Suites et séries de fonctions

I Etude de suites de fonctions

Exercice 1 |/ W

Etudier la convergence simple, uniforme, uniforme sur tout segment des suites de fonctions :

1. fn(z) = arctan (E), n > 1, sur R.
n

nsin (£) —1
2. fulz) = # sur [0, g], ot a € R.

n®sin ( ) +1
Exercice 2 (CCP MP 2012) |[Solution
sin(nx)

On pose f,(z) = T2 Montrer que (f,) converge simplement sur R*. Etudier la convergence uniforme sur [a, +o0],
n2x

avec a > 0, puis sur RT*.

Exercice 3 (Mines-Ponts PSI 2012) |/Solution|

2zt —nx—1 .71 | 1
—oap oy Sn T sizE |-, 1
On pose fr(x) = 2tz + z " Etudier les convergences simple et uniforme de (f,,) sur [0, 1].
0 six € {O, — {
n

Exercice 4 (CCP PSI 2016) |[Solution/
1
Soit f,(x) = cos Kl + -

1. Etudier la convergence simple de la suite (fy,).

2. Y a-t-il convergence uniforme sur tout segment de R? Sur R?

Exercice 5 (CCINP PSI 2024) |/Solution/
Pour z € [0,1] et n > 0, on pose f,(z) = sin (nxe*"ﬁ).

1. Etudier la convergence simple de (f,,) sur [0, 1]

2. Etudier la convergence uniforme de (f,,) sur [a, 1], avec a €]0, 1], puis sur [0, 1]

Exercice 6 (CCINP PSI 2021) |/Solution
na? nx
On pose fn(z) = stz >0et —— siz <0.
pose fle) = T ful) = T
1. Montrer que (f,) converge uniformément sur R vers f & déterminer.

2. Montrer que (f}) converge simplement sur R mais ne converge pas uniformément sur [—1, 1].

Exercice 7 (Mines-Ponts PSI 2023) |/Solution
e 7
1+ n2z?

1. Etudier la convergence simple de (f,,) sur [0,1]

Pour n > 1 et z € [0,1], on pose f,(z) =

2. Soit a €]0, 1], a-t-on convergence uniforme sur [a, 1] ?

3. Etudier la convergence uniforme de (f,,) sur [0, 1]
1
4. On pose u, = / fn(t) dt. Déterminer la limite de (up).
0
5. Etudier la convergence de Z fn

Exercice 8 (CCINP PSI 2022) |/Solution/

t n
Soit n € N* et g, définie sur [0, 1] par g,(t) = e’ (1 - 7) .
n
, el t\"| _ te!
1. Montrer que pour tout réel t € [0,1], |¢/,(t)] < — puis que |1 —e' (1 - —) | < —.
n n n
2. Etudier la convergence uniforme sur [0, 1] de la suite de fonctions I, ( / < - —)

Exercice 9 (Mines-Ponts PSI 2014) |/Solution|
Pour ¢ € [0,1], on pose fo(t) =0 et frnr1(t) = fn(t) + §(t — fu(t)?). Etudier les convergences simples et uniformes de (f,)
sur [0, 1].



Exercice 10 (Centrale PSI 2023) |/Solution/
Pour z € [0, 1], on définit ¢ sur [0, 1] par Vy € [0,1],9(y) =y — ng
1. Montrer que g est 1-lipschitzienne et que [0, 1] est stable par g

2
2. On définit la suite de fonctions (hy)nen par hg =1 et Vo € [0,1],Vn € N, by 11 (2) = hy, <7> — —h, <7>
a) Montrer que Vx € [0,1], h,,(z) € [0, 1]

b) Montrer que |hp11(x) — hn(z)] < ‘h (E) fin—1 (g))

¢) En déduire que (hy,)nen converge uniformément sur [0, 1

indication : prouver |hy11(x) — hy(7)| < ‘hl (271> —ho (27)

; pour la CVU, utiliser f — h,, = Z h41 — hy

2
3. Justifier qu’il existe une fonction f continue sur [0, 1], telle que f(0) =1 et Yz € [0,1], f(z) = f (g) - gf (g)

Exercice 11 (Centrale PSI 2023) |/Solution

+o0 +oo
1. Justifier 'existence, pour z € R, et déterminer la valeur de ¢(z) = e / e tcos(t)dtet p(z) = / e tsin(t)dt

2. Déterminer les solutions bornées sur R de y' — y + cos(x) = 0
indication : ¢ est une solution de l’équation

3. On considére la suite de fonctions (f,)nen définie par fo = acos+bsin et, pour n € N et z € R, foy1(z) =
+oo
e’ / et f,,(t) dt. Montrer que (f,,)nen converge uniformément.

T
indication : prouver f, = ay cos+f3, sin puis déterminer «, et B,
Exercice 12 (Centrale PSI 2022) W

Soit f € C%(]0,1],R). On pose B,( Zf( > ( > P —a)" 7k et S,(z) = Z (n) (1 —2)" (k- nz)",
pour z € [0, 1]. B

1. Citer la formule de Taylor avec reste intégral

2. Montrer que S, o(xz) =1 et S, 1(x) =0
On admet Sy, 2(z) = nz(1l — x)

Maz(1 -

3. Montrer qu'il existe M > 0 tel que |B,(f)(z) — f(x)] < ?) pour z € [0, 1].

En déduire que (B, (f))nen+ converge uniformément sur [0, 1]

II Modes de convergence des séries de fonctions

Exercice 13 |/Solution

Etudier la convergence simple puis la convergence normale des séries de terme général
1. up,(z) = 2%(1 — 2)"nc sur [0,1] ot (a,b,c) € (R+*)3.
2. u,(x) = nz®e ™ sur R™ ot a € R.

Exercice 14 (Mines-Ponts PSI 2019) |/Solution/
1. Convergence simple puis uniforme sur [0, 1] de la suite f,(z) =n%z(1 —z)"

2. Convergence simple puis uniforme de la série E I
n>1

Exercice 15 (CCINP PSI 2019) |/Solution
1. Trouver les x tels que la suite (f,), fn(x) = ze™ "2l converge ; calculer Il fnlloo, que peut-on en déduire ?
2. Déterminer le domaine de convergence D de Z fn- La convergence est-elle absolue sur D 7 Normale ? Que dire de

la convergence sur R\| — a, a[, avec a > 07

Exercice 16 (IMT PSI 2019) [/Solution
Pour n € N*, on pose gy (z) = sin(z) cos™ (z) et fn(x) = xg,(z) avec z € [0, g]
1. Etudier les variations de g,.

2. Etudier la suite (f,,) puis la série Z fn-
n>=0



Exercice 17 (Mines-Ponts MP 2010) |/Solution/

. . . s
1. Si @ > 0, on pose u,(z) = sin® x cos” x ; montrer que E u, converge simplement sur {O, 5} et calculer sa somme.
n>=0

2. A quelle condition sur « y a-t-il convergence normale ? uniforme ?
Exercice 18 (CCP PSI 2016) |/Solution|
efx
Soit fi,(x) = a"—- pour z > 0.
n!

