\}$ donne $AB = I_2$.

Exercise 136 [sujet] 1. $xI_n - PCP^{-1} = P(xI_n - C)P^{-1}$ et $(xI_nPCP^{-1})^{-1} = P(xI_n - C)^{-1}P^{-1}$

- 2. Si $P_A = \prod_{i=1}^n (X \lambda_i)$ alors $\frac{P_A'(x)}{P_A(x)} = \sum_{i=1}^n \frac{1}{x \lambda_i}$ et on vérifie que c'est aussi $\text{Tr}(xI_n A)^{-1}$ en trigonalisant A et en vérifiant que les coefficients diagonaux de $(xI_n A)^{-1}$ sont bien $\frac{1}{x \lambda_i}$.
- Exercice 137 [sujet] 1. Par C-H, on a $0 = \text{Tr}(\mathcal{X}_A(A)) = \text{Tr}((-1)^n \det(A)I_n) = (-1)^n n \det(A)$ donc $\det(A) = 0$ et $0 \in \text{Sp}(A)$. Il suffit ensuite de choisir une base dont le dernier vecteur est un vecteur propre associé à 0.
 - 2. $Tr(B^k) = 0$ par un calcul de produit par blocs puis une récurrence sur la taille de A donne le résultat.
- Exercice 138 [sujet] 1i) \Rightarrow ii) En TZ A dans \mathbb{C} , on trouve $\operatorname{Sp}(A) = \operatorname{Sp}(A^2) = \cdots = \operatorname{Sp}(A^n) = \{0\}$ car X^k annule A donc $\operatorname{Sp}(A) \subset \{0\}$
 - ii) \Rightarrow i) En TZ A dans \mathbb{C} , si Sp $(A) = \{\lambda_1, \dots, \lambda_r\}$ (vp distinctes) alors Sp $(A^k) = \{\lambda_1^k, \dots, \lambda_r^k\}$ donc $\sum_{i=1}^n n_i \lambda_i^k = 0$ pour $k \in [\![1,n]\!]$. Le vecteur $X = (n_1 \lambda_1, \dots, n_r \lambda_r)^T$ est solution de AX = 0 où A est la matrice de Vandermonde (de taille r, en ne gardant que les r premières valeurs de k). Comme la λ_i sont 2 à 2 distincts, A est inversible donc X = 0. On a donc $n_i \lambda_i = 0$ pour tout i, ce qui ne peut se produire que si r = 1 et $\lambda_1 = 0$. La seule vp de A est donc 0 donc $\mathcal{X}_A = X^n$ et (C-Ham) $A^n = 0$.
 - **2.** On vérifie par récurrence $AB^k B^kA = kB^k$, pour $k \ge 1$, donc $Tr(B^k) = 0$ et B est nilpotente.

Exercice 139 [sujet] **1.** a) $\mathcal{X}_M = X^n$ (car $m_{i,i} = 0$) donc $M^n = 0$ par C-Ham

- b) M^2 est symétrique réelle et $\mathrm{Sp}(M^2)=\{0\}$ car $(M^2)^n=0$ dont M^2 est semblable à 0
- c) $\operatorname{Tr}(M^2) = \sum_{1 \le i, j \le n} m_{i,j}^2 = 0 \text{ donc } m_{i,j} = 0$

2.
$$F + \mathcal{A}_n(\mathbb{R}) \subset \mathcal{M}_n(\mathbb{R})$$
 donc dim $(F) + \frac{n(n-1)}{2} \leqslant n^2$

Exercice 140 [sujet] 1. On a
$$AX = X$$
 si $X = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \neq 0$.

- **2.** On a $\lambda x_k = \sum_{j=1}^n a_{i,j} x_j$ donc $|(\lambda a_{k,k}) x_k| \le \sum_{j \ne k} a_{k,j} |x_j| \le |x_k| \sum_{j \ne k} a_{k,j}$ et comme $|x_k| > 0$ (car $X \ne 0$), on a $|\lambda a_{k,k}| \le \sum_{j \ne k} a_{k,j}$. Comme $|\lambda a_{k,k}| \ge |\lambda| a_{k,k}$, on a $|\lambda| \le \sum_{j=1}^n a_{k,j} = 1$.
- 3. Si $|\lambda| = 1 = \sum_{j=1}^{n} a_{k,j}$ alors on a $|x_k| \leqslant \sum_{j=1}^{n} |x_j| \leqslant |x_k| \sum_{j=1}^{n} a_{k,j} = |x_k|$ donc tout est égal. Par caractérisation de l'égalité dans l'inégalité triangulaire, les x_i sont positivement liés deux à deux (donc ont le même argument) et sont égaux en modules. On a donc $X = \alpha \begin{pmatrix} 1 \\ vdots \\ 1 \end{pmatrix}$ donc $\lambda = 1$.

Exercice 141 [sujet] 1. Si
$$AX = 0$$
 et i est un indice tel que $|x_i| = \max_{j \in [1,n]} |x_j|$, on a $a_{i,i}x_i = -\sum_{j \neq i} a_{i,j}x_j$ donc $|a_{i,i}x_i| \leq \sum_{j \neq i} |a_{i,j}x_j| \leq |x_i| \sum_{j \neq i} |a_{i,j}|$ ce qui donne $x_i = 0$ puis $X = 0$ donc A est inversible.

2. Si
$$\lambda \in \operatorname{Sp}(A)$$
, on a $|a_{i,i} - \lambda| \leq \sum_{j \neq i} |a_{i,j}|$ en appliquant la première question à la matrice $A - \lambda I_n$ donc $|\lambda| \geqslant |a_{i,i}| - \sum_{j \neq i} |a_{i,j}|$ puis on fait le produit de ces inégalités en utilisant $\det(A) = \prod_{i=1}^n \lambda_i$ (répéter les vp multiples)

Exercice 142 [sujet] **1.**
$$M = P \operatorname{diag}(1,0) P^{-1} \text{ avec } P = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$

- 2. On a $P^{-1}=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ puis $B=Q\mathrm{diag}(A,0)Q^{-1}$ avec $Q=\begin{pmatrix} I_n & I_n \\ 0 & -I_n \end{pmatrix}$ et $Q^{-1}=\begin{pmatrix} I_n & I_n \\ 0 & I_n \end{pmatrix}$. On en déduit $\chi_B=X^n\mathcal{X}_A$ puis P(B)=0 si et seulement si P(A)=0 et P(0)=0 ce qui donne l'équivalence des DZ : si B est DZ, il existe P SARS tel que P(B)=0 donc P(A)=0 (SARS) donc A DZ; si A est DZ, il existe P SARS tel que P(A)=0, si $P(0)\neq 0$ alors $P_1=XP$ est SARS tel que $P_1(B)=0$ (si P(0)=0 alors $P_1=P$ suffit) donc P_1 SARS) $P_1=1$ 0 est DZ
- **Exercice 143** [sujet] **1.** On vérifie par récurrence sur $k \ge 1$ que $B^k = \begin{pmatrix} A^k & A^k \\ 0 & 0 \end{pmatrix}$ et on fait attention ensuite à $B^0 = I_{2n}$ (donc au terme constant dans P(B))
 - **2.** rg(B = rg(A)
 - 3. Si A est DZ, on introduit $Q = \prod_{\lambda \in \operatorname{Sp}(A)} (X \lambda)$ SARS et annulateur de A. On distingue ensuite si Q(0) = 0 (ie $0 \in \operatorname{Sp}(A)$) ou non : si Q(0) = 0 alors Q annule B et est SARS donc B est DZ; si $Q(0) \neq 0$ alors P = XQ reste SARS et annule B donc B est DZ aussi.
 - 4. Si B est DZ alors il existe P SARS annulateur de B, donc de A et A est DZ.

