Correction du DS3

Problème: Partie I

- 1. $\operatorname{arctan} \operatorname{est} \mathcal{C}^1 \operatorname{sur} \mathbb{R}^+ \operatorname{et} \operatorname{arctan}(0) = 0 \operatorname{donc} \operatorname{arctan} \in E_0 \operatorname{puis} \operatorname{arctan}'(t) = \frac{1}{1+t^2}.$ La fonction $t \mapsto \frac{1}{(1+t^2)^2} \operatorname{est} \mathcal{CM}^0 \operatorname{sur} [0, +\infty[\operatorname{et} \frac{1}{(1+t^2)^2} \underset{t \to +\infty}{\sim} \frac{1}{t^4} \operatorname{donc} t \mapsto \frac{1}{(1+t^2)^2} \operatorname{est} \operatorname{int\acute{e}grable} \operatorname{sur} \mathbb{R}^+ \operatorname{et} [\operatorname{arctan} \in E_2]$ On pose $t = \tan \theta$: $\tan \theta$: $\tan \operatorname{est} \mathcal{C}^1$ bijective strictement croissante $\operatorname{de} \left[0, \frac{\pi}{2} \right[\operatorname{sur} \mathbb{R}^+, \operatorname{d}t = (1+\tan^2 \theta) \operatorname{d}\theta, \operatorname{donc} N_2(f)^2 = \int_0^{\frac{\pi}{2}} \frac{1}{(1+\tan^2 \theta)^2} \times (1+\tan^2 \theta) \operatorname{d}\theta = \int_0^{\frac{\pi}{2}} \operatorname{cos}^2 \theta \operatorname{d}\theta = \frac{1}{2} \int_0^{\frac{\pi}{2}} (1+\cos 2\theta) \operatorname{d}\theta \operatorname{donc} \left[N_2(f) = \frac{1}{2} \sqrt{\pi}\right]$
- 2. On a déjà vu que $\arctan \in E_0$; $t \mapsto \left(\frac{\arctan t}{t}\right)^2$ est \mathcal{CM}^0 sur $]0, +\infty[$, puis $\lim_{t \to 0} \left(\frac{\arctan t}{t}\right)^2 = 1$ donc la fonction $t \mapsto \left(\frac{\arctan t}{t}\right)^2$ est intégrable sur]0, 1] et $\left(\frac{\arctan t}{t}\right)^2 = O\left(\frac{1}{t^2}\right)$ car arctan est bornée donc $t \mapsto \left(\frac{\arctan t}{t}\right)^2$ est intégrable sur $[1, +\infty[$ et $\boxed{\arctan \in E_1}$
- 3. a) Si $x \in \mathbb{R}^+$, la fonction $t \mapsto \frac{\arctan(xt)}{t(1+t^2)}$ est \mathcal{CM}^0 sur $]0, +\infty[$ puis $\lim_{x \to 0} \frac{\arctan(xt)}{t(1+t^2)} = x$ car $\arctan u \sim u$ et $t \mapsto \frac{\arctan(xt)}{t(1+t^2)}$ est intégrable sur]0,1]; enfin, $\frac{\arctan(xt)}{t(1+t^2)} = o\left(\frac{1}{t^2}\right)$ donc $t \mapsto \frac{\arctan(xt)}{t(1+t^2)}$ est intégrable sur $[1, +\infty[$ et θ est définie sur \mathbb{R}^+
 - b) Pour $x \neq 1$, $\frac{1}{(1+t^2)(1+(xt)^2)} = \frac{1}{1-x^2} \left(\frac{1}{1+t^2} \frac{x^2}{1+(xt)^2}\right) \operatorname{donc} \theta'(x) = \left[\frac{\arctan t x \arctan(xt)}{1-x^2}\right]_{t=0}^{t=+\infty}$. Pour x > 0, on a $\lim_{t \to +\infty} \arctan(xt) = \frac{\pi}{2}$, $\operatorname{donc} \theta'(x) = \frac{\pi}{2(1-x^2)}(1-x)$. Comme θ est \mathcal{C}^1 sur \mathbb{R}^+ , θ' est continue en 1 et $\theta'(1) = \lim_{x \to 1} \theta'(x) = \frac{\pi}{4}$. On en déduit que $\forall x \geqslant 0, \theta'(x) = \frac{\pi}{2(1+x)} \operatorname{car} \theta'(0) = \left[\arctan t\right]_0^{+\infty} = \frac{\pi}{2}$.
 - c) On en déduit, pour $x \ge 0$, $\theta(x) = \frac{\pi}{2} \ln(1+x) + C$, car \mathbb{R}^+ est un intervalle, puis, comme $\theta(0) = 0$, $\theta(x) = \frac{\pi}{2} \ln(1+x)$
- **4.** $N_1(f)^2 = \int_0^{+\infty} \left(\frac{\arctan t}{t}\right)^2 dt$; les fonctions $t \mapsto (\arctan t)^2$ et $t \mapsto -\frac{1}{t}$ sont \mathcal{C}^1 sur \mathbb{R}^{+*} , $\lim_{t \to 0} \frac{(\arctan t)^2}{t} = 0$ et $\lim_{t \to +\infty} \frac{(\arctan t)^2}{t} = 0$ donc $N_1(f)^2 = \left[-\frac{(\arctan t)^2}{t}\right]_0^{+\infty} + \int_0^{+\infty} \frac{2\arctan t}{t(1+t^2)} dt$ donc $N_1(f)^2 = 2\theta(1)$. Comme $N_1(f) \geqslant 0$, on en déduit $N_1(f) = \sqrt{\pi \ln(2)}$