1. Montrer la convergence simple puis uniforme de la suite (f,,) sur R*.

2. Etudier la série Z fn-

Exercice 19 (CCINP PSI 2019) |/Solution

11
1. Montrer que, pour t € {—5, 5}, |In(1+t) —t| < 2t

P —-1)"
2. Etudier la convergence simple et uniforme de g In (1 + M) sur R.
n x
n>1

Exercice 20 |/Solution

on pose, pour n € N* et z € R™, f,(2) =

(="

rlon °

1. Etudier la convergence simple de Z I
2. Etudier la convergence normale de Z fn-

3. Etudier la convergence uniforme de Z fn sur [a,+00[C]1, +oo[. Qu’en déduire pour la somme f de cette série?

4. Calculer lim
n—-+o0o

1
In (1 + 7> ‘ Que dire de la convergence uniforme de Z fr sur ]1,400[?
n

indication : que dire de || fn|loo S an converge uniformément ?

IIT Continuité, limites, équivalents de sommes de séries

Exercice 21 (Mines-Télécom PSI 2018) |/Solution|
1

1. Montrer que pour z € I =] — 1, 400[, S(z) = Z (7 _
1 n n-+x

) existe.

2. Montrer que S est continue sur I.

1
3. Montrer que S(z+1) — S(z) = 1 et en déduire un équivalent de S et —17.
x

4. La série converge-t-elle normalement sur I ?

Exercice 22 (CCINP PSI 2021) |/Solution

. x
SOlt f(x) - Z W

n>1
Déterminer le domaine de définition D de f.
Montrer que f est continue sur R™*

Etudier la continuité de f en 0.

Ll

Déterminer la limite de f(z) — = en +o0.

Exercice 23 (CCINP PSI 2021) [/Solution

In(z)

(@) >2etxz>0 = —".
n pose, pour n et x , U () T ()

1. Déterminer le domaine de convergence de Z U ().

2. Montrer que Z Uy, De converge pas normalement sur ce domaine.
+oo
3. On pose R, (x) = Z ug () ; montrer que |R, ()| <

k=n+1
continue sur son domaine de convergence.

———— puis montrer que la somme de la série Uy, €st
In(n+1) P q Z "



Exercice 24 (Mines-Télécom PSI 2024) |/Solution
et S(x) = ful2)

n>=2

Te
Pour n > 2, on pose f,(x) = ]
nn

1. Déterminer le domaine de définition de S.
2. Montrer que S est continue sur RT*.

3. Montrer que S est continue en 0.
indication : CVU sur RT

Exercice 25 (Mines-Ponts PSI 2017) [/Solution|

. e
1. Etudier les convergences simple et uniforme de Z il
n=0

—nx

sur RT*.

n
indication : utiliser R,(1/n).
2. On note f la somme de la série précédente ; est-elle continue 7 dérivable ?

3. Donner ses limites en 0 et +oo.

Exercice 26 (Centrale PSI 2014) |/Solution|
1. Existence et continuité sur R™* de f(z) = Z 227%™ pour « € [0, 2].
n>=1

2. Trouver une CNS pour que la série converge normalement sur R¥.

3. Si a =1, y a-t-il convergence uniforme ?

Exercice 27 |[Solution
0 sitellk]

Pour tout & € N* on définit uy : [1, +oo[— R par ug(t) = (1 B ﬁ)t itk

1. Montrer que Z uj, converge normalement sur [1, +oo[.

n—1
s . EN™
2. En déduire ngrfoo E (ﬁ) . (indication : commencer poser p=mn — k)

Exercice 28 |/Solution|
“+o0
. 1
Soit f(l?) = Z m

n=1
1. Quel est ’ensemble de définition de f?

2. Montrer que f(x) o 2e77.
oo

1
3. Mémes questions pour Z ——

s (nx)’

Exercice 29 (CCINP PSI 2024) |/Solution
1

Pour z € R* et n € N*, on pose f,(z) = Sh(n7)
sh(nz

1. Déterminer les valeurs de x pour lesquelles Z fn(x) converge.

+oo
On pose f(z) =Y ful)
n=1

Déterminer le domaine de continuité de f
Etudier les variations de f

1.
2.
3. Montrer que pour u grand on a sh(u) > ¢"/?
1
4. Montrer que f(z) est équivalente a e au voisinage de +oo.
shx

Exercice 30 (CCP PSI 2023) |[Solution

+o0o n
1. Ensemble de définition de S(z) = Z xa

n=0

, en fonction de a ?

2. On suppose |a| < 1 jusqu’a la fin de I'exercice, montrer que S est continue sur R™*.

3. Déterminer une relation entre S(x 4 1) et S(z) et en déduire un équivalent de S en 0.



quand z tend vers 4o0.

4. Montrer que xS(x) tend vers 1

Exercice 31 (CCP PSI 2018) |[Solution
On note f,(z) = e V7 et f(z) = Z fn(x).

n>=1
1. Donner '’ensemble de définition D de f.

2. Pour a > 0, montrer la convergence normale sur [a, +oo[ puis étudier la convergence normale sur D.

w

. f est-elle continue sur D ? Déterminer sa limite en +oo.
n+1
4. Montrer que /

n

n 2
eVt <e *Vn g / e~V dt et en déduire que f(z) ~ —.

n—1 z—0 x2

Exercice 32 (Mines-Télécom PSI 2023) |/Solution|

+o0

Soit f(x) = Z e oV

n=1

1. Déterminer le domaine de définition de f

2. Montrer que f est continue sur R**

1
3. Montrer que, pour tout k € N, f(z) = o (7)
x

T—+00

Exercice 33 (Mines-Ponts PSI 2022) |/Solution
“+oo

On donne f(z) = Z e
n=0

1. Domaine de définition et continuité de f.
2. Donner la limite de f(z) quand z — 4o0.

3. Donner un équivalent de f(z) quand z — 07.

Exercice 34 (ENSAM PSI 2018) |/Solution)
+oo
_1)»
Soit f(x) = Z =Dt

n+ax’
n=0 +

1. Montrer que f est définie sur R,
2. Montrer que f est C* sur R™* et étudier ses variations.

3. Calculer f(x) + f(z + 1) et en déduire des équivalents de f en 0T et +oo.
indication : pour l'équivalent en 400, encadrer f(x) avec la valeur de f(x)+ f(x + 1) et la monotonie de f.

Exercice 35 (CCINP PSI 2024) |/Solution

Soit g, (y) = n—i—((—lrll)(:L))y’y eR

1. Etudier la convergence Z In-

indication : montrer que le CSSA est vérifié pour n > —y dans le cas y < 0.
+o00

2. Lorsqu’elle existe étudier la continuité de F(y) = Z _ et

' 20 ()

Exercice 36 (Mines-Télécom PSI 2024) |/Solution|

+oo —nx

Déterminer le domaine de définition de f et montrer que f est continue.
indication : pour la continuité en 0, examiner f(x) — f(0).

Exercice 37 (ENSAM PSI 2018) |/Solution)

+o00 n
x
Soit = E 1 la, séri )
oit f(x) 2T orsque la série converge
1. Montrer que f est définie, continue et C* sur | — 1, 1[.
t b In(1 — 2%) — In(1 —
2. Pour z € [0, 1], on pose ¢, (t) = . Montrer que / oz (1) dt = n(l—af) —(l-z )
1—at a Inz

En déduire la limite et un équivalent de f en 17.



Exercice 38 (Centrale PSI 2022) |/Solution
On pose : Vn € N*, Vo € |-1,1], up(z) = (-1)"

+oo
On pose : f(z) = Zun(x)
n=1

1—an
1. Montrer que f est définie et de classe C! sur |—1,1[.
2. On pose, pour n € N* et x € [0, 1], vp(z) = (1 — x)un(z). Montrer que Z vp () converge uniformément sur [0, 1]

n>=1
et en déduire un équivalent de f en 17.