Exercice 144 [sujet] 1. On vérifie que
$$P = \begin{pmatrix} 2I_n & 2I_n \\ I_n & -I_n \end{pmatrix}$$
 est inversible, d'inverse $P^{-1} = \frac{1}{4} \begin{pmatrix} I_n & 2I_n \\ I_n & -2I_n \end{pmatrix}$ puis $P^{-1}BP = \begin{pmatrix} -A & 0 \\ 0 & 3A \end{pmatrix}$

2. Si
$$A = QDQ^{-1}$$
 alors $\begin{pmatrix} Q & 0 \\ 0 & Q \end{pmatrix} \begin{pmatrix} -A & 0 \\ 0 & 3A \end{pmatrix} \begin{pmatrix} Q & 0 \\ 0 & Q \end{pmatrix}^{-1}$ est diagonale. Réciproquement, si B est DZ alors $\begin{pmatrix} -A & 0 \\ 0 & 3A \end{pmatrix}$ aussi donc A aussi (prendre un polynôme annulateur SARS de B)

Exercice 145 [sujet]
$$A \begin{pmatrix} I_n \\ -I_n \end{pmatrix} = 0$$

On vérifie que $P = \begin{pmatrix} I_n & I_n \\ I_n & -I_n \end{pmatrix}$ est inversible, d'inverse $P^{-1} = \frac{1}{2} \begin{pmatrix} I_n & I_n \\ I_n & -I_n \end{pmatrix}$ puis $P^{-1}AP = \begin{pmatrix} 2M & 0 \\ 0 & 0 \end{pmatrix}$. Si $M = QDQ^{-1}$

alors $\begin{pmatrix} Q & 0 \\ 0 & Q \end{pmatrix} \begin{pmatrix} 2M & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} Q \\ 0 & Q \end{pmatrix}^{-1}$ est diagonale. Réciproquement, si A est DZ alors $\begin{pmatrix} 2M & 0 \\ 0 & 0 \end{pmatrix}$ aussi donc M aussi (prendre un polynôme SARS de A)

Exercice 146 [sujet] Si B est DZ alors A aussi (prendre un polynôme annulateur SARS de B). Réciproquement B est semblable à $\begin{pmatrix} A & 0 \\ 0 & 3A \end{pmatrix}$: utiliser $P = \begin{pmatrix} I_n & I_n \\ 0 & I_n \end{pmatrix}$ d'inverse $P^{-1} = \begin{pmatrix} I_n & -I_n \\ 0 & I_n \end{pmatrix}$ puis si $A = QDQ^{-1}$ alors $\begin{pmatrix} Q \\ 0 & Q \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & 3A \end{pmatrix} \begin{pmatrix} Q \\ 0 & Q \end{pmatrix}^{-1}$ est diagonale.

Exercice 147 [sujet] 1. cours

2. cours

$$3. M^k = \begin{pmatrix} A^k & kA^k \\ 0 & A^k \end{pmatrix}$$

4.
$$P(M) = \begin{pmatrix} P(A) & AP'(A) \\ 0 & P(A) \end{pmatrix}$$

5. Soit P annulateur de M SARS, alors P(A) = 0 donc A est DZ

6. on a aussi
$$AP'(A) = 0$$
 et, si $P' = \prod_{i=1}^{d} (X - \mu_i)$ alors $\det(P'(A)) = \prod_{i=1}^{d} (-1)^n \mathcal{X}_A(\mu_i) \neq 0$ car les racines de P sont simples et $\operatorname{Sp}(A) \subset Z(P)$ donc les μ_i ne sont pas valeurs propres de A ; $AP'(A) = 0$ donne donc $A = 0$.

Exercice 148 [sujet] 1. cours

2.
$$P(M) = \begin{pmatrix} P(A) & BP'(A) \\ 0 & P(A) \end{pmatrix}$$

3. Soit P annulateur de A SARS, alors P(M)=0 donc M est DZ

4. Cours

5. Soit P SARS tel que P(M) = 0; on a P(A) = 0 donc A est DZ, on a aussi BP'(A) = 0 et, si $P' = \prod_{i=1}^d (X - \mu_i)$ alors $\det(P'(A)) = \prod_{i=1}^d (-1)^n \mathcal{X}_A(\mu_i) \neq 0$ car les racines de P sont simples et $\operatorname{Sp}(A) \subset Z(P)$ donc les μ_i ne sont pas valeurs propres de A; BP'(A) = 0 donne donc B = 0.

Exercice 149 [sujet] **1.** $\mathcal{X}_A = X^2(X-3)$ et $\operatorname{rg}(A) = 1$ donc $\dim(E_0(A)) = 2$ et A est DZ

2. $\mathcal{X}_C(\lambda) = \mathcal{X}_A(\lambda)^2$ donc $\operatorname{Sp}(A) = \operatorname{Sp}(C)$.

3.
$$\mathcal{X}_{B}(\lambda) = \begin{vmatrix} \lambda I_{n} - \alpha A & -\beta A \\ -\gamma A & \lambda I_{n} \end{vmatrix} \stackrel{C_{1} \leftarrow C_{1} + C_{2}}{=} \begin{vmatrix} \lambda I_{n} - \gamma A & -\beta A \\ \lambda I_{n} - \gamma A & \lambda I_{n} \end{vmatrix} \stackrel{L_{2} \leftarrow L_{2} - L_{1}}{=} \begin{vmatrix} \lambda I_{n} - \gamma A & -\beta A \\ 0 & \lambda I_{n} + \beta A \end{vmatrix} \operatorname{donc} \mathcal{X}_{B}(\lambda) = \operatorname{det}(\lambda I_{n} - \gamma A) \operatorname{det}(\lambda I_{n} + \beta A) = (-\gamma \beta)^{n} \mathcal{X}_{A} \left(\frac{\lambda}{\gamma}\right) \mathcal{X}_{A} \left(-\frac{\lambda}{\beta}\right) \operatorname{donc} \operatorname{si} \operatorname{Sp}(A) = \{\lambda_{1}, \dots, \lambda_{n}\} \operatorname{alors} \operatorname{Sp}(B) = \{-\beta \lambda_{1}, \dots, -\beta \lambda_{n}, \gamma \lambda_{1}, \dots, \gamma \lambda_{n}\}$$

De même, $\mathcal{X}_{B}(\lambda) = \begin{vmatrix} \lambda I_{n} - 2\beta A & -\beta A \\ \beta A & \lambda I_{n} \end{vmatrix} \stackrel{C_{1} \leftarrow C_{1} - C_{2}}{=} \begin{vmatrix} \lambda I_{n} - \beta A & -\beta A \\ -\lambda I_{n} + \beta A & \lambda I_{n} \end{vmatrix} \stackrel{L_{2} \leftarrow L_{2} + L_{1}}{=} \begin{vmatrix} \lambda I_{n} - \beta A & -\beta A \\ 0 & \lambda I_{n} - \beta A \end{vmatrix} \operatorname{donc}$

$$\mathcal{X}_{B}(\lambda) = (\operatorname{det}(\lambda I_{n} - \beta A))^{2} = (\beta)^{2n} \mathcal{X}_{A} \left(\frac{\lambda}{\beta}\right)^{2} \operatorname{donc} \operatorname{si} \operatorname{Sp}(A) = \{\lambda_{1}, \dots, \lambda_{n}\} \operatorname{alors} \operatorname{Sp}(B) = \{\beta \lambda_{1}, \dots, \beta \lambda_{n}, \beta \lambda_{1}, \dots, \beta \lambda_{n}\}$$
(les ordres de multiplicité sont doublés)