Partie II

- 1. Comme $t + \sqrt{t^2 + 1} \ge 1$, f est C^1 sur \mathbb{R}^+ et $f'(t) = \frac{1 + \frac{2t}{2\sqrt{t^2 + 1}}}{t + \sqrt{t^2 + 1}}$ donc $f'(t) = \frac{1}{\sqrt{t^2 + 1}}$ Comme f(0) = 0, $f \in E_0$; de plus $t \mapsto f'(t)^2 = \frac{1}{1 + t^2}$ est bien intégrable sur \mathbb{R}^+ donc $f \in E_2$ et $N_2(f)^2 = \int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^2} = \frac{\pi}{2}$ donc $N_2(f) = \sqrt{\frac{\pi}{2}}$
- **2.** $f(t) = \ln \left[t \left(1 + \sqrt{1 + \frac{1}{t^2}} \right) \right] = \ln(t) + \ln(2) + o(1) \text{ donc } \left[f(t) \underset{+\infty}{\sim} \ln(t) \right] \text{ et } f(t) = \ln(t + 1 + o(t)) = t + o(t) \text{ donc } \left[f(t) \underset{0}{\sim} t \right]$
- 3. On a déjà vu que $f \in E_0$, $t \mapsto \left(\frac{f(t)}{t}\right)^2$ est bien \mathcal{CM}^0 sur $]0, +\infty[$, $\left(\frac{f(t)}{t}\right)^2 \underset{t \to +\infty}{\sim} \frac{(\ln t)^2}{t^2} \underset{t \to +\infty}{=} o\left(\frac{1}{t^{3/2}}\right)$ et $\lim_{t \to 0} \left(\frac{f(t)}{t}\right)^2 = 1$ donc $t \mapsto \left(\frac{f(t)}{t}\right)^2$ est intégrable sur \mathbb{R}^{+*} et $[f \in E_1]$
- **4.** a) $t \mapsto \frac{t}{\operatorname{sh}(t)} \operatorname{est} \mathcal{CM}^0 \operatorname{sur}]0, +\infty [, \lim_{t \to 0} \frac{t}{\operatorname{sh}(t)} = 1 \operatorname{et} \frac{t}{\operatorname{sh}(t)} \underset{+\infty}{\sim} 2te^{-t} = o\left(\frac{1}{t^2}\right) \operatorname{donc} \boxed{t \mapsto \frac{t}{\operatorname{sh}(t)} \operatorname{est intégrable sur } \mathbb{R}^{+*}}$
 - b) Pour $k \geqslant 0$, on a 2k+1>0 donc $t\mapsto te^{-(2k+1)t}$ est \mathcal{CM}^0 sur $[0,+\infty[$ et $te^{-(2k+1)t}\underset{t\to +\infty}{=} o\left(\frac{1}{t^2}\right)$ donc $t\mapsto te^{-(2k+1)t}$ est intégrable sur \mathbb{R}^+ On effectue une IPP : les fonctions $t\mapsto t$ et $t\mapsto \frac{e^{-(2k+1)t}}{2k+1}$ sont \mathcal{C}^1 sur

$$\mathbb{R}^+ \text{ et } \lim_{t \to +\infty} \frac{te^{-(2k+1)t}}{2k+1} = 0 \text{ donc } J_k = \left[\frac{-te^{-(2k+1)t}}{2k+1} \right]_0^{+\infty} + \frac{1}{2k+1} \int_0^{+\infty} e^{-(2k+1)t} \, \mathrm{d}t \text{ donc } \left[J_k = \frac{1}{(2k+1)^2} \right]_0^{+\infty}$$