Exercice 39 (Centrale PSI 2019) |/Solution|

1. Enoncer le théoréme d’intégration par parties sur un intervalle [a,b], a < b

2. Trouver une primitive de ¢t — e Vi
—+oo
3. a) Trouver le domaine de définition et la valeur de I(z) = / Vi dt
1

b) Trouver le domaine de définition et un équivalent en 1 de S(z) = Z v
n>=1

Exercice 40 (Mines-Ponts PSI 2017) |/Solution/
"1 " In(t) =
On note H,, = Z i Un(t) = H, et S(t) = Zun(t)
k=1 n=1
1. Déterminer le domaine de définition de S et montrer que la série converge normalement sur tout |0, a] C]0, 1.
En est-il de méme sur ]0,1[?

2. Montrer que S est continue sur |0, 1]. Est-elle dérivable sur ce méme intervalle ?

—tIn(t
indication : montrer que |R,(t)] < (lt)nlfl) puis montrer qu’elle n’est pas dérivable en 1 (avec le taux d’accrois-
tn n+1
sement) en utilisant —In(1 — t) = Z — si|t] < 1.
n
n>1

Exercice 41 (Mines-Ponts PSI 2018) |/Solution/
On pose f(z) = Z In(1+e™"%).
n>=1
1. Déterminer ’ensemble de définition D de f.
2. Montrer que f est continue et strictement décroissante sur D.
3. Montrer que f admet une limite finie en +o0o et la déterminer.
n (_1)n+1 7.‘_2
4. Déterminer un équivalent d 0" ; d —_— = —
quivalent de f en 07 ; on donne Z 3 13
n>1
indication : trouver l’équivalent en 0 en fonction d’une intégrale, poser y = e~ **, qui se calculera en utilisant la
tn
somme donnée et In(1 +1t) = Z(—l)"“— site[0,1].
n
n>1

Exercice 42 (Centrale PSI 2019) |/Solution|

1
Pour z € [1,400[, on pose up(z) = z et upt+1(x) = up(x) +

1. Montrer que (u,(z)) est bien définie. La suite (u,(x)) admet-elle une limite ?

_1)n
2. On pose f,(z) = (=1) ; montrer que Z fn converge simplement sur [1, +00[.

Un (:C) n>0
+oo
3. Montrer que f : x> Z fn(x) est continue sur [1, +o00[ mais que Z fn ne converge pas normalement sur [1, +oo].
n=0
Exercice 43 (CCINP PSI 2022) |/Solution
Soient I = [—a, a] et ¢ continue sur I pour laquelle il existe ¢ > 0 tel que Vo € I, |¢(x)| < Clz|. On chercher les fonctions
x
f, définies sur I, continues en 0 et telles que { f@) =1 (5) = () pourz el
f(0)=0
1. Montrer que S : = +— Z © (27) est définie et continue sur I.

n>=0
2. Montrer que S est solution du probléeme posé



3. Montrer que la différence de 2 solutions du probléme est nulle ; que peut on en déduire sur I’ensemble des solutions ?

4. On suppose ¢ de classe C! sur I, montrer que f est aussi C* sur 1.

Exercice 44 (Centrale PC 2015) |/Solution/

Trouver les fonctions f, continues en 0 telles que Va € R, f(2x) — f(x) = In(1 + z?).
indication : justifier que f(x) — f(0) = Z(f(Q*”x) — 2™ lorsque f est continue en 0.

n=0

IV  Dérivabilité des séries de fonctions

Exercice 45 (CCINP PSI 2018) [/Solution
1 1
1. Déterminer le domaine de définition de f(x) = Z (f - )

n n-+
n>1 +

2. Montrer que f est C* sur R,
3. Calculer f(1) et trouver un équivalent de f(p), p € N*, lorsque p tend vers +oo.

Exercice 46 (Mines-Télécom PSI 2024) |/Solution|
1. Donner le domaine de définition de f(x) = Z

n>1

arctan(nz)
n? '

2. Etudier la continuité puis le caractére C' de f.

Exercice 47 (CCINP PSI 2022) |/Solution

©= cos(nx)

Vr e R, f(a:):zm

n=1

1. Montrer que f est définie sur R.
2. Montrer que f est C' sur R.

Exercice 48 (CCINP PSI 2022) |/Solution

. T
Soient f(I‘) = % et fn(l’) = m

1. f est-elle prolongeable par continuité en 0. Montrer que f est bornée sur R

+oo
2. Montrer que Z fn CVS sur R*; on pose S(z) = Z fn(2).
n=1

n>1
3. Montrer que S est C! sur RT*
4. Exprimer f,, a l'aide de f et en déduire un équivalent simple de .S en 0
5. Montrer que f est C* sur R.

Exercice 49 (Mines-Télécom PSI 2021) |/Solution|

+o00o
Soit f(x) = Z(—l)" [Vn+ 2 —+/n] pour z > 0.
n=0

1. Montrer que f est bien définie
2. Montrer que f est continue sur R* et C* sur R™ ; étudier ses variations.
3. Montrer que lim f = +oc0.

+o0o

indication : raisonner par Uabsurde et commencer par vérifier que f(x) = Sopt1(x) avant de séparer les termes
pPairs/impairs.

Exercice 50 (CCINP PSI 2023) |/Solution

In(1 + nx?) =
Pour n > 1 et z € R, on pose u,(z) = ———5—= et S(z) = E U ()
n
n=1

1. Montrer que S est définie sur R
2. Montrer que S est continue sur R
3. Montrer que Z U, ne converge pas normalement sur R.

4. Calculer S(0) et l+imS

5. Montrer que S est C! sur R.



6. Par une comparaison série-intégrale, déterminer un équivalent en 0 de S’

Exercice 51 (CCINP PSI 2022) |/Solution
In(1 + n?z?)

—— et S(x) = n ().
n2In(1 4+ n) et 5(z) Zu (=)

n>1

Soient u,(x) =

. Trouver le domaine de définition D de S.

. Montrer que S est continue sur D.

1
2
3. A P’aide d’une comparaison série-intégrale, montrer que Z ul, (z) converge uniformément sur D.
4

. Montrer que S est C* sur D.

Exercice 52 (Mines-Télécom PSI 2021) |/Solution

1

1. Déterminer le domaine de convergence de la série de fonctions Z Uy, avee up () = —5———.

n‘r+n

n>1
2. Montrer que sa somme S est C sur RT*.
3. Mont >0 S()Zl<zltd’d' bquivalent de S en +
. Montrer que, pour > 0, on a |S(z) — — ——— et en déduire un équivalent de S en +oc.
e n>1 x|~ n>1 niz? !

Exercice 53 |/Solution|
+oo _

e
Onnotef:xHT;)m

nx

Déterminer I’ensemble de définition de f.
f est-elle continue sur son ensemble de définition ?

Déterminer lim f.
+oo

Montrer que f est de classe C! sur RT*.

AN B o

Montrer que f n’est pas dérivable en 0.

Exercice 54 (Mines-Ponts PSI 2018) |/Solution

1. Déterminer le domaine de définition de f(z) = ]
nn
n>2

me—nx

2. Montrer que f est C* sur R™

3. f est-elle dérivable en 0?7 Continue en 07

Exercice 55 (CCINP PSI 2021) |/Solution

nx
Pour x > 0 et n > 1, on pose u,(x) = (—1)"6

n

1. Montrer que Z un(x) converge pour x > 0.
n>1

2. S est-elle continue sur R*?
3. Montrer que S est C! sur RT*.
4. Calculer S(z) pour z > 0.

Exercice 56 (CCP PSI 2012) |[Solution
too —na

1. Montrer que le domaine de définition de f(z) = Z ¢

n=1

est RT.
n2

Montrer que f est continue sur R* et de classe C? sur RT*.
Calculer f”(x) puis f'(x) pour z > 0.