4. $B \begin{pmatrix} X \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. On vérifie de même que si $X \in \ker(A)$ alors $\begin{pmatrix} 0 \\ X \end{pmatrix} \in \ker(B)$ puis si (X_1, \dots, X_p) est une base de $\ker(A)$ alors $\begin{pmatrix} X_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} X_p \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ X_1 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ X_p \end{pmatrix}$ est une famille libre de $\ker(B)$ (à justifier) donc $\dim(\ker(B)) \geqslant 2p = 2\dim(\ker(A))$

5. On est dans le cas
$$\alpha + \beta = \gamma$$
 donc $\mathcal{X}_B(\lambda) = X^4(X+9)(X-6)$ puis $\ker(B) = \operatorname{Vect}\left\{\begin{pmatrix} X_1 \\ 0 \end{pmatrix}, \begin{pmatrix} X_2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ X_1 \end{pmatrix}, \begin{pmatrix} 0 \\ X_2 \end{pmatrix}\right\}$ avec $X_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ et $X_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $E_{-9}(B) = \operatorname{Vect}\left\{\begin{pmatrix} 3X \\ -2X \end{pmatrix}\right\}$ avec $X_3 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \in E_3(A)$ et $E_6(B) = \operatorname{Vect}\left\{\begin{pmatrix} X_3 \\ X_3 \end{pmatrix}\right\}$

Exercice 150 /sujet/ 1. Facile

2. Tr $F(A,B)=(a+d)\operatorname{Tr}(B)=\operatorname{Tr}(A)\operatorname{Tr}(B)$. On TZ A et $B:A=PTP^{-1}$ et $B=QT'Q^{-1}$; d'après Q1, on a $F(A,B)=F(P,Q)F(T,T')F(P^{-1},Q^{-1})$ et on vérifie que $F(P^{-1},Q^{-1})=F(P,Q)^{-1}$ (faire le produit avec Q1). On en déduit que F(A,B) et F(T,T') sont semblables; comme F(T,T') est triangulaire, on a $\det(F(A,B))=\det(T)^2\det(T')^2=\det(A)^2\det(B)^2$ et $\operatorname{rg}(F(A,B))=\operatorname{rg}(A)\operatorname{rg}(B)$

3. Le calcul précédent montre que si A et B sont DZ alors F(A,B) l'est aussi (prendre T et T' diagonales).

Exercice 151 [sujet] 1. rg(B) = n + rg(A)

- 2. Par $C_2 \leftarrow C_2 + \frac{1}{\lambda}C_1$ (par blocs), on trouve $\mathcal{X}_B(\lambda) = \lambda^n \det\left(\lambda I_n \frac{1}{\lambda}A\right) = \mathcal{X}_A(\lambda^2)$ donc $\mathcal{X}_B(X)$ et $\mathcal{X}_A(X^2)$ sont deux polynômes qui coïncident sur \mathbb{C}^* donc sont égaux. Les vp de B sont les racines carrées des vp de A.
- 3. Si $\mathcal{X}_A = \prod_{i=1}^n (X \alpha_i)$ SARS alors $\mathcal{X}_B = \prod_{i=1}^n (X \beta_i)(X + \beta_i)$ avec $\pm \beta_i$ les racines carrées complexes des α_i donc \mathcal{X}_B reste SARS
- 4. Avec n=1 et A=0, on a \mathcal{X}_A SARS mais B n'est plus DZ (nilpotente non nulle)
- **5.** On a $B^2 = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$ donc si B est DZ alors B^2 aussi dans A aussi
- 6. Si B est DZ alors $m_0(B) = 2m_0(A)$ et $\dim(E_0(B)) = \dim(E_0(A))$ (avec le th du rg et la première question); comme A est DZ, on a $\dim(E_0(A)) = m_0(A)$; on en déduit $m_0(A) = 0$ donc A est inversible. Réciproquement si A est DZ et inversible alors $\alpha_i \neq 0$ donc $m_{\alpha_i}(A) = m_{\beta_i}(B)$ et on vérifie $\dim(E_{\alpha_i}(A)) = \dim(E_{\beta_i}(B))$ car $\operatorname{rg}(B - \beta_i I_{2n}) = n + \operatorname{rg}(A - \alpha_i I_n)$ (faire $C_2 \leftarrow C_2 + \beta_i i C_1$ puis $L_2 \leftarrow L_2 + \beta_i I_n$)

Exercice 152 [sujet] 1. Pour $\lambda \neq 0$, on a $\mathcal{X}_B \stackrel{C_2 \leftarrow \frac{1}{\lambda}C_2}{=} \frac{1}{\lambda^n} \begin{vmatrix} \lambda I_n - A & -\frac{1}{\lambda}I_n \\ -I_n & I_n \end{vmatrix} \stackrel{C_1 \leftarrow C_1 + C_2}{=} \frac{1}{\lambda^n} \begin{vmatrix} \lambda I_n - A & -\frac{1}{\lambda}I_n \\ 0 & I_n \end{vmatrix}$ donc $\mathcal{X}_B(\lambda) = \frac{1}{\lambda^n} \mathcal{X}_A \left(\lambda - \frac{1}{\lambda}\right)$. Puis $\det(B) \stackrel{C_1 \leftrightarrow C_2}{=} (-1)^n \begin{vmatrix} I_n & A \\ 0 & I_n \end{vmatrix} = (-1)^n$ donc $0 \notin \operatorname{Sp}(B)$. On en déduit $\lambda \in \operatorname{Sp}(B) \Leftrightarrow \lambda - \frac{1}{\lambda} \in \operatorname{Sp}(A)$

2. On vérifie que que $x \mapsto x - \frac{1}{x}$ réalise une bijection de \mathbb{R}^{-*} sur \mathbb{R} et \mathbb{R}^{+*} sur \mathbb{R} donc pour chaque valeur propre μ_i de A, il existe deux valeurs propres λ_i et λ_i' de B qui sont solutions de $x - \frac{1}{x} = \mu_i$; de plus $m_{\lambda_i}(B) = m_{\lambda_i'}(B) = m_{\mu_i}(A)$. On vérifie ensuite $\operatorname{rg}(B - \lambda I_{2n}) = n + \operatorname{rg}\left(A - \left(\lambda - \frac{1}{\lambda}\right)I_n\right)$ (même manip que pour le calcul de \mathcal{X}_B) donc $\dim(E_{\mu_i}(A)) = \dim(E_{\lambda_i}(B)) = \dim(E_{\lambda_i'}(B))$ donc A est DZ si et seulement si B est DZ

Exercice 153 [sujet] $P(B) = \begin{pmatrix} P(1)I_n & 0 \\ ? & P(A) \end{pmatrix}$ donc si B est DZ, on choisit P SARS tel que P(B) = 0 donc P(A) = 0 et A est DZ. $\mathcal{X}_B = (X-1)^n \mathcal{X}_A$ donc $m_1(B) = n + m_1(A)$; $\operatorname{rg}(B-I_{2n}) = \operatorname{rg}\begin{pmatrix} 0 & 0 \\ A & A-I_n \end{pmatrix} \stackrel{C_1 \leftarrow C_1 - C_2}{=} \operatorname{rg}\left(I_n & A-I_n\right) = n$ donc $\dim(E_1(B)) = n$ puis $m_1(B) = \dim(E_1(B))$ donne $m_1(A) = 0$ donc $1 \notin \operatorname{Sp}(A)$.

