Correction du DM7

(Extrait de CCINP MP 2019 maths 2)

Partie I:

- 1. Cours
- 2. Tr(A) = Tr(B) = 5, rg(A) = rg(B) = 3 (matrices triangulaires inversibles car leurs coefficients diagonaux sont non nuls), det(A) = det(B) = 4 (matrices triangulaires) et $\mathcal{X}_A = \mathcal{X}_B = (X 1)(X 2)^2$ (matrices triangulaires).

On a $A - 2I_3 = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ donc $\operatorname{rg}(A - 2I_3) = 1$ et $\dim(E_2(A)) = 2 = m_2(A)$; comme la deuxième valeur

propre de A est simple, A est diagonalisable.

Par contre $B - 2I_3 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ donc $\operatorname{rg}(B - 2I_3) \geqslant 2 \ ((C_1, C_2) \ \text{libre})$ puis $\dim(E_2(B)) \leqslant 1 < m_2(B)$ et B

n'est pas diagonalisable. On en déduit \overline{A} et B ne sont pas semblables

3. On étudie les variations de $P=X^3-3X-1$: $P'=3(X^2-1)$; P(-1)=1> et P(1)=-3<0 donc P s'annule une fois sur chaque intervalle $]-\infty,-1[,]-1,1[$ et $]1,+\infty[$ donc admet trois racines réelles α,β et γ (il est donc SARS)

On vérifie que $\mathcal{X}_A = \mathcal{X}_B = X^3 - 3X - 1$ SARS donc A et B sont diagonalisables, semblables à $D = \operatorname{diag}(\alpha, \beta, \gamma)$. Il existe donc $P_1, P_2 \in \mathcal{GL}_3(\mathbb{R})$ telles que $A = P_1 D P_1^{-1}$ et $B = P_2 D P_2^{-1}$, ce qui donne $A = (P_1 P_2^{-1})B(P_1 P_2^{-1})^{-1}$ donc A et B sont semblables

- **4.** On a dim $(\ker(u)) = n 1$; on introduit un supplémentaire D (droite) de $\ker(u)$ et B une base adaptée à la décomposition $E = \ker(u) \oplus D$. La matrice de u dans la base \mathcal{B} est de la forme demandée.
- 5. On a $U^2 = a_n U$ donc si $u^2 \neq 0$, on a $a_n \neq 0$. Le polynôme caractéristique de u est donc $\mathcal{X}_u = X^{n-1}(X a_n)$ avec $a_n \neq 0$. On a aussi $\dim(E_0(u)) = \dim(\ker(u)) = n 1 = m_0(u)$ et comme la deuxième valeur propre a_n est simple, u est diagonalisable
- **6.** On a $C_1 = C_3$ et $C_2 = C_4$ donc $\operatorname{rg}(A) \leqslant 2$; de plus (C_1, C_2) est libre car $\alpha^2 \beta^2 \neq 0$ donc $\operatorname{rg}\begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix} = 2$ puis $\operatorname{rg}(C_1, C_2) \geqslant \operatorname{rg}\begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}$. On en déduit $\operatorname{rg}(A) = 2$

 $A \notin \mathcal{GL}_2(\mathbb{C}) \ \mathrm{donc} \ \boxed{0 \in \mathrm{Sp}(A)} \ \mathrm{puis} \ \mathrm{dim}(E_0(A)) = \mathrm{dim}(\ker(A)) = 4 - \mathrm{rg}(A) = 2 \ \mathrm{et} \ m_0(A) \geqslant \mathrm{dim}(E_0(A)) = 2.$

On vérifie $A \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = 2(\alpha + \beta) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \neq 0$ donc $2(\alpha + \beta) \in \operatorname{Sp}(A)$ et $m_{2(\alpha + \beta)}(A) \geqslant 1$. De même

 $A\begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix} = 2(\alpha - \beta)\begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix} \text{ et } \begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix} \neq 0 \text{ donc } 2(\alpha - \beta) \in \operatorname{Sp}(A) \text{ et } m_{2(\alpha - \beta)} \geqslant 1. \text{ } A \text{ possède donc au moins}$

3 valeurs propres distinctes 0, $2(\alpha + \beta)$ et $2(\alpha - \beta)$; comme $m_0(A) + m_{2(\alpha + \beta)}(A) + m_{2(\alpha - \beta)}(A) \ge 4$, on a toutes les valeurs propres de A, $\mathcal{X}_A = X^2(X - 2(\alpha + \beta))(X - 2(\alpha - \beta))$ puis $m_0(A) = 2 = \dim(E_0(A))$ et A est diagonalisable