Lol o

Montrer que f est non dérivable en 0.

o

Montrer que pour tout z € R™, on a f(z) = £(0) +/ In (1 — e*t) dt
0

Exercice 57 (Mines-Ponts PSI 2013) [/Solution|
—+oo

1. Donner le domaine de de définition D de f: z — Z In(1+2")

n=1



2. Montrer que f est continue et dérivable sur D.
En déduire un équivalent de f en 0.

3. Montrer que, pour z € [0,1], ¢ : t — In (1 + xt) est intégrable sur R™ et en déduire un équivalent de f en 1.

Exercice 58 (Centrale PSI 2014) |/Solution|
1. Déterminer I’ensemble de définition de f(z) = Z

n>

1
n+n2x’

2. Montrer que f est C' sur RT*.

3. Montrer que f(x) ~o Inx et déterminer un équivalent de f en +ooc.
r—

Exercice 59 (Mines-Ponts PSI 2016) |/Solution/

Soit f(x) = Z m

n>1
1. Déterminer le domaine de définition de f; étudier sa continuité et sa dérivabilité.

2. Donner un équivalent de f en 4o0.

Exercice 60 (Mines-Ponts PSI 2024) |/Solution
n

1. Montrer que la série Z (=
n=0

~ (="
S(z) —
kgo xr+n

Montrer la convergence uniforme de la série de fonctions sur |0, +o00].

converge pour tout x € ]0, +oo[. On note S(z) sa somme.

1

2. Montrer que Vz > 0, < .
Tr+n

3. Déterminer la limite de S en +ooc.
4. Montrer la convergence uniforme sur tout segment de R ne contenant aucun élément du type —n,n € N.
5. Monter que S est dérivable en tout point de R\ {—n,n € N}.

Exercice 61 (Mines-Ponts PSI 2018) [/Solution|
1
Pour z > 1, on pose ((z) = Z e et n(z) = Z

n>1 n>1

_1)n+1
nI
1. Montrer que ¢ et 7 sont définies sur |1, +o00].

2. Montrer que n(z) = (1 — 2 7*)((z) pour = > 1.

1
3. Montrer que ((x) ST

1 2 71
4. Montrer que () i +y4o0(xz—1)oty= r; 77111(2)

indication : montrer que n est C' sur R™ puis utiliser Taylor-Young et vérifier que n(1) = In(2).

n
1
. M = 1 ——1 .
5. Montrer que 7 Jm ( % n(n))
) “~Ink 1
indication : il s’agit de trouver une expression de n'(1) : poser u, = — montrer que (un - i(ln n)z) CV et
. k=1
relier n' (1) avec u, et Hy, = Z z en séparant les termes pairs et impairs.

k=1

Exercice 62 (ICNA PSI 2017) [[Solution

400
1
1. Déterminer l'ensemble de définition de ((z) = —.
nfE
n=1
2. Etudier la continuité et la dérivabilité de (.
“+o00 “+oo 1
3. Montrer que /2 (((x) —1)da = 7;2 ZIn(n)”
Exercice 63 (Mines-Ponts PSI 2018) [/Solution|
400
(="

1. Déterminer le domaine de définition D de f(z) = Z
n=0

——— et montrer que f est continue sur D.
1+nx

2. Montrer que f est C' sur R™ et donner f’(x) sous forme d’une somme.



3. Calculer [ = lirf f(z) puis déterminer un équivalent de f(z) — [ en +o0.
TrT—r—+0o0

Exercice 64 (AADN PSI 2009) |/Solution]
1. Domaine de définition et limite en 0 de f(z) = z:(—l)"*1 o

2 42
st n“+x
indication : étudier f(x) — £(0).
2. Montrer que f est C™.
indication : décomposer en éléments simples sur C.
Exercice 65 (Centrale PSI 2009) |/Solution|
T g2t
1. Déterminer ensemble de définition D de f(z) = Z T

n=1

2. f est-elle de classe C! sur D ? Etudier ses variations.

E ice 66 (ENSEA-ENSIIE PC 2014) |/Soluti
xercice 66 ( PC 2014)
On pose ug =1 et up11(x) = / w, (t — t*) dt

0

1. Montrer que Vn > 1,Vz € [0,1],0 < up(z) < —
n!

2. Montrer que Z u,, converge sur [0, 1] vers une fonction u dérivable telle que v'(z) = u(x — 2?).

Exercice 67 (ENSAM PSI 2014) |/Solution)
Soit f continue de R dans R et a > 0.

1. Montrer que (f,,) définie par fo = f et frn11(x / fn(t) dt est bien définie.

2. Montrer que f,, est de classe C" sur R, calculer ses dérivées successives et leur valeur en a. En déduire une expression
de f, a l'aide d’une intégrale de f.

3. Montrer l'existence de g(x Z fn(x) et donner une expression de g en fonction de f. (indication : x est fixé)

4. Montrer que g est solution d’une équation différentielle du premier ordre a coefficients constants et en donner les
solutions.

Exercice 68 (Mines-Ponts PSI 2023) W
Soit fo € C'([a,b]). On pose, pour n € N et € [a,b], foi1(x / fn(t)

1. On suppose que Z fn converge Simplement sur [a,b] et que les hypotheses du théoréme de dérivation des séries de

fonctions sont satisfaites. Calculer S(x Z fn(z) en fonction de fj.

2. Montrer que les hypotheses précédentes sont vérifiées si Z fn converge uniformément sur [a, b]

3. Calculer S lorsque fo(x) = sin(2z) et [a,b] = [0, 1]

V Intégration par convergence uniforme

Exercice 69 |/Solution)
ne~t +t?

1
Etudier la convergence de la suite (un)n>1 définie par u,, = / Erea dt.
O n

Exercice 70 (Mines-Ponts PSI 2013) |/Solution/

1
On cherche r = % avec (a,b) € (N*)° tel que ¢” = g avec (p,q) € (N*)%. On pose P, = EX"(bX —a)".

1. Montrer que P{¥)(0) et P{*)(r) sont des entiers pour (n, k) € (N*)>.

n—-+o0o

T
2. Montrer que q/ P, (t)e" dt est un entier et que lim P, (¢)e’ dt = 0. Conclure.
0

Exercice 71 (ENSIIE PSI 2009) |/Solution/
1. Montrer que, pour tout n € N*| f,, définie par f1 =0 et Vn € N*, f,11(x / \/ fn ()2 +t2dt est C sur R.



anrl

2. Montrer que Vz € RT,0 < froi1(x) — fu(z) < CESI]

. En déduire que la suite (f,,) admet une limite simple f puis

que f est continue sur R.
3. Montrer que f est solution de I'équation différentielle y' = \/y2 + t2 avec y(0) = 0.

Exercice 72 (CCINP PSI 2024) W

Pour a > 0, on pose f(x Z sin®(x) cos™ ()

1. Déterminer le domaine de deﬁnltlon de fq

2. Trouver une forme simplifiée de f, sur [O, g}
3. Discuter de l'intégrabilité de f, sur }0, g]

™
4. La série converge-t-elle uniformément sur [O, 5] ?