- c) Pour t > 0, on a $e^t \neq 1$ donc $\sum_{k=0}^n t e^{-(2k+1)t} = t e^{-t} \frac{1 e^{-(2n+2)t}}{1 e^{-2t}} = \frac{t}{2\operatorname{sh}(t)} \left(1 e^{-(2n+2)t}\right)$. Les fonctions $t \mapsto t e^{-(2k+1)t}$ et $t \mapsto \frac{t}{\operatorname{sh}(t)}$ étant intégrables sur \mathbb{R}^{+*} , il en de même, par linéarité, de $t \mapsto \frac{t e^{-(2n+2)t}}{\operatorname{sh}(t)}$ et en intégrant cette égalité, on obtient $\sum_{k=0}^n J_k = \int_0^{+\infty} \frac{t}{\operatorname{sh}(t)} \left(1 e^{-(2n+2)t}\right) dt$
- d) $t \mapsto \operatorname{sh}(t) t$ est croissante sur \mathbb{R}^+ et nulle en 0 donc, pour t > 0, on a $0 < t \leqslant \operatorname{sh}(t)$ ce qui donne $0 \leqslant \frac{t}{\operatorname{sh}(t)} \leqslant 1$
- e) On en déduit $\left| \int_0^{+\infty} \frac{t}{\operatorname{sh}(t)} e^{-(2n+2)t} \, \mathrm{d}t \right| \le \int_0^{+\infty} e^{-(2n+2)t} \, \mathrm{d}t$ (qui existe car 2n+2>0) donc, en calculant l'intégrale de droite, $\left| \int_0^{+\infty} \frac{t}{\operatorname{sh}(t)} e^{-(2n+2)t} \, \mathrm{d}t \right| \le \frac{1}{2n+2}$ et, par encadrement $\left[\lim_{n \to +\infty} \int_0^{+\infty} \frac{t}{\operatorname{sh}(t)} e^{-(2n+2)t} \, \mathrm{d}t = 0 \right]$ On en déduit $\lim_{n \to +\infty} \sum_{k=0}^n J_k = \frac{1}{2} \int_0^{+\infty} \frac{t}{\operatorname{sh}(t)} \, \mathrm{d}t$ ce qui signifie bien que $\left[J = 2 \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} \right]$ par définition de la somme d'une série.
- f) On passe par les sommes partielles : en séparant les termes pairs et impairs $\sum_{k=1}^{2n} \frac{1}{k^2} = \sum_{p=1}^{n} \frac{1}{(2p)^2} + \sum_{p=0}^{n-1} \frac{1}{(2p+1)^2}$ et en faisant tendre n vers $+\infty$, on en déduit $\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \sum_{k=1}^{+\infty} \frac{1}{k^2} \frac{1}{4} \sum_{p=1}^{+\infty} \frac{1}{p^2} \operatorname{donc} \left[J = \frac{\pi^2}{4} \right]$
- 5. a) On effectue une IPP: les fonctions $t \mapsto f(t)^2$ et $t \mapsto \frac{-1}{t}$ sont \mathcal{C}^1 sur \mathbb{R}^{+*} ; $\frac{f(t)^2}{t} \underset{t \to +\infty}{\sim} \frac{(\ln t)^2}{t} \xrightarrow[t \to +\infty]{} 0$ et $\lim_{t \to 0} \frac{f(t)^2}{t} = 0$ donc $I = \left[\frac{-f(t)^2}{t}\right]_0^{+\infty} + 2\int_0^{+\infty} \frac{f(t)f'(t)}{t} dt$ puis $I = 2\int_0^{+\infty} \frac{f(t)}{t\sqrt{1+t^2}} dt$
 - b) La fonction sh est C^1 bijective strictement croissante de \mathbb{R}^{+*} sur \mathbb{R}^{+*} donc $I = 2\int_0^{+\infty} \frac{f(\operatorname{sh} u)}{\operatorname{sh}(u)\operatorname{ch}(u)}\operatorname{ch}(u)\operatorname{d}u$ et on vérifie que $f(\operatorname{sh} u) = u$ donc $I = 2\int_0^{+\infty} \frac{u}{\operatorname{sh}(u)}\operatorname{d}u$
 - c) Avec la valeur de J trouvée précédemment, on a $N_1(f) = \frac{\pi}{\sqrt{2}}$