Si A est DZ et (X_1, \ldots, X_n) une base de vecteurs propres de A alors $Y_i = \begin{pmatrix} 0 \\ X_i \end{pmatrix}$ sont des vecteurs propres de B (associés

aux mêmes valeurs propres que celles de A). On vérifie que $Z_i = \begin{pmatrix} X_i \\ -(A-I_n)^{-1}AX_i \end{pmatrix}$ sont aussi des vecteurs propres de B associés à la valeur propre 1; reste à vérifier que $(Y_1, \dots, Y_n, Z_1, \dots, Z_n)$ est libre.

Exercice 154 [sujet] On a $\begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix} M = \begin{pmatrix} A & -I_n \\ A^2 & 0 \end{pmatrix}$ donc $\operatorname{rg}(M) = \operatorname{rg}\begin{pmatrix} -I_n & A \\ 0 & A^2 \end{pmatrix} = n + \operatorname{rg}(A^2)$.

Si M est DZ alors A aussi (prendre un polynôme SARS annulateur de M); de plus $\mathcal{X}_M = \mathcal{X}_A^2$ donc A et M ont les mêmes vp mais $m_{\lambda}(M) = 2m_{\lambda}(A)$. Si λ est une vp de A alors $\operatorname{rg}(M - \lambda I_{2n}) = n - \operatorname{rg}(A - \lambda I_n)^2 = n - \operatorname{rg}(A - \lambda I_n)$ car A est DZ; on a donc par $\dim(E_{\lambda}(M)) = m_{\lambda}(M)$ (la multiplicité double mais la dimension de l'espace propre reste constante) donc M n'est pas DZ.

Exercice 155 [sujet] 1. $M^2 = diag(AB, BA)$

- 2. Cours
- 3. X^2-1 est SARS et annule M donc M est DZ et $\mathrm{Sp}(M)\subset\{\pm 1\}$. Comme $\mathrm{Tr}(M)=0=m_1(M)-m_{-1}M$, les deux réels 1 et -1 sont bien des valeurs propres et comme M est DZ, $m_1(M)=\dim(E_1(M))=n=m_{-1}(M)=\dim(E_{-1}(M))$
- **4.** On a $M^2 + I_{2n} = 0$ donc $X^2 + 1$ annule M et est SARS dans \mathbb{C} donc M est DZ dans \mathbb{C} et $\operatorname{Sp}_{\mathbb{C}}(M) \subset \{\pm i\}$; comme M est réelle, on a $m_i(M) = m_{-i}(M)$ donc i et -i sont bien valeurs propres et $m_i(M) = \dim(E_i(M)) = n = m_{-i}(M) = \dim(E_{-i}(M))$ (car M est DZ)

Exercice 156 [sujet] **1.** $N^{-1} = \begin{pmatrix} 0 & B^{-1} \\ A^{-1} & 0 \end{pmatrix}$

2. $N^2 = \operatorname{diag}(AB, BA)$ donc $P(N^2) = \operatorname{diag}(P(AB), P(BA))$.

- 3. Si N est DZ alors N^2 aussi donc AB aussi (prendre un polynôme annulateur de N^2). Réciproquement, si AB est DZ alors $BA = B(AB)B^{-1}$ (semblable à AB) l'est aussi ; si $AB = PDP^{-1}$ et $BA = QD'Q^{-1}$ alors $\begin{pmatrix} P & 0 \\ 0 & Q \end{pmatrix} N^2 \begin{pmatrix} P & 0 \\ 0 & Q \end{pmatrix}^{-1}$ est diagonale donc N^2 est DZ. Le polynôme $R = \prod_{\lambda \in \operatorname{Sp}(N^2)} (X \lambda)$ est SARS et annule N^2 donc le polynôme $R(X^2) = \prod_{\lambda \in \operatorname{Sp}(N^2)} (X^2 \lambda)$ annule N et est SARS car $\lambda \neq 0$ possède deux racines complexes distinctes. On en déduit N DZ
- **4.** On reprend les notations précédentes : si $0 \in \operatorname{Sp}(M)$ alors $R(X^2)$ n'est plus à racines simples ; on écrit $R(X^2) = X^2R_1(X^2)$ et si $R(M^2) = 0$ alors $M^2R_1(M^2) = 0$ donc $\operatorname{Im}(R_1(M^2)) \subset \ker(M^2) = \ker(M)$ donc $XR_1(X^2)$ annule aussi M et est SARS donc M est DZ (réciproque facile en diagonalisant M)

Exercice 157 [sujet] 1. $P^{-1} = \begin{pmatrix} I_n & -D \\ 0 & I_n \end{pmatrix}$

- 2. Il suffit de vérifier que $\varphi: M \mapsto MB AM$ est bijective : c'est un endomorphisme de $\mathcal{M}_n(\mathbb{C})$ (dimension finie), donc il suffit de vérifier que φ est injective. Si $M \in \ker(\varphi)$ alors AM = MB, on en déduit $A^kM = MB^k$ puis P(A)M = MP(B) pour tout $P \in \mathbb{C}[X]$. Avec $P = \mathcal{X}_A$, on en déduit (C-Ham) $M\mathcal{X}_A(B) = 0$; de plus $\det(\mathcal{X}_A(B)) = \prod_{i=1}^n \det(B \alpha_i I_n)$ si α_i sont les valeurs propres de A. Comme $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \emptyset$, $\det(B \alpha_i I_n) \neq 0$ et $\mathcal{X}_A(B)$ est inversible. On en déduit M = 0 et φ est un isomorphisme.

 On a $N = \begin{pmatrix} A & DB AD \\ 0 & B \end{pmatrix} = P \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} P^{-1}$ avec la matrice P de Q1.
- 3. Si on suppose $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) \neq \emptyset$ et si on choisit $\lambda \in \operatorname{Sp}(A) \cap \operatorname{Sp}(B)$. A et B sont DZ donc il existe P,Q telles que $A = PD_AP^{-1}$ et $B = QD_BQ^{-1}$ avec le premier coefficient diagonal de D_A et D_B égal à λ . On a $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \begin{pmatrix} P & 0 \\ 0 & Q \end{pmatrix} \begin{pmatrix} D_A & 0 \\ 0 & D_B \end{pmatrix} \begin{pmatrix} P & 0 \\ 0 & Q \end{pmatrix}^{-1}$ et $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = \begin{pmatrix} P & 0 \\ 0 & Q \end{pmatrix} \begin{pmatrix} D_A & PCQ^{-1} \\ 0 & D_B \end{pmatrix} \begin{pmatrix} P & 0 \\ 0 & Q \end{pmatrix}^{-1}$; il suffit donc de trouver $C' = PCQ^{-1}$ telle que $\Delta = \begin{pmatrix} D_A & 0 \\ 0 & D_B \end{pmatrix}$ et $T = \begin{pmatrix} D_A & C' \\ 0 & D_B \end{pmatrix}$ ne soient pas semblables. Avec $C' = E_{1,1}$, on a $\operatorname{rg}(\Delta \lambda I_{2n}) \neq \operatorname{rg}(T \lambda I_{2n})$ donc Δ et T ne sont pas semblables.

Exercice 158 [sujet] **1.** Si $A = PDP^{-1}$, utiliser $\begin{pmatrix} P & 0 \\ 0 & P \end{pmatrix}$.

2. Si (X_i) est une base de vecteurs propres de A associée aux vp λ_i , on vérifie que (Y_i, Z_i) avec $Y_i = \begin{pmatrix} X_i \\ X_i \end{pmatrix}$ et $Z_i = \begin{pmatrix} X_i \\ -X_i \end{pmatrix}$ est une base de vecteurs propres de M associée aux vp $\lambda_i + 1$ et $\lambda_i - 1$.