3
5. Pour n € N, on pose u, () = / sin®(x) cos™(z) dz
0

a) Etudier la convergence de Z U ()
n=0

b) Calculer /2 fa(x)dz
0

Exercice 73 (Mines-Télécom PSI 2019) |/Solution
Soient (a,) telle que Z oy, est absolument convergente, w,, # 0 et u,(z) = a;, cos(2rw,x)

+oo
1. Montrer que f : z +— Z un () est définie et continue sur [0, 1].

n=1

1
2. Calculer / () de.
0
1,k
3. Justifier que ~ kz_l f (N) converge quand N tend vers —+oo.

Exercice 74 (Mines-Ponts PSI 2018) |/Solution/
Pour z € R et y > 0, on pose f(x,y) = / =t dt.
0
1. Justifier I'existence de f(x,y).

1,
2. On pose f,,(t) = { H@ty )™ si ¢ €0, 1]

0 sit=0
Montrer que Z fn converge normalement sur [0, 1].
1 n+1
—1)nt
3. En déduire / thdt =y %
0 1

Exercice 75 (CCINP PSI 2022) |/Solution

Soit ¢ : R — R continue. On suppose qu'il existe C' € R tel que : Vo € R, |p(z)| < . On pose Vz € R, f(z) =

1+ 22
+Z +n) +p(w —n)).

1. Montrer que f est définie et continue sur R.

2. Montrer que f est 1-périodique.
—+oo
3. Soit g une fonction 1-périodique continue de R dans R. Montrer que ¢g est intégrable sur R et que : / o(z)g(z) dz

/O ' f(@)o(a) da

— 00



VI Intégrations par convergence dominée

Exercice 76 |/Solution|

Déterminer la limite quand n tend vers oo de :

T° cosd +oo -n n n
/ sdt / (1 + E) =% da ; / (1 + E) e 2 dx
Exercice 77 (CCP MP 2014) |/Solution/
“+o0

d
Calculer lim S
notoo Jog 1424 ane®

Exercice 78 (CCP PSI 2010) |[Solution

Soit @ € R.

. arctant
1. Etudier I'intégrabilité sur R™ de f : t — .

ta

arctant
— dt et limite quand n tend vers +oo.

+oo
2. Exist de I, = —_—
Xistence ae /0 t3/2 Tt

Exercice 79 (CCINP PSI 2018) [/Solution

1. Montrer que |sinz| < |z| pour tout z € R

+oo s
sin(t/n
2. Montrer 'existence de I,, = / M dt
o t1+12)
3. Montrer que lim I, =0 et en trouver un équivalent.
n——+00

Exercice 80 (CCINP PSI 2021) |/Solution

Foo  ;
. sin(nx)
Soit I, = —————duz, po > 1.
it I, /0 T3 nigs 0%, pour n >

1. Justifier I'existence de I,,.
i ()

14¢3 dt.

1
2. Montrer que I,, = —=J, avec J,, =
no/3 0

+oo t
3. Montrer que lim J,, = K = / —dt
o0 0 143

+oo
1
4. Montrer, par changement de variable que K = / g dt.
0

T4t 4

5. En déduire 2K = / - dt=——

o 1+13 3v3

27

6. Conclure I,, ~ ———
3v/3n5/3

Exercice 81 (CCINP PSI 2023) [/Solution
Soit I, = [ axctan(@tm)
0 Va(n+a)
1. Justifier 'existence de I,,, pour n > 1
2. Déterminer la limite de (I,,)n>1
+o0 d
3. Calculer e R

o Vz(n+z)

4. Déterminer un équivalent de I,,.

Exercice 82 (CCINP PSI 2024) [/Solution
1

Pour n € N, on pose I,, = / In(1+¢") dt
0

1. Montrer que I,, est bien défini.

2. Montrer la convergence de (I,)nen et déterminer sa limite.

1 ('In(1
3. Montrer que I,, ~ f/ Mdu
0

n—+oo N u
+oo 2 2
1 T ™
4. En admettant E — = — t I ~ —
n admettan 2 5 montrer que I, W teo 120

n=1

| /””<

Inx

1—22)1/4

dx



Exercice 83 (Mines-Ponts PSI 2019) |/Solution/

—+oo
arctan(nt)
Pour n > 1, on pose I, = /0 m dt.

1. Justifier I'existence de I,
2. Limite et équivalent de I,, 7

Exercice 84 (Mines-Ponts PSI 2019) [/Solution|

n

1
1. Montrer que I,, = / T dx est définie.
o 1+z+ a2

2. Trouver la limite et un équivalent de I,, quand n tend vers +oc.

Exercice 85 (Mines-Ponts PSI 2018) [/Solution|
1
Soit I, = / In(z)In(1 — 2") dz, pour n > 1.
0

1. Justifier I'existence de I,,.

2. Déterminer lim I,.
n—-4o0o

3. Déterminer un équivalent de I,

Exercice 86 (CCP PSI 2018) |[Solution

1. Résoudre I'équation sh(z) = 1.
«
2. Onpose a =1In(1 +v/2) et I,, = / (sht)™ dt. Déterminer lim I,.
0

n—-+oo
3. Montrer que nl, + (n — 1)I,_o = V2 pour n > 2.

4. Déterminer un équivalent de I,,.

Exercice 87 (CCINP PSI 2019) |[Solution

vodt
P eR, I, (z) = —
our x on pose I, (x) /0 T

1. Montrer que I,,(z) existe pour n € N

2. Etudier la convergence simple et la convergence uniforme de (I,)
3. Trouver une relation entre I,, et I, 1o

o In2 2y

4. En déduire la valeur de I = —=

0 ch”t

Exercice 88 (CCP PSI 2013) |[Solution

sin(nx)

dt

Pour n > 0 et £ > 0, on pose T) =
pose fn(z) R

1. Montrer que les f, sont prolongeables par continuité en 0 et intégrables sur [0, +oo.

+oo
2. Montrer que la suite de terme général u,, = / fn(z) dz converge et déterminer sa limite.
0

Exercice 89 (Mines-Télécom PSI 2024) |/Solution
e 1
. e

Montrer que (f,)nen converge simplement sur [0, 1].
Soit a € ]0, 1[. Montrer que (f,)nen converge uniformément sur [a, 1].

La suite de fonctions (f,)nen converge-t-elle uniformément sur [0, 1] ?

oW b=

Trouver la limite de (uy,)nen-
Exercice 90 (CCP PSI 201'17)
On pose fr(t) = (1 - %)n_ In(t) sit €]0,n] et fr(t) =0sit>n.
1. Montrer que (f,,) converge simplement sur R™* et déterminer sa limite.

+oo n
2. Montrer que / In(t)e *dt = lim / fn(t)dt.
0 0

n—-+4oo

n 1 —+oo
3. Sachant que Z 7= In(n)+~+o(1), montrer que / In(t)e~* dt = —v. On pourra faire le changement de variable
k=1 0
t = nu puis une IPP.