Une base de vecteurs propres de A est alors $\left(\begin{pmatrix}1\\0\\-1\\0\end{pmatrix},\begin{pmatrix}0\\1\\0\\-1\end{pmatrix},\begin{pmatrix}1\\1\\1\\1\end{pmatrix},\begin{pmatrix}-1\\1\\-1\\1\end{pmatrix}\right)$

7. Si u est l'endomorphisme de \mathbb{R}^2 canoniquement associé à A et $\mathcal{B}_c = (e_1, e_2)$ la base canonique de \mathbb{R}^2 alors on a $u(e_1) = \lambda e_1$ et $u(e_2) = ae_1 + \lambda e_2$. On pose alors $f_1 = \frac{a}{b}e_1$ et $f_2 = e_2$ et on vérifie que $\mathcal{B} = (f_1, f_2)$ est une base de \mathbb{R}^2 car $\det(\operatorname{Mat}_{\mathcal{B}_c}(f_1, f_2)) = \begin{vmatrix} a/b & 0 \\ 0 & 1 \end{vmatrix} = \frac{a}{b} \neq 0$; on a ensuite $u(f_1) = \frac{a}{b}u(e_1) = \lambda f_1$ et $u(f_2) = ae_1 + \lambda e_2 = bf_1 + \lambda f_2$ donc A et B sont semblables

On peut aussi le faire matriciellement : si on pose $P = \begin{pmatrix} a/b & 0 \\ 0 & 1 \end{pmatrix}$, on vérifie $P^{-1} = \begin{pmatrix} b/a & 0 \\ 0 & 1 \end{pmatrix}$ et $A = PBP^{-1}$.

Partie II

8. On a PB = AP donc (R+iS)B = A(R+iS) et, en identifiant les parties réelles et imaginaires, on a, car A et B sont réelles, RB = AR et B = AS

- 9. On vérifie par récurrence sur n que si $R, S \in \mathcal{M}_n(\mathbb{R})$ alors $\Pi : x \mapsto \det(R + xS) \in \mathbb{R}[X]$: pour n = 1, on a $\Pi(x) = r + sx \in \mathbb{R}_1[X]$ puis si on suppose le résultat pour toutes matrices R, S de $\mathcal{M}_{n-1}(\mathbb{R})$ et si on choisit $R, S \in \mathcal{M}_n(\mathbb{R})$, par développement par rapport à la dernière colonne, on a $\det(R + xS) = \sum_{i=1}^{n} (-1)^{i+n} (r_{i,n} + xs_{i,n}) \det(R_{i,n} + xS_{i,n})$,
 - où $R_{i,n}$ et $S_{i,n}$ sont les matrices extraites de R et S en supprimant la $i^{\text{ème}}$ ligne et la $n^{\text{ème}}$ colonne; par hypothèse de récurrence appliquée aux matrices $R_{i,n}$ et $S_{i,n}$, $x \mapsto \det(R_{i,n} + xS_{i,n})$ est polynômiale, puis par produit et combinaison linéaire de polynômes, Π est polynômiale. (On pourrait même prouver que $\deg(\Pi) \leqslant n$ de la même façon.)
 - On a $\Pi(i) = \det(P) \neq 0$ donc Π n'est pas le polynôme nul. On en déduit que Π admet un nombre fini de racines réelles et donc, comme $\mathbb R$ est infini, il existe une infinité de réels x tels que $\Pi(x) \neq 0$. On a donc, en particulier, il existe $x \in \mathbb R$ tel que Q = R + xS soit inversible
- 10. Par combinaison linéaire des lignes RB = AR et SB = AS, on a QB = AQ et comme Q est inversible, on a $B = Q^{-1}AQ$ et A et B sont semblables dans $\mathcal{M}_n(\mathbb{R})$
- 11. $\mathcal{X}_A = X(X-i)(X+i)$ est SARS dans \mathbb{C} donc A est semblable dans $\mathcal{M}_3(\mathbb{C})$ à $D = \operatorname{diag}(0,i,-i)$; on vérifie que $\mathcal{X}_B = X^3 + X$ donc B est elle aussi diagonalisable dans $\mathcal{M}_3(\mathbb{C})$ et semblable à D. Les matrices réelles A et B sont donc semblables entre elles dans $\mathcal{M}_3(\mathbb{C})$; d'après la question précédente A est B sont semblables dans $\mathcal{M}_3(\mathbb{R})$