TD9 : Réduction

Exercice 1

Diagonaliser
$$A = \begin{pmatrix} 11 & -5 & 5 \\ -5 & 3 & -3 \\ 5 & -3 & 3 \end{pmatrix}$$

Exercice 2 (Mines-Télécom PSI 2024)

Soient E un espace vectoriel de dimension finie $n \ge 2$, ℓ une forme linéaire non nulle sur E, $a \in E$ non nul et f définie par $f(x) = \ell(x)a - \ell(a)x$

- 1. Montrer que f est un endomorphisme de E qui s'annule en a.
- **2.** Justifier que si $\ell(a) \neq 0$ et f(x) = 0 alors $x \in \text{Vect}\{a\}$.
- **3.** Calculer f(x) si $\ell(x) = 0$
- **4.** f est-il diagonalisable?
- **5.** Déterminer \mathcal{X}_f et $\mathrm{Tr}(f)$.

Exercice 3 (Mines-Télécom PSI 2023)

Soit
$$A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ 4 & 8 & -12 \end{pmatrix}$$
.

- 1. Déterminer le rang de A.
- 2. En déduire sans calcul le polynôme caractéristique.
- **3.** Déterminer les éléments propres de A.
- **4.** A est-elle diagonalisable?

Exercice 4 (CCINP PSI 2023)

Soient
$$\alpha \in \mathbb{R}$$
 et $M_{\alpha} = \begin{pmatrix} \alpha & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & \alpha \end{pmatrix}$

- 1. Déterminer $\mathcal{X}_{M_{\alpha}}$ et les valeurs propres de M_{α}
- **2.** M_{α} est-elle diagonalisable? Si oui, P inversible et D diagonale telles que $M_{\alpha} = PDP^{-1}$
- **3.** M_{α} est-elle inversible?
- **4.** Lorsque M_{α} n'est pas inversible, déterminer des bases de $\ker(M_{\alpha})$ et $\operatorname{Im}(M_{\alpha})$.

Exercice 5 (CCINP PSI 2023)

Soit $A_n \in \mathcal{M}_n(\mathbb{R})$ telle que $a_{i,j} = \begin{cases} i & \text{si } i = j \\ 1 & \text{sinon} \end{cases}$ On note P_n le polynôme caractéristique de A_n .

- 1. Donner le spectre de A_2
- **2.** Montrer que, pour $n \ge 3$, $P_n = (X n + 1)P_{n-1} X(X 1) \dots (X n + 2)$
- **3.** Montrer que $\forall k \in [0, n-1], (-1)^{n-k} P_n(k) > 0$ et en déduire que A_n possède une valeur propre dans chacun des intervalles $]0,1[,]1,2[,\ldots,]n-2,n-1[.$ (*)
- **4.** En déduire que A_n est diagonalisable.

Exercice 6 Soit
$$A = \begin{pmatrix} 0 & -1 & 1 \\ 2 & 1 & -3 \\ 2 & -1 & -1 \end{pmatrix}$$
. Déterminer les sous-espaces de \mathbb{R}^3 stables par A . (*)

Exercice 7 (CCINP PSI 2024)

Pour
$$\alpha \in \mathbb{R}$$
, on pose $M_{\alpha} = \begin{pmatrix} 1 + 2\alpha & 9 - 2\alpha & -2\alpha \\ 0 & 4 & 0 \\ \alpha & 6 - \alpha & 1 - \alpha \end{pmatrix}$

- 1. Étudier la diagonalisabilité de M_o
- **2.** Déterminer $\operatorname{rg}(M_{\alpha})$
- 3. Déterminer $P \in \mathcal{GL}_3(\mathbb{R})$ telle que $M_{-1} = P\Delta P^{-1}$ avec $\Delta = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$
- **4.** On cherche à résoudre $A^2 = M_{-1}$ et on pose $B = P^{-1}AP$
 - a) Montrer que $A^2 = M_{-1} \Leftrightarrow B^2 = \Delta$

- b) Montrer que si $B^2 = \Delta$ alors B et Δ commutent
- c) En déduire les matrices B telles que $B^2 = \Delta$
- d) Résoudre $A^2 = M_{-1}$

Exercice 8 (CCINP PSI 2024)

Soit $u \in \mathcal{L}(\mathbb{C}^n)$ avec $n \geqslant 1$

- 1. Montrer que si u est diagonalisable alors u^2 est diagonalisable
- 2. Montrer que la réciproque est fausse
- **3.** Pour $\lambda \in \mathbb{C}^*$, montrer $\ker(u^2 \lambda^2 id) = \ker(u \lambda id) \oplus \ker(u + \lambda id)$
- **4.** Montrer que la réciproque de la question **1** est vraie si u est bijectif ou si $\ker(u) = \ker(u^2)$.

Indications

Exercice 5

3. Commencer par une récurrence sur n

Exercice 6

Si P est un plan stable par f_A , chercher ce que peut être le polynôme caractéristique de l'endomorphisme induit par f_A sur P.