Exercice 91 (CCP PSI 2018) |/Solution|
T\™ . .
Pour n > 1 et x € RT, on pose f,(x) = (1 B ﬁ) sin(z) siz € [0,n]
sinon

1. Etudier la convergence simple de (f,,).

+oo
2. Etudier la convergence de (vy,)n>1, OU v, = / fn(t)dt.
0

3. a) Etudier les variations de x + In(1 + z) — .
b) En déduire que (f,) converge uniformément.
indication : montrer que |fn(x) — f(z)| < 1 - en'/tonin(-nTY) o e [O,nl/ﬂ et |fn(z) — f(z)] < 277 si

x> 7’L1/4

Exercice 92 (Mines-Télécom PSI 2024) |/Solution |

n n j
Soit u, = / (1 - E) cos(x) dz. Etudier la convergence de la suite (uy,).
0 n

Exercice 93 (CCINP PSI 2024) [/Solution
1+ -1
Soient f,(x) = a+p)r-t et I, = / fn(x)da.
z 0
1. Enoncer le théoréme de convergence dominée

2. Montrer que I,, est bien définie.
+o0 1
3. Montrer que nEIJI:OO I, = z:l PR

indication : chercher la limite de I, sous forme d’une intégrale pour commencer

Exercice 94 (Centrale PSI 2011) |/Solution|

+oo
1. Pour quels entiers n, I, = / —  dt est-elle définie?
0 sint +¢"

2. Donner la limite I de (I,,) sous forme d’une intégrale.

3. Calculer (I, — I) (on pourra faire un changement de variable).

lim n
n—-+oo

Exercice 95 (Centrale PSI 2007) |/Solution|

cours : changement de variable.

1
Application : équivalent en +oo de u,, = / t"f(t)dt o f € CO([0,1]) et f(1) # 0.
0

Exercice 96 (CCP PSI 2013) |[Solution
1

Déterminer la limite de n/ t" f(t)dt ot f est continue sur [0, 1].
0

Exercice 97 (Mines-Ponts MP 2011) |/Solution
(Mines-Ponts MP 2011) [Salifion]

. rz+1
Calculer lim .
notoo fo ame® + a2 4+ x+1

Exercice 98 (ENTPE-EIVP PC 2014) |/Solution

“+o0 "

Calculer ngr-lr-loo | prET I dx

Exercice 99 (Mines-Ponts PSI 2013) |/Solution/

+o00
Etudier la convergence de la suite de terme général u, = / exp(—a") dz, puis la convergence de la série de terme
1

général u,,.

Exercice 100 (Centrale PSI 2022) |[/Solution|
Tl —cos"x
Pour n > 1, on pose u,, = — —dz
0 X

1. Justifier 'existence de u, pour n > 1

+o00 1 — cos™ <\/2>
n
2. Montrer que u,, = Lvn avec v, = / SRR N Sy, )
0

2v/2 tVt

3. Montrer qu'il existe o > 0 tel que si ¢ € [0, a] alors In(cost) > —2t



67I

ﬁdx:\/}.

—+oo
4. Déterminer un équivalent de u,, quand n tend vers +oco; on donne /
0

Exercice 101 (ENSEA PSI 2016) |/Solution/
1. Enoncer le théoréme de convergence dominée.

2. Soient (a,) et (b,) deux suites réelles bornées telles qu’il existe ¢ < d pour lesquels V& € [c,d], (a, cos(nz) +
by sin(nx)) tend vers 0.

Montrer qu'’il existe ¢, tel que a, cos(nx) + by, sin(nz) = /a2 + b2 cos(nz + @,,).
(a7 +b7)(d — )

d
3. Calculer I,, = / (ay, cos(nx) + by, sin(nz))? dz et montrer qu’a partir d’un certain rang on a I,, > 1
c

4. Conclure que (a,) et (b,) tendent vers 0.

VII Intégration terme a terme

Exercice 102 (ENSAM PSI 2011) |/Solution/
1
1. Convergence de la série de terme général (—1)"a, ou a, = / V1 —t2t"dt et calcul de sa somme.
0

2. Etablir une relation entre a,, et a,t2.

3. Convergence de la série de terme général a,, et calcul de la somme.

Exercice 103 (Mines-Ponts PSI 2010) |/Solution/
+

Justifier la convergence de / P dx et expression sous forme d’une série.
0 C

Exercice 104 (CCP PSI 2015) W

1. Montrer que Z — et/ —/ z® dx existent.
n>1 0

1
2. Pour (n,p) € N?, on pose f, ,(t) = t"(Int)". Calculer / frp(t)dt
0

+oo (_1>n+1
3. Montrer que I = g -_—
n'ﬂ
n=1

Exercice 105 (Mines-Ponts PSI 2021) |/Solution

1 +oo
. . (=)™

Soit & > 0; on pose f(x) = / " dt. Montrer que f(x) = —_—

0 ';) (xn + 1)n+1
Exercice 106 (ENSEA/ENSIIE PSI 2024) |/Solution/

+00 1 2 1
1 n
On admet que Z # = % On considére la suite (uy,)nen définie par Vn € N, w,, = / In(1+¢")dt
0

n=1
1. Rappeler le développement en série entiere de ¢ — In(1 + ¢) au voisinage de 0.
+0o0 1)k‘—1
2. Mont —
ontrer que u, = Z k(en £1)°

+oo 1)]971

3. Montrer que f : x — Z K+ 2) est de classe C! sur | —1,1].

7.‘.2

4. Démontrer que u, ~ —.
12n

b 1
5. Montrer que u,, = a + — + — +o
n?

Exercice 107 (Mines-Ponts PSI 2007) [/Solution

+oo (=1)" 1 -1
Pour a > 0 et b > 0, montrer que Z / dt
0

an+b 1+t¢e

Exercice 108 (ENTPE-EIVP PC 2015) |/Solution

s - (="
Calculer / 2*"(1 — x) dz de deux fagons différentes et en déduire la valeur de .
e > ot



Exercice 109 (Centrale PSI 2024) |/Solution
“+oo

Pour z €]0, 7| fixé, on définit S, : t — thfl sin(px)
p=1
1. Montrer que S, est définie sur [0, 1] et calculer S,(¢) pour ¢ € [0, 1].

1
2. Justifier que S, est intégrable sur [0, 1] et calculer / Sy (t)dt

0
= sin(px)
3. Justifier la convergence et déterminer la valeur de Z 727.
p
p=1

indication : TCD appliqué aux sommes partielles

Exercice 110 (CCP PSI 2006) /Solution

“+oo
1 n
Montrer que — / (1)

]0 1[ et « > 0. En déduire Z m
n n

1+¢

Exercice 111 (CCINP PSI 2022) [/Solution| W
+oo
Soit I = \[ / *dt =
0

0 _
1. Montrer que I existe

\/’TTJFOO 1
2. Mont I=— —
ontrer que Q;n\/ﬁ

ol

Exercice 112 (CCINP PSI 2018) |/Solution

+oo 2

Montrer que J = / I
0

. 2
T dx existe et vaut Z 3
n>1

ew_

Exercice 113 (CCINP PSI 2022) |/Solution
“+ o0
1. Montrer 'existence de I = / 2 dx
0

shax
> o
2. Montrer que I = el
— (2n+1)

Exercice 114 (Mines-Télécom PSI 2024) |/Solution
“+o0
Soit T'(z) = / t" et dt
0

1. Déterminer le domaine de définition de I

2. Donner le développement en série entiere de T

—x
+oo tze—t +oo 1
3. Montrer que Vz > O,/O = dt =T(z+1) Z —T
n=1

Exercice 115 (CCINP PSI 2023) [/Solution

+oo
Soit I = / s gy
0 bht

1. Montrer que I converge.

sint
2. Montrer que Vt € |0, +oo], 2¢ tsint Z e 2t

sht
Ji:.o &
3. Montrer que [ = » 0.
— (2n+1)*+1

indication : utiliser |sin(t)| < t pour appliquer le TITT
™ ™
4. Montrer que : 1 <I<1+ 1

indication : comparaison série/intégrale

Exercice 116 (Mines-Télécom PSI 2024) |/Solution
—+oo

+oo
sint
Montrer que / n dt = E ——— en montrant la convergence de la série et de I'intégrale.
0 e — 1 — 1 +n

indication : |sin| <t



Exercice 117 (Mines-Ponts PSI 2018) |/Solution

1 2
In(1 —¢%)In(¢
1. Montrer 'existence de I = / w dt.
0
+oo 1
2. Montrer que I = Z — = ¢t en déduire la valeur de I a l'aide de constantes usuelles.
— n(2n —1)
+o0 u™
indication : —In(1 —u) = — si|ul <1
indication n(l—u) ; — s |u

Exercice 118 (Centrale PSI 2019) |/Solution
1

1. Soient (u,) € (R+*)N et a € R tels que Untl _ 4 _ 2 + 0 (—2) On pose b, = In(n%uy,) et a, = bpr1 — by.
n n

Un

Montrer que Z an, converge et en déduire qu'il existe A > 0 tel que u, ~ —.
n

M- —-0®
t

2. Pour z €] — 1,0[, on pose f(x) = / dt.
0

a) Justifier que f est bien définie.