Exercice 159 [sujet] En diagonalisant la matrice dans le cas n=1, on trouve que si $P=\begin{pmatrix}A^2&A^2\\-I_n&I_n\end{pmatrix}$, d'inverse $P^{-1}=\frac{1}{2}\begin{pmatrix}A^{-2}&-I_n\\-A^{-2}&I_n\end{pmatrix}$, on a $P^{-1}BP=\begin{pmatrix}0&0\\0&2A\end{pmatrix}$ donc on en déduit que M est DZ si et seulement si A l'est (utiliser des polynômes annulateurs).

Exercice 160 [sujet] Vérifier que si $P = \begin{pmatrix} I_n & I_n \\ I_n & -I_n \end{pmatrix}$ d'inverse $P^{-1} = \frac{1}{2}P$ on a $P^{-1}CP = \operatorname{diag}(A+B,A-B)$.

Exercice 161 [sujet] On a rg(B) = 2 rg(A).

B est semblable à diag(A, -A) avec $P = \begin{pmatrix} I_n & I_n \\ I_n & -I8n \end{pmatrix}$ donc A est DZ si et seulement si B l'est.

Exercice 162 [sujet] 1. $f(M) = \lambda M \Leftrightarrow \begin{cases} d = \lambda a \\ (1 - \lambda^2)a = 0 \\ (2 - \lambda)b = 0 \end{cases}$ donc ce système admet des solutions non nulles si et seulement si $\lambda \in \{-1, 1, 2\} = \operatorname{Sp}(f)$ puis $E_1(f) = \operatorname{Vect}\{E_{1,1} + E_{2,2}\}, E_{-1}(f) = \operatorname{Vect}\{E_{1,1} - E_{2,2}\}$ et $E_2(f) = \operatorname{Vect}\{E_{1,2}, E_{2,1}\}$

2. f est DZ et inversible puisque $0 \notin \operatorname{Sp}(f)$.

Exercise 163 [sujet] $X^2 - 2X - 3 = (X+1)(X-3)$ annule ϕ donc DZ; $E_{-1}(\phi) = \mathcal{A}_n(\mathbb{R})$ donc $m_{-1}(\phi) = \frac{n(n-1)}{2}$ et $E_3(\phi) = \mathcal{S}_n(\mathbb{R})$ donc $m_3(\phi) = \frac{n(n+1)}{2}$. On a donc $\text{Tr}(\phi) = -\frac{n(n-1)}{2} + 3\frac{n(n+1)}{2}$ et $\det(\phi) = (-1)^{\frac{n(n-1)}{2}} 3^{\frac{n(n+1)}{2}}$.

Exercice 164 /sujet/ 1. Facile

- **2.** (X a + b)(X a b) annule u et est SARS sauf pour b = 0 donc u est DZ si $b \neq 0$. Si b = 0 alors u = aid est aussi DZ. Si $b \neq 0$ alors $E_{a+b}(u) = S_n(\mathbb{R})$ et $E_{a-b}(u) = A_n(\mathbb{R})$.
- **3.** $\operatorname{Tr}(u) = \frac{n(n+1)}{2}(a+b) + \frac{n(n-1)}{2}(a-b)$ et $\det(u) = (a+b)^{\frac{n(n+1)}{2}}(a-b)^{\frac{n(n-1)}{2}}$

Exercice 165 [sujet] (X-1)(X-n-1) annule f donc DZ; $E_1(f) = \ker(\operatorname{Tr})$ est un hyperplan et $E_{n+1}(f) = \operatorname{Vect}\{I_n\}$. On trouve $f^{-1} = \frac{1}{n+1}(f-(n+2)id)$.

Exercice 166 [sujet] 1. facile

- **2.** Si $\varphi(M) = 0$ alors $M \in \text{Vect}\{B\}$ donc $\ker(\varphi) \subset \text{Vect}\{B\}$. Si $\text{Tr}(AB) \neq -1$ alors $\ker(\varphi) = \{0\}$ et $\text{Im}(\varphi) = \mathcal{M}_n(\mathbb{R})$; si Tr(AB) = -1 alors $\ker(\varphi) = \text{Vect}\{B\}$ et $\text{rg}(\varphi) = n^2 1$
- 3. $M = \frac{\operatorname{Tr}(AM)}{\lambda 1}B$
- **4.** $M \in E_1(\varphi) \Leftrightarrow \operatorname{Tr}(AM) = 0$ donc $E_1(\varphi)$ est un hyperplan. Si $\operatorname{Tr}(AB) \neq 0$ alors $1 + \operatorname{Tr}(AB) \in \operatorname{Sp}(\varphi)$ et φ est DZ; si $\operatorname{Tr}(AB) = 0$ alors $B \in E_1(\varphi)$, la seule valeur propre est 1 et φ n'est pas DZ (car $\varphi \neq id$)

Exercice 167 [sujet] $f_A(M) = 0 \Leftarrow M = \frac{\text{Tr}(M)}{\text{Tr}(A)} A \in \text{Vect}\{A\}$ et on vérifie que $f_A(A) = 0$ donc $\ker(f_A) = \text{Vect}\{A\}$; $\operatorname{Im}(f_A)$ est donc un hyperplan et comme $\operatorname{Tr}(f_A(M)) = 0$, on a $\operatorname{Im}(f_A) = \ker(\operatorname{Tr})$. $X(X - \operatorname{Tr}(A))$ annule f_A donc DZ puis $E_{\operatorname{Tr}(A)}(f_A) = \ker(\operatorname{Tr})$

Exercice 168 [sujet] 1. a) $\mathcal{X}_A = X^3$

- b) Comme $Sp(A) = \{0\}$ et $A \neq 0$, A ne peut pas être DZ
- c) rg(A) = 1 donc dim(ker A) = 2
- 2. a) On vérifie $A^2 = 0$ donc $\phi^2(X) = A(AXA)A = 0$ puis $\operatorname{Sp}(\phi) = \{0\}$ car X^2 annule ϕ (et le spectre est non vide dans \mathbb{C})
 - b) Si ϕ était DZ, avec $\mathrm{Sp}(\phi)=\{0\}$, on aurait $\phi=0$ ce qui est absurde car $\phi(E_{1,1})\neq 0$ par ex
 - c) Avec $C = \begin{pmatrix} 1 \\ j \\ j^2 \end{pmatrix}$, on a $A = CC^T$ donc $\phi(X) = CC^TXCC^T = (C^TXC)CC^T$ car $\alpha = C^TXC \in \mathbb{C}$ donc $\phi(X) = \alpha A$ et $\operatorname{Im}(\phi) \subset \operatorname{Vect}\{A\}$. Comme $\phi \neq 0$, on a $\operatorname{Im}(\phi) \neq \{0\}$ donc $\operatorname{Im}(\phi) = \operatorname{Vect}\{A\}$

Exercice 169 [sujet] 1. cours

- **2.** (X-2)(X-3) annule A et est SARS; $\operatorname{Sp}(A) \subset \{2,3\}$
- **3.** f linéaire facile. Si $D = \text{diag}(2I_p, 3I_q)$ et $M = \begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix}$ alors $f(M) = \begin{pmatrix} 4M_1 & 5M_2 \\ 5M_3 & 6M_4 \end{pmatrix}$ donc $E_4(f) = \left\{ \begin{pmatrix} M_1 & 0 \\ 0 & 0 \end{pmatrix} \right\}$, $E_5(f) = \left\{ \begin{pmatrix} 0 & M_2 \\ M_3 & 0 \end{pmatrix} \right\}$ et $E_6(f) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & M_4 \end{pmatrix} \right\}$ donc $\mathcal{M}_n(\mathbb{R}) = E_4(f) \oplus E_5(f) \oplus E_6(f)$ donc f est DZ et $\operatorname{Sp}(f) = \{4, 5, 6\}$
- **4.** On pose $A = PDP^{-1}$, on a $g(M) = Pf(M)P^{-1}$ et comme (X 4)(X 5)(X 6) annule f, il annule aussi g et est SARS donc g est DZ