Partie III

- 1. a) f est de classe C^1 sur \mathbb{R}^+ donc admet un $\mathrm{DL}_1(0)$ (d'après la formule de Taylor-Young) : $f(x) = f(0) + \alpha x + o(x)$. On en déduit $\lim_{0} g = 0$ et $\lim_{0} h = \alpha$
 - b) Par quotient, g est de classe C^1 sur \mathbb{R}^{+*} ; pour t > 0, $f(t) = \sqrt{t}g(t)$ donc $f'(t) = \sqrt{t}g'(t) + \frac{g(t)}{2\sqrt{t}}$ donc $f'(t) \sqrt{t}g'(t) = \frac{1}{2}h(t)$ pour t > 0
 - c) On a $\lim_{t \to 0} h = \alpha$ donc $\lim_{t \to 0} \sqrt{t}g'(t) = \lim_{t \to 0} \left(f' \frac{1}{2}h\right)$, ie $\lim_{t \to 0} \sqrt{t}g'(t) = \frac{\alpha}{2}$ $g'(t)g(t) = \sqrt{t}g'(t) \times h(t) \text{ donc } \left[\lim_{t \to 0} gg' = \frac{\alpha^2}{2}\right]$
 - d) Les fonctions $f', t \mapsto \sqrt{t}g'(t)$ et h sont continues sur]0, x] et prolongeables par continuité en 0 donc sont toutes de carré intégrable sur]0, x]. Si t > 0, on a $f'(t) = \sqrt{t}g'(t) + \frac{1}{2}h(t)$ donc $f'(t)^2 = \left(\sqrt{t}g'(t)\right)^2 + \sqrt{t}g'(t)h(t) + \frac{1}{4}h(t)^2$ et on vérifie l'égalité $\sqrt{t}g'(t)h(t) = g'(t)g(t) = \frac{1}{2}\left(g^2\right)'(t)$ donc en intégrant entre 0 et x, comme $\lim_0 g = 0$, on obtient la relation (R): $\int_0^x f'(t)^2 \, \mathrm{d}t = \frac{1}{2}g(x)^2 + \int_0^x \left(\sqrt{t}g'(t)\right)^2 \, \mathrm{d}t + \frac{1}{4}\int_0^x h(t)^2 \, \mathrm{d}t$

- 2. a) Soit $f \in E_2$, on déduit de (R), $\int_0^x (h(t))^2 dt \le 4 \int_0^x (f'(t))^2 dt \le 4 \int_0^{+\infty} (f'(t))^2 dt$ car $(f')^2 \ge 0$ est intégrable sur \mathbb{R}^{+*} . On en déduit que la fonction $x \mapsto \int_0^x (h(t))^2 dt$ est majorée sur \mathbb{R}^{+*} . Comme $h^2 \ge 0$, on en déduit que h^2 est intégrable sur \mathbb{R}^{+*} donc $f \in E_1$, ce qui prouve $E_2 \subset E_1$
 - b) Si $f = \sin (\in E_0)$, on a $h(t) = \frac{\sin t}{t}$ qui est continue sur $]0, +\infty[$; de plus $\lim_0 (h^2) = 1$ donc h^2 est intégrable sur]0, 1] et $h(t)^2 = O\left(\frac{1}{t^2}\right)$ donc h^2 est intégrable sur $[1, +\infty[$, ce qui donne $\sin \in E_1$.

