L'usage des calculatrices est interdit

Le sujet se compose d'un problème d'analyse et d'un exercice de probabilités indépendants. Veuillez changer de page entre les deux (inutile de faire deux copies séparées).

PROBLEME

(Inspiré de CCP PSI 2004 maths 1)

Notations et but du problème

 E_0 est le \mathbb{R} -espace vectoriel des fonctions f définies sur \mathbb{R}^+ , à valeurs réelles, de classe \mathcal{C}_0^1 sur \mathbb{R}^+ et vérifiant f(0) = 0. E_1 est l'ensemble des fonctions f appartenant à E_0 et telles que la fonction $t \mapsto \left(\frac{f(t)}{t}\right)^2$ soit intégrable sur \mathbb{R}^{+*} . E_2 est l'ensemble des fonctions f appartenant à E_0 et telles que la fonction $t \mapsto (f'(t))^2$ soit intégrable sur \mathbb{R}^{+*} . On note

$$N_1(f) = \left[\int_0^{+\infty} \left(\frac{f(t)}{t} \right)^2 dt \right]^{1/2} \text{ pour } f \in E_1 \text{ et } N_2(f) = \left[\int_0^{+\infty} \left(f'(t) \right)^2 dt \right]^{1/2} \text{ pour } f \in E_2.$$

Le but du problème est de comparer les ensembles E_1 et E_2 d'une part, les fonctions N_1 et N_2 d'autre part. Les parties I et II sont consacrées à deux exemples, la partie III aborde le problème de comparaison de façon plus générale.

Partie I - Exemple I

Dans cette partie, on suppose que f est la fonction définie sur \mathbb{R}^+ par $f(t) = \arctan t$.

- 1. Montrer que f appartient à E_2 puis calculer la valeur de $N_2(f)$; on pourra utiliser le changement de variable $t = \tan \theta$.
- **2.** Montrer que f appartient à E_1 .

3. Étude d'une fonction auxiliaire Pour
$$x \in \mathbb{R}^+$$
 on pose $\theta(x) = \int_0^{+\infty} \frac{\arctan(xt)}{t(1+t^2)} dt$.

a) Justifier que θ est définie sur \mathbb{R}^+ .

On admet que la fonction θ est de classe \mathcal{C}^1 sur \mathbb{R}^+ et que, pour tout $x \ge 0$, on a

$$\theta'(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+(xt)^2)}$$

- b) Déterminer la valeur de $\theta'(x)$ pour $x \ge 0$, $x \ne 1$ (sans symbole intégral). On pourra chercher deux réel a et b, dépendants de $x \neq 1$, tel que $\frac{1}{(1+t^2)(1+(xt)^2)} = \frac{a}{1+t^2} + \frac{b}{1+(xt)^2}$.
- c) Déterminer la valeur de $\theta(x)$, pour $x \ge 0$ (sans symbole intégral à nouveau).
- 4. À l'aide d'une intégration par parties, déterminer une relation entre $(N_1(f))^2$ et $\theta(1)$ puis en déduire la valeur de $N_1(f)$.

Partie II - Exemple II

Dans cette partie, on suppose que f est la fonction définie sur \mathbb{R}^+ par :

$$f(t) = \ln\left(t + \sqrt{t^2 + 1}\right).$$

On rappelle que $\operatorname{sh} u = \frac{e^u - e^{-u}}{2}$, $\operatorname{ch} u = \frac{e^u + e^{-u}}{2}$ pour $u \in \mathbb{R}$, et la relation $\operatorname{ch}^2 u - \operatorname{sh}^2 u = 1$.

1. Calculer f'(t) pour $t \in \mathbb{R}^+$. En déduire que f est élément de E_2 . Quelle est la valeur de $N_2(f)$?

- **2.** Déterminer un équivalent (simple!) de f(t) lorsque $t \to 0^+$ (respectivement lorsque $t \to +\infty$).
- **3.** Montrer que f appartient à E_1 .
- 4. Calcul d'une intégrale.
 - a) Montrer que la fonction $t \mapsto \frac{t}{\operatorname{sh}(t)}$ est intégrable sur l'intervalle $]0, +\infty[$.

On note désormais $J = \int_0^{+\infty} \frac{t}{\sinh(t)} dt$.