+oo
N )"z —1)... (¢ —n+1
b) A Tl'aide de 1, montrer que f(z) = Z ()" e—l)..(@=n+1)

— n x n!
+oo
—1)...(z— 1
indication : (1 —1t)* = z:(—l)"x(JU ) l@=n+ )t" sift] <1
n!
n=0
Exercice 119 (ENSAM PSI 2015) |/Solution
+oo s
1. Pour a € R, justifier I'existence de I(a) = / s;n axl dz.
0 e -
2. Montrer que I(« avec (a,b) € R2.
q T; o (a,b)

3. En déduire un équivalent de I(a)) quand « tend vers +oo.

Exercice 120 (Mines-Télécom PSI 2024) |/Solution|

+oo 00 e—nt too 1
Montrer que —dt = —
a / Z NG ; ot

Exercice 121 (CCINP PSI 2018) |/Solution
Soit (ay) une suite complexe telle que Z |an| converge.

1. Montrer que f(z Z an—e “ est continue sur RT.
n=0

“+oo
2. Montrer que f est intégrable sur R et calculer / f(t)dte.
0

Exercice 122 (CCINP PSI 2019) [/Solution

“+oo
t
1. Montrer que I = / cos(t) dt existe.
o l+et
+o0 n
2. Montre elzg [ —

Exercice 123 (Mines-Ponts PSI 20121) |[/Solution/

, 2n+1
1. Etudier la convergence et la convergence absolue de E ()"
= 2n+1)2+x
+00 +00 —t
n 2n+1 e
2. Montrer que T;:O(—l) [ = /O Tooo cos(zt) dt

Exercice 124 (ENSEA PSI 2018) [/Solution

w/2
Nature et somme de la série Z Uy, AVEC Uy = (—1)"/ cos” (z) dx.
n>=0 0

Exercice 125 (Mines-Ponts PSI 2018) |/Solution/



1+t2

% (Int)? & ()n
2. Mont dt =4 —_
ontrer que /0 g (2n T 1)3

n=0

Exercice 126 (CCINP PSI 2024) |/Solution
1 2
t(lnt
Onpose]:/ (In?) dt
o (1—1)

1. Justifier 'existence de I
+oo 1 +oo 1
2. Mont I1=2 — — —
ontrer que (; > nz::l n3>

Exercice 127 (Mines-Ponts PSI 2015) [[Solution

1. Déterminer le domaine de convergence de f(x) = Z
n>1

(=D"

n2 + x2’

2. Montrer que f est intégrable sur R et calculer cette intégrale.
indication : pour le calcul de l'intégrale, on a calculé la somme de la série dans le chapitre sur les séries.

Exercice 128 (AADN PSI 2012) |/Solution/

1. Montrer que la série de fonctions définies sur [0,1] par f,(t) = t"sin(nt) converge simplement et déterminer la
somme de Z fn notée F. Y a-t-il convergence uniforme ?

n=0
1 T o3
2. Montrer que Z/ fa(t)dt = / ST .
75070 0 €

Exercice 129 (CCP PSI 2018) |/Solution/
1
Soit u, = / 2" sin(mx) dz.
0
1. Montrer que Z U, converge.

1
indication : montrer que u, = O (—2> soit par IPP, soit en vérifiant que sin(nz) < n(1 — )
n

= T sint
2. Montrer que Z Uy = / —dt.
0

n=0 t
Exercice 130 (TPE-EIVP PSI 2018) [/Solution
1 +oo 2
Int
Existence et valeur de /0 ti—l dt sachant que T; 3= %
Exercice 131 (Mines-Ponts PSI 2022) |/Solution/
1
t
Soit f € €°([0,1],R™). On pose u,, = / f(®)t" dt pour tout n € Net I = % dt.
0 o L=

Montrer que I et E U, sont de méme nature . Lien entre les deux en cas de convergence ?



Solutions

n—-+o0o

Exercice 1 |[[sujet/|| 1. (fn) CS vers 0 sur R, uniformément sur [—a,a] car || fulloc,[~a,a] = fn(a) —— 0 mais pas
sur R* car f,(n) = Z

1 six>0

1 siz—0 donc pas de CU sur I (f,, est continue et pas f); par contre

2. Sia>1, (fn)CSsurIversf::cH{

Ilfrn — Uloo,[a,0] = — donc CU sur [a, 7/2] si o > 0.

1+ n%sin &
-1 -1
Sia =1 alors (f,) CS vers f: 2+ ii—l—l puis |fn(z) — i—i—l’ < a:—nsin% < g—nsin% e 0 donc CU
sur I. _
Sia <1 alors (f,) CS vers —1 et | fn(z) + 1] < 2n%sin(z/n) < 2n® sin2— T 0 donc CU sur I.
n mn—+oo
1

Exercice 2 |[sujet/| (f,) CS vers 0; si @ > a alors |f,(x)] <

tend pas vers 0 donc pas CU sur R™.

T — 0 donc CU sur [a,4o0[ et (fn(1/n)) ne

2n?z? 1
Exercice 3 |[sujet/| Six > 0 alors f,,(z) = % sin? g a partir d’un certain rang donc nllgloo fn(z) = 2sin? g
1 1 1 1 1
et £,(0)=0.Siz € |0, ﬁ{, fu(z) — f(2)] = xsin2g <r<-etsive {5,1}, fu(2) — f(z)] = %sinzg <
1 1 etude fct ] 1
% < - donc || fr — flloo < - donc CVU sur [0, 1]
Exercice 4 |[sujet/| 1. (f,) CS vers cos sur R
1 2
2. sl ¢ € [—a,dq] alors |f,(z) — cos(x)| = 2 sin = sin <2—|— 7) 2l <22 —— 0 donc CU sur [—a,a]; par contre
n n n n—r+oo

| f(nm) — cos(nm)| = 2 donc pas de CU sur R.
Exercice 5 1. (fn) CVS vers 0 sur [0, 1]

1
2. six € [a,1], |fu(z)] < nze " < ne™"” — 5 0 donc CVUTS de 10, 1] alors que f, <\f> = sin (@> ne tend
n

n—-+o00

pas vers 0 donc pas de CVU sur [0, 1]

1
Exercice 6 [[sujet/|| 1. f(z) = x puis, pour x > 0, |fa(z) — 2| = 1f < — alors que si ¢ < 0, |fo(x) — 2| =
nr . n

—ZT

1
1T na? < SN (étude de fet) donc CVU sur R.