 Par contre $f' = \cos$, donc on vérifie que $(f')^2$ n'est pas intégrable sur $]0, +\infty[$: $f'(t)^2 = \cos^2(t) = \frac{1 + \cos 2t}{2}$ donc $\int_{\pi}^{x} f'(t)^2 dt = \frac{1}{2} \left[t + \frac{\sin 2t}{2} \right]_{\pi}^{x} = \frac{x \pi}{2} + \frac{1}{4} \sin 2x$ n'a pas de limite finie en $+\infty$ donc $\sin \notin E_1$ ce qui confirme bien que $E_1 \not\subset E_2$
- 3. a) On a $E_2 \subset E_0$ par définition de E_2 , $0 \in E_2$ et si $(f,g) \in E_2^2$, on a $|f'g'| \leq \frac{1}{2} \left((f')^2 + (g')^2 \right)$ donc f'g' est intégrable sur \mathbb{R}^{+*} . Ainsi, si $(\alpha, \beta) \in \mathbb{R}^2$, on a $(\alpha f' + \beta g')^2 = \alpha^2 (f')^2 + 2\alpha \beta f'g' + \beta^2 (g')^2$ donc $(\alpha f' + \beta g')^2$ est intégrable sur \mathbb{R}^{+*} et E_2 est un sous-espace vectoriel de E_0
 - b) On a, d'après (R), $\int_0^x h(t)^2 dt \le 2 \int_0^x f'(t)^2 dt$ donc en faisant tendre x vers $+\infty$, on obtient $N_1(f) \le 2N_2(f)$
 - c) f_n est bien de classe C^1 sur \mathbb{R}^+ et vérifie $f_n(0) = 0$ donc $f_n \in E_0$. De plus $f'_n(t) = -e^{-t} \sin(nt) + ne^{-t} \cos(nt)$ donc $(f'_n)^2$ est continue sur $[0, +\infty[$ et $f'_n(t)^2 = o\left(\frac{1}{t^2}\right) \operatorname{donc}(f'_n)^2$ est intégrable sur \mathbb{R}^{+*} donc $[f_n \in E_2]$ $f'_n(t)^2 = e^{-2t} \left(\sin^2(nt) 2n\sin(nt)\cos(nt) + n^2\cos^2(nt)\right) = e^{-2t} \left(\frac{1+n^2}{2} n\sin(2nt) + \frac{(n^2-1)\cos(2nt)}{2}\right)$ donc $f'_n(t)^2 = \frac{1+n^2}{2}e^{-2t} n\operatorname{Im}\left(e^{-2(1-in)t}\right) + \frac{n^2-1}{2}\operatorname{Re}\left(e^{-2(1-in)t}\right)$. Comme $\left|e^{-2(1-in)t}\right| = e^{-2t}$, la fonction $t \mapsto e^{-2(1-in)t}$ est intégrable sur \mathbb{R}^+ et on obtient $N_2(f_n)^2 = \frac{1+n^2}{4} n\operatorname{Im}\left(\frac{1}{2(1-in)}\right) + \frac{n^2-1}{2}\operatorname{Re}\left(\frac{1}{2(1-in)}\right)$ donc $N_2(f_n)^2 = \frac{1+n^2}{4} n\operatorname{Im}\left(\frac{1}{2(1-in)}\right) + \frac{n^2-1}{2}\operatorname{Re}\left(\frac{1}{2(1-in)}\right)$
 - d) On a $N_1(f_n)^2 = \int_0^{+\infty} \left(\frac{\sin(nt)}{t}\right)^2 e^{-2t} dt$; on pose $t = \frac{u}{n}$, $u \mapsto \frac{u}{n}$ est une bijection \mathcal{C}^1 strictement croissante de \mathbb{R}^+ sur \mathbb{R}^+ , et on obtient $N_1(f_n)^2 = n \int_0^{+\infty} \left(\frac{\sin u}{u}\right)^2 e^{-u/n} du \leqslant n \int_0^{+\infty} \left(\frac{\sin u}{u}\right)^2 du$ (intégrabilité déjà prouvée) donc $N_1(f_n) = O\left(\sqrt{n}\right)$

S'il existait une constante C > 0 telle que $N_2 \leqslant CN_1$, on aurait $N_2(f_n) \leqslant CN_1(f_n)$, ie $\frac{n}{2} = O(\sqrt{n})$, ce qui est faux.

4. $t \mapsto \sqrt{t}g'(t)$ est prolongeable par continuité à \mathbb{R}^+ , et d'après (R), $\int_0^x \left(\sqrt{t}g'(t)\right)^2 dt \leqslant \int_0^x (f'(t))^2 dt \leqslant N_2(f)^2$. Comme $t \mapsto (\sqrt{t}g'(t))^2 \geqslant 0$, cette majoration prouve que $t \mapsto \left(\sqrt{t}g'(t)\right)^2$ est intégrable sur \mathbb{R}^{+*} . Les trois fonctions $x \mapsto \int_0^x f'(t)^2 dt$, $x \mapsto \int_0^x \left(\sqrt{t}g'(t)\right)^2 dt$ et $\int_0^x h(t)^2 dt$ admettent une limite finie en $+\infty$ donc g^2 admet une limite ℓ en $+\infty$. Comme $f \in E_2 \subset E_1$, g^2 est intégrable sur \mathbb{R}^{+*} , ce qui impose $\ell = 0$ donc $\lim_{t \to \infty} g = 0$