Exercice 170 [sujet] 1. S est sym réelle donc DZ et semblable à $\Delta = \text{diag}(-5,5)$ et à $P\Delta P^{-1} = \begin{pmatrix} 0 & 5 \\ 5 & 0 \end{pmatrix} = S'$ si $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

- **2.** $\phi(M) = \begin{pmatrix} 0 & -m_{1,2} \\ m_{2,1} & 0 \end{pmatrix}$ donc $\operatorname{Im} \phi = \operatorname{Vect}\{E_{1,2}, E_{2,1}\}$ est l'ensemble des matrices à diagonales nulles. Il existe donc M telle que $\phi(M) = S' = QSQ^{-1}$ puis $S = (Q^{-1}\operatorname{diag}(1,2)Q)(Q^{-1}MQ) (Q^{-1}MQ)(Q^{-1}\operatorname{diag}(1,2)Q)$
- 3. $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$ et $\det(AB) = \det(A)\det(B) = \det(BA)$ donc x+y=30 et xy=200 donc x et y sont les solutions de $X^2-30X+200=(X-10)(X-20)$. Dans ce cas, $\mathcal{X}_{AB}=\mathcal{X}_{BA}$ donc AB et BA sont DZ (sym réelles) et semblables à la même matrice diagonale $D=\operatorname{diag}(\alpha,\beta)$. Ainsi il existe P,Q tels que $AB=PDP^{-1}$ et $BA=QDQ^{-1}$; on vérifie alors qu'on peut prendre $A=P\operatorname{diag}(\alpha,1)Q^{-1}$ et $B=Q\operatorname{diag}(1,\beta)P^{-1}$

Exercice 171 |sujet| 1. Facile

- **2.** $f_A^2(M) = A^2M$
- 3. $P(f_A)(M) = P(A)M$ donc f_A et A ont les mêmes polynômes annulateurs donc simultanément un polynôme annulateur SARS

- **4.** Si $AX = \lambda X$ avec $X \in \mathbb{R}^n$, $X \neq 0$, on construit $M = \begin{pmatrix} X & 0 & \dots & 0 \end{pmatrix} \neq 0$ et on vérifie $AM = \lambda M$
- 5. Si $AM = \lambda M$ avec $M \neq 0$, M possède une colonne C non nulle et on a $AC = \lambda C$. Égalité des spectres évidente vue les deux dernières questions

1. endomorphisme facile. $\ker(\phi_A) \neq \{0\}$ car $\phi_A(I_n) = 0$. On a $A = PDP^{-1}$ avec D diagonale Exercice 172 /sujet/ à coeff diagonaux 2 à 2 distincts puis $M \in \ker(\phi_A)$ si et seulement si $AM = MA \Leftrightarrow D(P^{-1}MP) = (P^{-1}MP)D$ et on vérifie alors que $P^{-1}MP$ est diagonale (fait plusieurs fois en cours) donc $M \mapsto P^{-1}MP$ est un isomorphisme de $\ker(\phi_A)$ sur l'ensemble des matrices diagonales et $\dim(\ker(\phi_A)) = n$ donc $\operatorname{rg}(\phi_A) = n^2 - n$

- **2.** On vérifie $\Phi(\alpha A + \beta B)(M) = (\alpha A + \beta B)M M(\alpha A + \beta B) = \alpha (AM MA) + \beta (BM MB) = (\alpha \Phi(A) + \beta \Phi(B))(M)$ donc Φ est linéaire. De plus $B \in \ker(\Phi)$ si et seulement si BM = MB pour tout $M \in \mathcal{M}_n(\mathbb{R})$; on a donc $BE_{i,j}=E_{i,j}B$ pour tout $i,j\in [\![1,n]\!]$ ce qui donne $B=\lambda I_n$ donc $\ker(\Phi)=\mathrm{Vect}\{I_n\}$
- 3. Vérifier, par récurrence $\phi_A^k(M) = \sum_{i=0}^k \binom{k}{i} (-1)^i A^i M A^{k-i}$

Exercice 173 |sujet| 1. facile

- 2. cours
- 3. Si $AX_i = \alpha_i X_i$ et ${}^tBY_j = \beta_j Y_j$, on vérifie que $f(M_{i,j}) = (\alpha_i \beta_j) M_{i,j}$; reste à prouver la liberté des $M_{i,j}$ (on aura alors une base de vecteurs propres) : si $\sum_{i,j} a_{i,j} X_i {}^t Y_j = 0$ alors pour tout $k \in [\![1,n]\!]$, on a $\sum_{i,j} a_{i,j} y_j(k) X_i = 0$, où $(y_j(k))_{1\leqslant k\leqslant n}$ sont les coordonnées de Y_j , donc par liberté des (X_i) , on a $\sum_i a_{i,j}y_j(k)=0$ pour tout (i,k) puis $\sum_i a_{i,j} Y_j = 0$ et par liberté des (Y_j) , on termine par $a_{i,j} = 0$ pour tout (i,j) donc la famille est libre.

Exercice 174 /sujet/ 1. facile

- **2.** $\operatorname{Tr}(A) = \operatorname{Tr}(AB) \operatorname{Tr}(BA) = 0$ puis $A^k = A^k B A^{k-1} B A$ donne aussi $\operatorname{Tr}(A^k) = 0$
- 3. récurrence
- **4.** si A n'est pas nilpotente alors A^k est un vecteur propre de f associé à la valeur propre $k \in \mathbb{N}^*$ donc $\mathbb{N}^* \subset \operatorname{Sp}(f)$ qui est absurde car f a au plus n^2 vp

Exercice 175 |sujet| 1. facile

- **2.** X(X-1)(X+1) annule ϕ
- 3. X(X-1)(X+1) est SARS donc DZ; si $s \neq \pm id_E$) est la symétrie sur F parallèlement à G et p le projecteur sur F parallèlement à G(s = 2p - id) alors $\phi(p) = p$ donc $1 \in \operatorname{Sp}(\phi)$; si q = id - p alors $\phi(q) = -q$ donc $-1 \in \operatorname{Sp}(\phi)$ et $\phi(f)=0$ si f est un endomorphisme tel que $f(F)\subset G$ et $f(G)\subset F$ (il en existe des non nuls, les définir par leur matrice dans une base adaptée à $E = F \oplus G$) donc $0 \in \operatorname{Sp}(\phi)$

Exercice 176 [sujet] On a $f(M) = \lambda M \Leftrightarrow \begin{cases} (1-\lambda)C_i = C_{i+1} & \text{si } i \leq n-1 \\ (1-\lambda)C_n = C_1 \end{cases}$ Ce système admet donc des solutions non nulles si et seulement si $(1 - \lambda)^n = 1$ donc les vp de f sont $1 + z_k$ où (z_k) sont les racines $n^{\text{ème}}$ de 1 donc n vp distinctes. On vérifie que $E_{z_k} = \{(C, (1 - z_k)C, \dots, (1 - z_k)^{n-1}C), C \in \mathcal{M}_{n,1}(\mathbb{C})\}$ donc $\dim(E_{z_k}) = n$ et f est DZ

Exercice 177 [sujet] Si $\phi(P) = \lambda P$ et si $\lambda \neq 0$ alors $\deg(\phi(P)) = \deg(P)$ ce qui ne peut arriver que si $\deg(P) = 2$ (regarder le terme de degré n+1 en supposant $\deg(P)=n$); les éléments propres de ϕ sont donc les mêmes que ceux

(regarder le terme de degré n+1 en supposant $\deg(r)=n_J$, les ciencies proposation de l'endomorphisme induit sur $\mathbb{R}_2[X]$ dont la matrice dans la base canonique est $\begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}$ donc $\operatorname{Sp}(\phi)=\{0,2,-2\}$, $E_0(\phi) = \text{Vect}\{X^2 - 1\}, E_2(\phi) = \text{Vect}\{(X + 1)^2\} \text{ et } E_{-2}(\phi) = \text{Vect}\{(X - 1)^2\}$

Exercice 178 [sujet] 1. $M = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 2 \\ -b & 0 & 2 \end{pmatrix}$

- **2.** $\mathcal{X}'_f = 3X^2 8X + 6 > 0$
- 3. \mathcal{X}_f n'est donc pas scindé dans \mathbb{R} (son unique racine réelle n'est pas triple) donc f n'est pas DZ.

