I Réduction des endomorphismes

1. Éléments propres

- a) Valeurs propres et vecteurs propres d'un endomorphisme : définitions, spectre, les sous-espaces propres associés à des valeurs propres 2 à 2 distinctes sont en somme directe, liberté d'une famille de vecteurs propres associés à des valeurs propres 2 à 2 distinctes, stabilité des espaces propres de u par un endomorphisme commutant avec u.
- b) Valeurs propres et vecteurs propres d'une matrice carrée : définition, cas d'une matrice réelle (les valeurs propres complexes sont conjuguées et les espaces propres correspondants sont de même dimension).
- c) Polynôme caractéristique : ordre de multiplicité des valeurs propres, expression de la trace et du déterminant en fonction des valeurs propres, deux matrices semblables ont le même polynôme caractéristique, $\mathcal{X}_A = \mathcal{X}_{A^T}$, lien entre la dimension d'un espace propre et l'ordre de multiplicité de la valeur propre correspondante. Le polynôme caractéristique de tout endomorphisme induit par u sur un sous-espace stable divise \mathcal{X}_u .
- 2. Réduction des endomorphismes en dimension finie (et des matrices carrées)
 - a) Diagonalisation : définitions équivalentes (E est somme directe des espaces propres, existence d'une base de E formée de vecteurs propres, $\dim(E)$ est égal à la somme des dimensions des sous-espaces propres), u est diagonalisable si et seulement si χ_u est scindé et pour toute valeur propre λ , $\dim E_{\lambda}(u) = m_{\lambda}(u)$, cas particulier des endomorphismes dont le polynôme est scindé à racines
 - b) Polynôme annulateur : si $\lambda \in \operatorname{Sp}(u)$ alors $P(\lambda) \in \operatorname{Sp}(P(u))$, $\operatorname{Sp}(u)$ est inclus dans l'ensemble des racines de tout polynôme annulateur, u est diagonalisable si et seulement si u possède un polynôme annulateur scindé à racines simples donc si et seulement si $\prod_{\lambda \in \operatorname{Sp}(u)} (X \lambda)$ est annulateur de u, théorème de Cayley-Hamilton (preuves non
 - exigibles). Tout endomorphisme induit par u diagonalisable sur un sous espace stable reste diagonalisable.
 - c) Trigonalisation : définition, u est trigonalisable si et seulement si \mathcal{X}_u est scindé. Tout endomorphisme induit par u trigonalisable sur un sous-espace stable reste trigonalisable. Application aux suites récurrentes linéaires, au spectre de $P(A), \ldots$

À suivre : les suites et séries de fonctions