- b) Montrer que, pour tout $k \in \mathbb{N}$, la fonction $t \mapsto te^{-(2k+1)t}$ est intégrable sur l'intervalle $]0, +\infty[$. Expliciter la valeur de $J_k = \int_0^{+\infty} te^{-(2k+1)t} dt$.
- c) Justifier, pour tout $n \in \mathbb{N}$, l'égalité $\sum_{k=0}^{n} J_k = \frac{1}{2} \int_0^{+\infty} \frac{t}{\operatorname{sh}(t)} \left(1 e^{-(2n+2)t}\right) dt$
- d) Montrer que la fonction $t \mapsto \frac{t}{\sinh(t)}$ est bornée sur \mathbb{R}^{+*} ; on pourra étudier la fonction $t \mapsto \sinh(t) t$.
- e) En déduire que $\lim_{n\to+\infty}\int_0^{+\infty}\frac{t}{\operatorname{sh}(t)}e^{-(2n+2)t}\,\mathrm{d}t=0$ puis que

$$J = 2\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$$

- f) Déduire de ce qui précède la valeur de l'intégrale J, sachant que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$
- 5. Calcul de $N_1(f)$.

Pour simplifier on note $I = \left[N_1(f)\right]^2 = \int_0^{+\infty} \left(\frac{f(t)}{t}\right)^2 dt$.

- a) Montrer que $I = 2 \int_0^{+\infty} \frac{f(t)}{t\sqrt{t^2 + 1}} dt$.
- b) Justifier le changement de variable $t = \operatorname{sh}(u)$ dans l'intégrale obtenue dans la question précédente. Que devient I quand on effectue ce changement?
- c) En déduire la valeur de $N_1(f)$.

Partie III

Le but de cette partie est de comparer, d'une part les ensembles E_1 et E_2 , d'autre part les fonctions N_1 et N_2 .

- 1. Soit f une fonction quelconque appartenant à E_0 (donc de classe C^1 et telle que f(0) = 0). On associe à f deux fonctions g et h définies sur \mathbb{R}^{+*} par $g(t) = \frac{f(t)}{\sqrt{t}}$ et $h(t) = \frac{f(t)}{t}$ pour tout t > 0. On pose $\alpha = f'(0)$.
 - a) Quelle est la limite de h(t) (respectivement de g(t)) quand $t \to 0^+$?
 - b) Exprimer $f'(t) g'(t)\sqrt{t}$ en fonction de h(t) lorsque $t \in \mathbb{R}_{+}^{*}$.
 - c) Quelle est la limite de $g'(t)\sqrt{t}$ (respectivement de $g(t)\times g'(t)$) lorsque $t\to 0^+$? (on exprimera les résultats en fonction de $\alpha=f'(0)$).
 - d) Établir, pour x > 0, la relation :

(R) :
$$\int_0^x (f'(t))^2 dt = \frac{1}{2} (g(x))^2 + \int_0^x (g'(t)\sqrt{t})^2 dt + \frac{1}{4} \int_0^x (h(t))^2 dt$$

(après avoir justifié l'intégrabilité sur [0, x] de chacune des fonctions qui interviennent).

- 2. Comparaison de E_1 et E_2 .
 - a) Déduire de la relation (R) l'inclusion $E_2 \subset E_1$.
 - b) Les ensembles E_1 et E_2 sont-ils égaux? (On pourra considérer la fonction $t \mapsto \sin t$)
- 3. Comparaison de N_1 et N_2 .
 - a) Montrer que E_2 est un sous-espace vectoriel du \mathbb{R} -espace vectoriel E_0 . On pourra utiliser l'inégalité, valable pour tout $(x,y) \in \mathbb{R}^2$, $|xy| \leq \frac{1}{2}(x^2 + y^2)$.

- b) Justifier l'inégalité $N_1(f) \leq 2N_2(f)$, pour $f \in E_2$.
- c) Pour $n \in \mathbb{N}^*$, on définit sur \mathbb{R}_+ la fonction f_n par $f_n(t) = e^{-t} \sin(nt)$. Vérifier que $f_n \in E_2$ pour tout $n \in \mathbb{N}^*$ et calculer $N_2(f_n)$.
- d) Existe-t-il une constante C > 0 telle que $\forall f \in E_2, N_2(f) \leqslant CN_1(f)$?
- **4.** Soit f appartenant à E_2 ; en utilisant la relation (R) montrer que g(t) admet une limite lorsque $t \to +\infty$. Quelle est cette limite?

_____ Fin du problème _____

EXERCICE

(d'après EM Lyon ECE 2018)

On dispose d'une pièce de monnaie amenant Pile avec la probabilité $\frac{2}{3}$ et Face avec la probabilité $\frac{1}{3}$.