Exercice 179 [sujet] **1.** $f(X^k) = (k+1)X^k - akX^{k-1} - a^k$ donc la matrice est triangulaire supérieure

2. $\operatorname{Sp}(f) = \{0\} \cup [2, n+1]$ donc $0 \in \operatorname{Sp}(f)$ qui est donc non bijectif et DZ; chaque espace propre est une droite et on vérifie $E_{k+1}(f) = \text{Vect}\{(X-a)^k\}$ pour $k \in [1, n]$ et $E_0(f) = \mathbb{R}_0[X]$.

Exercice 180 [sujet] On a $f(X^k) = \frac{k}{n}X^{k-1} + \frac{n-1-k}{n}X^{k+1}$ donc $f(P) = \frac{1-X^2}{n}P' + \frac{n-1}{n}XP$ puis les éléments propres de nf ont été étudiés en cours : $Sp(f) = \left\{\frac{k}{n}, k \in \llbracket 0, n-1 \rrbracket \right\}$ donc DZ

Exercice 181 [sujet] Si $\phi(P) = \lambda P$ avec $P \neq 0$ alors $\lambda = \deg(P) \in \mathbb{N}$ donc $\operatorname{Sp}(\phi) = \mathbb{N}$ et $E_k(\phi) = \operatorname{Vect}\{(X - a)^k\}$. Si P'|P alors $P = \deg(P)(X - a)P'$ (examiner les degrés) donc $P = \alpha(X - a)^k$ (récip évidente)

Exercice 182 [sujet] 1. φ est un endomorphisme (cf cours compléments d'algèbre linéaire)

- **2.** la matrice dans la base canonique de φ est $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$ donc $\mathcal{X}_f = (X-1)^2(X+1)^2$; $E_1(f) = \text{Vect}\{X^2 + 1, X^3 + X\}$ et $E_{-1}(f) = \text{Vect}\{X^2 1, X^3 X\}$ donc DZ.
- **3.** $Tr(\varphi) = 0$ et $det(\varphi) = 1$.

Exercice 183 [sujet] 1. Facile (cf cours alg lin)

- 2. cours (Interpolation de Lagrange)
- **3.** On a $L_iF = GQ_i + \varphi(L_i)$ et comme $G(a_j) = 0$ et $L_i(a_j) = \delta_{i,j}$, on a $\varphi(L_i)(a_j) = 0$ si $i \neq j$ donc $\varphi(L_i) = \varphi(L_i)(a_i)L_i = F(a_i)L_i$; (L_1, \ldots, L_n) est une base de vecteurs propres de φ .

Exercice 184 [sujet] 1. Linéaire et $\phi(X^k) = \frac{1}{2^{n/2}}(1+X)^{n-k}(1-X)^k \in \mathbb{R}_n[X]$

- **2.** Comme $Y = \frac{1-X}{1+X} \Leftrightarrow X = \frac{1-Y}{1+Y}$, on vérifie que $\phi^2 = id$
- 3. c'est une symétrie.

Exercice 185 [sujet] $t \mapsto P(t)e^{-t} = o\left(\frac{1}{t^2}\right)$; linéaire et $u(X^k) = X^k + ku(X^{k-1})$ donne $u(X^k) \in \mathbb{R}_n[X]$ par récurrence sur k. La matrice de u est triangulaire supérieure avec des 1 sur la diagonale donc $\mathrm{Sp}(u) = \{1\}$ donc si u était DZ, on aurait u = id, ce qui n'est pas le cas.

Exercice 186 [sujet] endomorphisme facile; $X\left(X - \int_0^1 A(t) dt\right)$ annule u donc u est DZ

Exercice 187 [sujet] 1. $\deg \phi(P) = \deg \phi$ donc on commence par les éléments propres de ϕ_n l'endomorphisme induit $\operatorname{sur} \mathbb{R}_n[X] : \phi((X+a)^k) = 2^{-k}(X+1+2a)^k$ donc $(X-1)^k$ est une base de vecteurs propres de ϕ_n . Maintenant, si $\phi(P) = \lambda P$ et $\deg(P) = n$ alors P est un vecteur propre de ϕ_n de $\deg r$ donc $P = (X-1)^n$ et $\lambda = 2^{-n}$.

2. $\phi(f) = \lambda f$ si et seulement si pour tout x on a $\lambda f(x) = f\left(\frac{x+1}{2}\right)$ donc on a $\lambda f(u_n) = f(u_{n+1})$; on vérifie $u_n = 2^{-n}(x-1)+1$ donc par continuité de f, on a $\lim f(u_n) = f(1)$. On a donc $\lambda^n f(x) = f(2^{-n}(x-1)+1) \xrightarrow[n \to +\infty]{} f(1)$ ce qui donne f(x) = 0 si $\lambda \notin]-1,1]$; on vérifie que si f est un vecteur propre de ϕ associé à λ et si $f' \neq 0$ alors f' est un vecteur propre de ϕ associé à 2λ ; ainsi si f n'est pas un polynôme, on aura $f^{(k)} \neq 0$ et sera un vecteur propre de ϕ associé à $k\lambda$ qui finira par sortir de]-1,1] ce qui est absurde. Les valeur propres de ϕ éventuelles sont donc 0 et celles trouvées à la première question. Enfin, $\phi(f) = 0$ donne f = 0 car $x \mapsto \frac{x+1}{2}$ est bijective de $\mathbb R$ dans $\mathbb R$ donc les éléments propres de ϕ sont les mêmes que ceux de l'endomorphisme de la première question.

Exercice 188 /sujet/ 1. évident

- **2.** Si $P \in \ker(\phi)$ alors 0 et -1 sont racines multiples de P et $\deg(P) \leq 3$ donc P = 0. Comme $\dim(\mathbb{R}_3[X]) = 4 = \dim(\mathbb{R}^4)$, ϕ est un isomorphisme
- $\mathbf{3.} \ M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & -1 \\ 0 & 1 & -2 & 3 \end{pmatrix}$
- **4.** a) $\mathcal{X}_M = (X-1)^2(X^2-4X+1)$ et on vérifie que $(X-1)(X^2-4X+1)$ est SARS dans \mathbb{R} et annule M
 - b) déià fait
 - c) $M^3 5M^2 + 5M = I_4 \text{ donc } M^{-1} = M^2 + 5M + 5I_4$
- 5. a) $\operatorname{Mat}_{\mathcal{B}_c}(Q) = M^{-1} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 3 \\ 2 \end{pmatrix}$ donc $Q = X + 3X^2 + 2X^3 = X(X+1)(2X+1)$

b) fait

c)
$$\phi(Q(X-1)) = \begin{pmatrix} 0 \\ 1 \\ -6 \\ 13 \end{pmatrix} \operatorname{donc} \phi(Q) - \phi(Q(X-1)) = 6 \begin{pmatrix} 0 \\ 0 \\ 1 \\ -2 \end{pmatrix} = 6\phi(X^2) \operatorname{donc} 6X^2 = Q(X) - Q(X-1) \operatorname{par} \Phi(X) = 0$$
 bijectivité de ϕ . On a alors, avec $Q(-1) = 0$, $\sum_{k=0}^{n} k^k = \frac{1}{6} \sum_{k=0}^{n} Q(k) - Q(k-1) = \frac{1}{6} Q(n)$

