Exercice 1 (Mines-Télécom PSI 2024)

Soit
$$A = \begin{pmatrix} 5 & 3 \\ 1 & 3 \end{pmatrix}$$

- 1. Diagonaliser A
- **2.** Soit $M \in \mathcal{M}_2(\mathbb{R})$ telle que $M^2 + M = A$
 - a) Montrer que $Sp(M) \subset \{1, -2, 2, -3\}$
 - b) Déterminer les matrices M telles que $M^2 + M = A$

Exercice 2 (CCP PSI 2012)

Soit $A \in \mathcal{M}_3(\mathbb{R})$ telle que $\det(A) = 10$, $\operatorname{Tr}(A) = -6$ et $A - I_3 \notin \mathcal{GL}_3(\mathbb{R})$. Exprimer A^{-1} comme un polynôme en A. (*)

Exercice 3 (CCINP PSI 2024)

Soit $A \in \mathcal{M}_n(\mathbb{R})$, non nulle, telle que $A^3 + 9A = 0$, $n \ge 3$.

- **1.** Montrer que $\operatorname{Sp}_{\mathbb{C}}(A) \subset \{0, 3i, -3i\}$
- **2.** A est-elle diagonalisable dans \mathbb{R} ? Dans \mathbb{C} ?
- **3.** Montrer que si n est impair alors A n'est pas inversible.

Exercice 4 (CCP PSI 2023)

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et P annulateur de A; montrer que les valeurs propres de A sont des racines de P.
- **2.** Existe-t-il $A \in \mathcal{M}_3(\mathbb{R})$ telle que $\operatorname{Tr}(A) = 0$ et $A^2 + A^T = I_3$? (*)

Exercice 5 (Mines-Télécom PSI 2023)

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 - 3A - 5I_n = 0$. Montrer que $\det(A) > 0$. (*)

Exercice 6

Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$, non nulles, et $\varphi : M \in \mathcal{M}_n(\mathbb{R}) \longmapsto M + \operatorname{Tr}(AM)B$.

- 1. Montrer que φ est linéaire.
- **2.** φ est-il diagonalisable? (*)
- 3. Déterminer $det(\varphi)$ et $Tr(\varphi)$

Exercice 7 (Centrale PSI 2014)

- **1.** Pour $A \in \mathcal{M}_n(\mathbb{R})$, montrer que $B = \begin{pmatrix} A & 4A \\ A & A \end{pmatrix}$ est semblable à $\begin{pmatrix} -A & 0 \\ 0 & 3A \end{pmatrix}$. (*)
- 2. Montrer que B est diagonalisable si et seulement si A l'est.

Exercice 8 (CCINP PSI 2024)

Soient
$$A \in \mathcal{M}_n(\mathbb{C})$$
 et $B = \begin{pmatrix} A & A \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C})$.

- **1.** Montrer que, pour $P \in \mathbb{C}[X]$, $P(B) = \begin{pmatrix} P(A) & P(A) \\ 0 & 0 \end{pmatrix} + P(0) \begin{pmatrix} 0 & -I_n \\ 0 & I_n \end{pmatrix}$.
- **2.** Déterminer rg(B) en fonction de rg(A).
- 3. On suppose A diagonalisable. Montrer que B est diagonalisable. (*)
- 4. Étudier la réciproque.

Exercice 9 (Centrale PSI 2023)

Soit $A \in \mathcal{M}_n(\mathbb{R})$ et B la matrice par blocs définie par : $B = \begin{pmatrix} A & I_n \\ I_n & 0 \end{pmatrix}$.

- 1. Exprimer \mathcal{X}_B en fonction de \mathcal{X}_A . (*)
- **2.** Montrer que si A diagonalisable alors B est diagonalisable. (*)

Exercice 10 (Mines-Ponts PSI 2024)

- 1. Soit A une matrice carrée d'ordre n, montrer l'équivalence entre les deux propositions (*)
 - i) A est nilpotente
 - ii) $Tr(A) = Tr(A^2) = \cdots = Tr(A^n) = 0$
- 2. Soient A et B deux matrices carrées d'ordre n telles que AB BA = B. Montrer que B est nilpotente. (*)

Indications

Exercice 2

trouver \mathcal{X}_A .

Exercice 4

2. trouver un polynôme annulateur de A (de degré 4); la réponse est qu'une telle matrice n'existe pas

Exercice 5

étudier $\operatorname{Sp}_{\mathbb{C}}(A)$ et chercher si les vp sont réelles ou non (étude de fonction).

Exercice 6

2. $M \mapsto \text{Tr}(AM)$ est une forme linéaire non nulle (à vérifier).

Exercice 7

1. Utiliser la diagonalisation de $M = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$ (et les coefficients des matrices P et P^{-1} , à déterminer) pour diagonaliser B par blocs

Exercice 8

3. Distinguer les cas $0 \in \operatorname{Sp}(A)$ et $0 \notin \operatorname{Sp}(A)$ pour construire un polynôme annulateur de B

Exercice 9

- 1. On peut supposer $\lambda \neq 0$ pour pouvoir simplifier le déterminant.
- 2. On peut faire le même genre de calculs pour le rang.

Exercice 10

- 1. Commencer par calculer les traces en fonction des valeurs propres de A, en introduisant les valeurs propres distinctes et leurs ordres de multiplicité.
- **2.** Déterminer $AB^k B^kA$.