On effectue une succession de lancers avec cette pièce. L'expérience est modélisée par un espace probabilisé (Ω, \mathcal{A}, P) de sorte que, si pour $k \geqslant 1$, on définit les événements P_k (respectivement F_k) par « Pile au $k^{\text{ème}}$ lancer » (respectivement « Face au $k^{\text{ème}}$ lancer ») alors la famille $(P_k)_{k \in \mathbb{N}^*}$ est supposée indépendante. On admettra que, si $x \in]-1,1[$, on a

$$\sum_{n=0}^{+\infty} (n+1)x^n = \frac{1}{(1-x)^2}$$

1. Première expérience

On note X_n l'événement « on obtient n fois Face avant l'obtention du <u>deuxième</u> Pile ».

- a) Décrire X_0 , X_1 et X_2 en fonction des événements $(P_k)_{k\in\mathbb{N}^*}$ et $(F_k)_{k\in\mathbb{N}^*}$. En déduire que X_0 , X_1 et X_2 sont bien des événements et déterminer leurs probabilités.
- b) On introduit les événements E_n « on obtient Pile pour la première fois au $n^{\text{ème}}$ lancer ». Déterminer $P(E_n)$ puis justifier que

$$P(X_n) = \sum_{j=1}^{n+1} P(E_j) P(E_{n+2-j})$$

c) En déduire que $P(X_n) = (n+1)\frac{4}{3^{n+2}}$, pour tout $n \in \mathbb{N}$.

2. Une expérience en deux étapes

On effectue une succession de lancers avec la pièce précédente jusqu'à l'obtention du deuxième Pile; puis en fonction du nombre n de Face obtenus, on place n+1 boules dans une urne, les boules étant numérotées de 0 à n et indiscernables au toucher, et enfin on pioche au hasard une boule dans cette urne.

On note U_n l'événement « la boule tirée porte le numéro n ».

- a) Quels peuvent être les numéros des boules tirées?
- b) Pour $(k, n) \in \mathbb{N}^2$, déterminer la probabilité de U_k sachant X_n .
- c) En déduire, pour tout $k \in \mathbb{N}$:

$$P(U_k) = \sum_{n=k}^{+\infty} \frac{1}{n+1} P(X_n)$$
 puis $P(U_k) = \frac{2}{3^{k+1}}$

On note V_k l'événement « on a obtenu k Face de plus que le numéro de la boule tirée ». L'événement V_1 est par exemple réalisé si on a obtenu 4 Face et tiré la boule numéro 3 (mais ce n'est pas la seule possibilité!).

- d) Déterminer la probabilité de V_k sachant X_n et en déduire $P(V_k)$, en précisant les valeurs possibles pour k.
- e) Montrer que les événement U_k et V_h sont indépendants, pour tout $(h,k) \in \mathbb{N}^2$.

3. Un jeu à deux joueurs

Dans cette question, p désigne un réel de]0,1[.

Deux joueurs A et B s'affrontent dans un jeu de Pile ou Face dont les règles sont les suivantes :

- Le joueur A dispose de la pièce amenant Pile avec la probabilité $\frac{2}{3}$ et lance cette pièce jusqu'à l'obtention du deuxième Pile. On note A_n l'événement « le joueur A a obtenu n Face ».
- le joueur B dispose d'une autre pièce amenant Pile avec la probabilité p (et Face avec la probabilité 1-p) et lance cette pièce jusqu'à l'obtention <u>d'un</u> Pile. On note B_n l'événement « le joueur B a obtenu n Faces ».

• le joueur A gagne si le nombre de Face qu'il obtient est inférieur ou égal au nombre de Face obtenus par B; sinon c'est le joueur ${\cal B}$ qui gagne.

On dit que le jeu est équilibré si les deux joueurs A et B ont la même probabilité de gagner.

- a) On note Y_n l'événement « le joueur B obtient au moins n Face (ie n Face ou plus) ». Montrer que $P(Y_n) = (1-p)^n$, pour tout $n \in \mathbb{N}$.
- b) On note G_A l'événement « le joueur A gagne ».

Montrer que
$$P(G_A) = \sum_{n=0}^{+\infty} P(X_n)P(Y_n)$$

c) En déduire la valeur de $P(G_A)$.

- d) Pour quelle(s) valeur(s) de p le jeu est-il équitable?