Exercice 189 [sujet] Si $T(f) = \lambda f$ alors $f(x+n) = \lambda^n f(x)$ pour tout $x \in \mathbb{R}$ et $n \in \mathbb{Z}$ si $\lambda \neq 0$; $(\lambda^n f(x))$ ne converge en $+\infty$ et $-\infty$ que si $\lambda = 1$ donc les vp possibles sont 0 et 1. T(f) = f si f est 1-périodique et CV en $\pm \infty$, f est donc constante : $1 \in \operatorname{Sp}(f)$ et $E_1(f) = \mathbb{R}$ (fct Ctes). T(f) = 0 donne f = 0 donc $0 \notin \operatorname{Sp}(f)$.

Exercice 190 [sujet] $D(f) = \lambda f$ si et seulement si f est solution sur \mathbb{R} de $xy'(x) = \lambda y(x)$ dont les solutions sur \mathbb{R}^{+*} ou \mathbb{R}^{-*} sont $y(x) = ax^{\lambda}$ qui se prolongent de façon \mathcal{C}^{∞} sur \mathbb{R} si et seulement si $\lambda \in \mathbb{N}$ donc $\operatorname{Sp}(D) = \mathbb{N}$ et $E_k(D) = \operatorname{Vect}\{X^k\}$.

Exercice 191 /sujet/ 1. facile

- 2. $\phi(f) = \lambda f$ si et seulement si f est solution de $y'(x) (x + \lambda)y(x) = 0$ donc $\operatorname{Sp}(\phi) = \mathbb{R}$ et $E_{\lambda}(\phi) = \operatorname{Vect}\left\{x \mapsto \exp\left(\frac{x^2}{2} + \lambda x\right)\right\}$. $f \in \ker(\phi^2)$ si et seulement si $\phi(f) \in \ker(\phi)$ donc si et seulement si $\phi(f) = \alpha e^{x^2/2}$ donc si et seulement si f est solution de $y'(x) xy(x) = \alpha e^{x^2/2}$ donc $f(x) = e^{x^2/2}(\beta + \alpha x)$.
- Exercice 192 [sujet] 1. $\varphi(f)$ est \mathcal{C}^1 sur]0,1] et f étant continue en 0, on a (T-Y) f(t) = f(0) + o(1) puis, en intégrant, $\int_0^x f(t) \, \mathrm{d}t = 0 + f(0)x + o(x) \text{ et } \lim_0 \varphi(f) = f(0) \text{ donc } \varphi(f) \text{ est continue en 0 donc dans } E. \text{ La linéarité est évidente.}$
 - **2.** Si $\varphi(f) = 0$ alors $\int_0^x f(t) dt = 0$ pour $x \in]0,1]$; en dérivant on obtient f(x) = 0 sur]0,1] donc sur [0,1] par continuité en [0,1] par continuité en [0,1] par [0
 - 3. $\varphi(f) = f$ si et seulement si $\int_0^x f(t) dt = xf(x)$ pour $x \in]0,1]$ (l'égalité est évidente en x=0); comme $\varphi(f)$ est \mathcal{C}^1 sur]0,1], $f=\varphi(f)$ est forcément \mathcal{C}^1 sur]0,1]. En dérivant, on a f(x)=f(x)+xf'(x) pour $x \in]0,1]$ donc f est constante sur]0,1] donc sur [0,1] par continuité en [0,1] on a donc [0,1] ensemble des fonctions constantes)
 - **4.** On fait de même avec $\lambda \notin \{0,1\}$, on a $\varphi(f) = \lambda f$ si et seulement si $f(0) = \lambda f(0)$ (donc f(0) = 0) et $\int_0^x f(t) dt = \lambda x f(x)$ si $x \in]0,1]$. On prouve comme précédemment que f est \mathcal{C}^1 sur]0,1] et on a $f(x) = \lambda (f(x) + x f'(x))$ donc f est solution sur]0,1] de $y'(x) = \left(\frac{1}{\lambda} 1\right) xy(x)$ dont les solutions sont $y(x) = \alpha x^{1/\lambda 1}$. De telles fonctions se prolongent en 0 avec y(0) = 0 si et seulement si $\frac{1}{\lambda} 1 > 0 \Leftrightarrow \lambda \in]0,1[$. Au final $\operatorname{Sp}(\varphi) =]0,1[$ et $E_{\lambda}(\varphi) = \operatorname{Vect}\left\{x \mapsto x^{1/\lambda 1}\right\}$ (dte)

Exercice 193 [sujet] Linéarité facile; $T(f)(x) = \int_0^x tf(t) dt + x \int_x^1 f(t) dt$ donc, comme f est continue, T(f) est C^1 donc continue.

On vérifie que T(f) est en fait \mathcal{C}^2 et T(f)'' = -f donc $T(f) = \lambda f$ alors soit $\lambda = 0$ et f = -T(f)'' = 0, soit $\lambda \neq 0$ et f est \mathcal{C}^2 elle aussi puis $T(f) = \lambda f$ si et seulement si f vérifie $-f + \lambda f'' = 0$ avec f(0) = f'(1) = 0; si $\lambda > 0$, on vérifie que cette équation différentielle n'a pas de solution non nulle avec f(0) = f'(1) = 0 alors que si $\lambda < 0$ cette équation admet des solutions non nulles si et seulement si $\sqrt{\lambda} \in \pi \mathbb{N}$.

Exercice 194 [sujet] **1.** Linéarité facile, u(f)(0) = 0 et comme $u(f)(x) = \cos(x) \int_0^x f \times \cos + \sin(x) \int_0^x f \times \sin$, la continuité de f donne la classe \mathcal{C}^1 de u(f).

- 2. Si u(f) = k alors k = u(f)(0) = 0 et u(f)' = 0 et $u(f)'(x) = f(x) \sin(x) \int_0^x f \times \cos + \cos(x) \int_0^x f \times \sin \, \mathrm{donc}$ f(0) = 0 et $f(x) = \sin(x) \int_0^x f \times \cos - \cos(x) \int_0^x f \times \sin \, \mathrm{est} \, \mathcal{C}^1$ puis $f'(x) = \cos(x) \int_0^x f \times \cos - \sin(x) \int_0^x f \times \sin \, \mathrm{est} \, \mathcal{C}^2$ puis f'(x) = 0; reste f = 0.
- 3. Si $\lambda \neq 0$ alors $f = \frac{1}{\lambda}u(f)$ est \mathcal{C}^1 puis f(0) = 0 et $\lambda f'(x) = f(x) \sin(x) \int_0^x f \times \cos + \cos(x) \int_0^x f \times \sin \, \mathrm{donc} \, f$ est \mathcal{C}^2 , f'(0) = 0 et $f''(x) = f'(x) u(f)(x) = f'(x) \lambda f(x)$; la seule solution avec f(0) = f'(0) = 0 est f = 0.

Exercice 195 [sujet] $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{pmatrix} \mathcal{X}_A = (X-1)(X-2)(X-3)$ annulateur de A et tous calculs faits, on trouve $u_n = \frac{6u_0 - 5u_1 + u_2}{2} + (-3u_0 + 4u_1 - u_2)2^n + \frac{2u_0 - 3u_1 + u_2}{2}3^n$