Exercice:

- 1. a) On a $X_0 = P_1 \cap P_2 \in \mathscr{A}$ et par indépendance de P_1 et P_2 , $P(X_0) = P(P_1)P(P_2)$ donc $P(X_0) = \frac{4}{9}$ Puis $X_1 = (F_1 \cap P_2 \cap P_3) \cup (P_1 \cap F_2 \cap P_3) \in \mathscr{A}$ puis par incompatibilité de $F_1 \cap P_2 \cap P_3$ et $P_1 \cap F_2 \cap P_3$, on a $P(X_1) = P(F_1 \cap P_2 \cap P_3) + P(P_1 \cap F_2 \cap P_3) = P(F_1)P(P_2)P(P_3) + P(P_1)P(F_2)P(P_3)$ par indépendances; on en déduit $P(X_1) = \frac{8}{27}$ De même, on a $X_2 = (F_1 \cap F_2 \cap P_3 \cap P_4) \cup (F_1 \cap P_2 \cap F_3 \cap P_4) \cup (P_1 \cap F_2 \cap F_3 \cap P_4) \in \mathscr{A}$ et, à nouveau par incompatibilité deux à deux, puis indépendance, $P(X_2) = \frac{4}{27}$
 - b) E_n est le temps d'attente du premier succès dans la répétition indépendante d'épreuve de Bernoulli (« obtenir Pile ») de paramètre $\frac{2}{3}$ donc $P(E_n) = \frac{2}{3} \left(1 \frac{2}{3}\right)^{n-1}$ puis $P(E_n) = \frac{2}{3^n}$ Les $(E_n)_{n \geqslant 1}$ constituent un système

quasi-complet d'événements donc, d'après la formule des probabilités totales, on a $P(X_n) = \sum_{k=1}^{+\infty} P_{E_k}(X_n) P(E_k)$. Pour $k \geqslant n+2$, on a $P_{E_k}(X_n) = 0$ car si le premier Pile intervient au $k^{\text{ème}}$ lancer avec $k \geqslant n+2$, on ne pourra pas avoir un deuxième Pile au $(n+2)^{\text{ème}}$ lancer. On a donc $P(X_n) = \sum_{k=1}^{n+1} P_{E_k}(X_n) P(E_k)$. Enfin , si on suppose

 E_k réalisé (donc le premier Pile au $k^{\text{ème}}$ lancer), la probabilité que le deuxième Pile apparaisse au $(n+2)^{\text{ème}}$ lancer est la même que le premier Pile apparaisse au $(n+2-k)^{\text{ème}}$ lancer (une fois le premier Pile obtenu, on peut considérer que l'expérience reprend au début et que l'on attend à nouveau le premier Pile). On en déduit

