DM6

(d'après E3A PSI 2019 maths 1)

On note $\mathcal E$ l'espace vectoriel des fonctions continues sur $\mathbb R$, à valeurs dans $\mathbb R$. Pour tout élément f de $\mathcal E$, on note U(f) l'application de $\mathbb R$ dans $\mathbb R$ définie par :

$$\forall x \in \mathbb{R}, U(f)(x) = \int_{x=1}^{x} f(t) dt$$

- 1. Soit $f \in \mathcal{E}$, T-périodique. Montrer que $\forall a \in \mathbb{R}$, $\int_{0}^{a+T} f(t) dt = \int_{0}^{T} f(t) dt$.
- 2. On suppose de plus dans cette question que f est dérivable sur \mathbb{R} .
 - a) Démontrer que si f est T-périodique, il en est de même pour f'.
 - b) Montrer que la réciproque est fausse
- 3. Montrer que la fonction U(f) est de classe \mathcal{C}^1 sur \mathbb{R} et calculer sa dérivée.
- **4.** Montrer que l'application U qui à $f \in \mathcal{E}$ associe U(f) est un endomorphisme de \mathcal{E} .
- **5.** Soit $n \in \mathbb{N}^*$, $E_n = \mathbb{R}_n[X]$ et $\mathcal{B}_n = (1, X, \dots, X^n)$ sa base canonique.
 - a) Montrer que la restriction de U à E_n définit un endomorphisme U_n de E_n .
 - b) Écrire la matrice de U_n dans la base \mathcal{B}_n .
 - c) L'endomorphisme U_n est-il bijectif?
 - d) Déterminer les valeurs propres et la dimension des espaces propres de U_n . Existe-t-il une base de E_n dans laquelle la matrice de U_n est diagonale?
- **6.** Justifier que si f, élément de \mathcal{E} , est dans $\ker(U)$ alors :
 - a) $\int_0^1 f(t) \, \mathrm{d}t = 0.$
 - b) f est périodique de période 1.
- 7. A-t-on $\ker(U) = \left\{ f \in \mathcal{E}, \text{ périodique de période 1 et telle que } \int_0^1 f(t) dt = 0 \right\}$?
- 8. Donner explicitement une fonction f, non nulle, élément de $\ker(U)$.
- **9.** L'endomorphisme U est-il surjectif?
- 10. Soit a un réel non nul et f_a la fonction définie sur \mathbb{R} par $f_a: t \mapsto e^{at}$.
 - a) Déterminer $F_a = U(f_a)$.
 - b) Dresser le tableau de variations de la fonction réelle $g: x \mapsto \frac{e^x 1}{x}$.
 - c) Montrer que tout réel λ strictement positif est valeur propre de U.