donc
$$P(X_n) = \sum_{k=1}^{n+1} P(E_{n+2-k}) P(E_k)$$

- c) On en déduit $P(X_n) = \sum_{k=1}^{n+1} \frac{2}{3^k} \times \frac{2}{3^{n+2-k}} = \sum_{k=1}^{n+1} \frac{4}{3^{n+2}} \operatorname{donc} \left[P(X_n) = (n+1) \frac{4}{3^{n+2}} \right]$
- 2. a) Si X_n est réalisé, on peut tirer une boule dont le numéro sera dans [0, n] mais comme l'entier n pour lequel X_n est réalisé est quelconque, le numéro de la boule tirée peut être n'importe quel entier de \mathbb{N} .
 - b) Si X_n est réalisé, on ne peut pas tirer une boule dont le numéro k est > n. Par contre si $k \le n$ la probabilité de tirer une boule donnée étant uniforme, on a $P_{X_n}(U_k) = \begin{cases} \frac{1}{n+1} & \text{si } k \le n \\ 0 & \text{sinon} \end{cases}$
 - c) On commence par vérifier que $(X_n)_{n\in\mathbb{N}}$ est un système quasi-complet : les X_n sont deux à deux incompatibles et $\sum_{n=0}^{+\infty} P(X_n) = \frac{4}{9} \sum_{n=0}^{+\infty} (n+1) \left(\frac{1}{3}\right)^n = \frac{4}{9} \times \frac{1}{\left(1-\frac{1}{3}\right)^2} = 1$. Par la formule des probabilités totales, on a $P(U_k) = \sum_{n=1}^{+\infty} P_{X_n}(U_k)P(X_n) = \sum_{n=k}^{+\infty} P_{X_n}(U_k)P(X_n) = \sum_{n=k}^{+\infty} \frac{1}{n+1}P(X_n) = \sum_{n=k}^{+\infty} \frac{4}{3^{n+2}} \stackrel{h=n-k}{=} \frac{4}{3^{k+2}} \sum_{h=0}^{+\infty} \frac{4}{3^h}$ donc $P(U_k) = \frac{2}{3^{k+1}}$
 - d) Si X_n est réalisé, l'événement V_k sera lui aussi réalisé si le numéro de la boule tirée est n-k (ce qui impose donc $n-k\geqslant 0$) donc $P_{X_n}(V_k)=P_{X_n}(U_{n-k})$ donc $P_{X_n}(V_k)=\left\{\begin{array}{cc} \frac{1}{n+1} & \text{si } k\leqslant n\\ 0 & \text{sinon} \end{array}\right\}$ On en déduit donc par le même calcul que $P(V_k)=\frac{2}{3^{k+1}}$ pour tout $k\in\mathbb{N}$ Là encore toutes les valeurs entières sont possibles puisque n est un entier quelconque et le numéro de la boule tirée peut toujours être 0 donc k est un entier de \mathbb{N} .
 - e) L'événement $U_k \cap V_h$ correspond au cas où la boule tirée porte le numéro h et où on a obtenu k+h Face donc on a $U_k \cap V_h = X_{k+h} \cap U_k$. Ainsi, $P(U_k \cap V_h) = P(U_k \cap X_{k+h}) = P_{X_{k+h}}(U_k)P(X_{k+h}) = \frac{1}{k+h+1} \times (k+h+1)\frac{4}{3^{k+h+2}}$ et comme $P(U_k)P(V_k) = \frac{2}{3^{k+1}} \times \frac{2}{3^{h+1}}$, on a $P(U_k \cap V_h) = P(U_k)P(V_h)$ donc U_k et V_h sont indépendants
- 3. a) La probabilité que le joueur B obtienne Face pour la première fois au $n^{\text{ème}}$ tirage est $p(1-p)^{n-1}$ (temps d'attente du premier succès) donc $P(B_n) = p(1-p)^n$ car le joueur B aura n Face (exactement) si le premier Pile apparaît au tirage n+1. On a $Y_n = \bigcup_{k \ge n} B_k$, les événements de cette réunion étant deux à deux incompatibles, on a

$$P(Y_n) = \sum_{k=n}^{+\infty} p(1-p)^k \stackrel{h=n-k}{=} \sum_{k=0}^{+\infty} p(1-p)^{n+k} = p(1-p)^n \times \frac{1}{1-(1-p)} \operatorname{donc} \left[P(Y_n) = (1-p)^n \right]$$

b) Les $(X_n)_{n\in\mathbb{N}}^{n-n}$ constituent un système quasi-complet d'événements donc, d'après la formule des probabilités totales, on a $P(G_A) = \sum_{n=0}^{+\infty} P_{X_n}(G_A)P(X_n)$. Si X_n est réalisé, le joueur A a obtenu n Face donc il gagne si B

obtient au moins n Face; on en déduit $P_{X_n}(G_A) = P(Y_n)$ et $P(G_A) = \sum_{n=0}^{+\infty} P(X_n) P(Y_n)$

- c) On a $P(G_A) = \sum_{n=0}^{+\infty} (n+1) \frac{4}{3^{n+2}} (1-p)^n = \frac{4}{9} \sum_{n=0}^{+\infty} (n+1) \left(\frac{1-p}{3}\right)^n = \frac{4}{9} \times \frac{1}{\left[1-\left(\frac{1-p}{3}\right)\right]^2} \operatorname{donc} \left[P(G_A) = \left(\frac{2}{2+p}\right)^2\right]$
- d) Le jeu est équitable si et seulement si $P(G_A) = P(G_B) = \frac{1}{2}$ (car B gagne si A ne gagne pas d'après le texte) donc si et seulement si $\frac{2}{2+p} = \frac{1}{\sqrt{2}}$ donc si et seulement si $p = 2(\sqrt{2}-1)$