) /oy nw(2z 4 nx) Vi o nz?(3+ na?) .
2.six >0, f)(x) = Atn? i 1, f,(0) =0 et pour z <0, f,(z) = Atn?)? i 1; pas de CVU
sur [—1, 1] car les f} sont continues en 0 et pas la limite simple de f;,
Exercice 7 1. lim fu(z)=f(z)= { 0 siz>0
n—+too? ™ 1 six=0

1
. <
|f’ﬂ(x)| = 1+n2a2 n—+o0

3. f n’est plus continue en 0
4. limu,, = 0 par TCD avec |f,(x)] <1

L[t de et et A
5. u, >e T = arctan(n) ~ 5 donc (SATP) Zun DVG

N

0 donc CVUTS de 0, 1]

tet

t A
Exercice 8 1. |g,(t)] = —¢ <1 - 7> < % puis par IAF, |g(t) — g(0)] < —
n n
2. Ona

n
In(m)—/ 1dt‘ </
N 0 0

dt = x.
0

Exercice 9 [Sufel] Si (fu(x)) comverge vers f(x) alors f(x) = V& (car fulz) > 0) puis [fuss(@) = Vo] = |fule) -
V| (1 — %(\/E‘i‘fn(l'))) < < - g) |fn(z) — /x| ce qui donne par récurrence |f,(x) — vz| < \/5(1 _ g) _
gn(V); on étudie gn(t) =t (1 - %) pour trouver [[gn oo = gn <ni—|—l

donc (f,,) CU sur [0,1] vers la fonction racine carrée.

t n 1 T 1 1
el (1—7> —l‘dté/ tetdtg—/ te' dt donc (f,,) CU sur [0,1] vers f : z
n n Jo n Jo

2
) < nrl done || fn — \/Hoo < lgnllo m 0



Exercice 10 [[sujet/|| 1. on vérifie ¢'(y) = 1 — zy € [0,1] donc (IAF) g est 1-lip et [0, 1] est stable (variations)

2. a) ho€[0,1] et hpsi(w (hn (g)) d’ott le résultat par récurrence
0 - 5 s s G 2 e () )
¢) On en déduit |hny1(z) — ho(z)] < ‘hl (27) ~ ho (2%)‘ - Qil < 27% donc Y (hys1(x) — hu(x)) est
ACV et (hy) CVS vers f sur [0,1]. Puis [ f(z) — iohkﬂ(x) — hi(z)] < io % - 2% donc
Pt P

1
If = hnlloo < — 0 donc (hy,) CVU vers f sur [0,1]

3. par récurrence, on Verlﬁe que h,, est continue sur [0,1] donc f aussi par CVU; h,(0) = 1 donc f(0) = 1 et par
passage a la limite dans la relation qui définit h,(x), on trouve ’équation fonctionnelle de f

) 1
Exercice 11 [[sujet] 1. |e 'e"| = e " est intégrable sur [z, +oco[ puis on trouve ¢(x) = §(cos(aj) —sin(z)) et Y(z) =

1 .
i(cos(x) + sin(x))

2. p(x) = —e"”/ et cos(t)dt + e"p(0) donc ¢ est C* sur R et ¢'(x) = p(2) — cos(z). Les solutions sont y(x) =
0

+oo
ae” + p(z) avec o € R. On a ensuite |p(z)] < em/ e 'dt = 1 donc ¢ est bornée et y est bornée sur R si et
x

seulement si a =0

- 1

3. Si f, = ay cos+53, sinalors f,41 = o ;ﬂn COS+Bn 9 = sin; on a donc (g:i) ~2 (—11 1) (%:) puis (g:> -
i(l 1>”<a). ¢rific ensuite i i(l 1)n_0(1 ler la puissance) donc (o, ) ——— (0,0)
m\-1 1 yE on verine ensuite n—EPoo on \—1 1 = calculer la puissance onc (Qn, Pn n— 400 ’

et || fnlloo < lan| + 18n| et (fn) CVU vers 0 sur R
Exercice 12 1. cours
o ny_ (n-1 (1) n—k j=k-1
2. Sy facile; si k > 1, k(k) = n(k 3 1) donc Sy, 1(z) = nkz_l (k: 3 1)96 (1—1x) —nzSpo(z) " = nz(z+1-
)"t —nz =0

k k M (k 2
3.onalf <f) — f(z) = (f - :1:) f'(x)' < — (f — x) avec M = max |f”| (th des bornes atteintes); en sommant
n n

2 \n [0,1]
M

Balf) = Sno@)f (@) = =S () @)| < 51z

z(1—1z) < i donc || Bn(f) — flleo < M donc (Bn(f)) CVU sur [0, 1] vers f.

et avec I'inég triangulaire, on obtient Sp,2(z) qui donne le résultat.

1
Exercice 13 |/sujet/| 1. On a wu,(z) =0 <ﬁ) pour z € [0,1] fixé donc Zun CS sur [0,1]. De plus ||tn|lcc =

a 1
n ( a ) ~ (ﬂ) e~*—— donc CN sur [0, 1] si et seulement si a — ¢ > 1.
a+mnb/ n—+too \ b ne—¢

1
2. up(z) =0 <—2) donc CS sur R, Puis u,(x) = n(a — anz)xaﬂe*mﬁ on discute sur le signe de « :
n——+o00 n

— Si a < 0 alors u,, n’est pas bornée sur R™* donc la CN n’a méme pas de sens.
— Si a =0 alors ||up]|ec = lir% un(x) = n donc pas de CN.
r—r

. « o\ /2 1 . .
— Si a > 0 alors ||up]|co = un o) = (—) x ——— donc CN si et seulement si a/2 — 1> 1
n

2 no/2-1
a—1
Exercice 14 |[sujet/]| 1. (f,) CVS vers 0 sur [0,1] pour tout @ € R; ||fnlloo = fn ( n 1) donc (f,) CVU
sur [0, 1] si et seulement si @ < 1
1 s .\ .
2. fu(x) = = o <ﬁ) donc Z fn CVS sur [0, 1] pour tout o € R; d’apres la premiére question, Z fn CVN sur

k 2n
1 1 «
[0,1] si et seulement si a < 0. Si & > 0 alors R, < > E k= <1——) >nx(n+1)= <1——) Nn—2
W n n e
qui ne tend pas vers 0 donc pas de CVU sur [0, 1]



4e~4

Exercice 15 1. (fn) CVSsur R vers 0; || fulloo = fn <é> =
n

1
2. folz) = o (77) six # 0 et f,(0) = 0 donc ACV sur R; pas de CVN sur R avec la premiére question mais

n—-+0oo 2

CVN sur E =R\] — a,a[ car || fnllco, g = frn(a) pour n grand et la CVS en a donne la CVN sur E.

nl) B 1_<nj-1>2(n:b—1>n

Exercice 16 1. g/, (x) = cos" z[(n+1) cos(z)—n] donc ||gn|lcc = gn (arccos n
n

2
2. || falloo < g||gn||C>O < g 1- (nj— 1) P 0 donc (f,) CVU sur [O,g} vers 0.

T x sin(z)
L OV )5 s@) = T
Z / S sur {0 2} 5(z) 1 — cos(z)
T ™ PO ™
{0, 5} Il y a par contre CVN sur tout segment de }0, 5} car || fnlloo,a,b) < bcos™(a) (car cos décroit sur [07 5}) et
| cos(a)] < 1.

si  # 0 donc lim S(x) = 2 alors que S(0) = 0 donc pas de CVU sur

Exercice 17 [[sujet] 1. si |cos(z)| < 1 alors Zun ) CV et u,(0) = 0 donc Zun CV aussi. Puis f(z) =

n®x
S () = G gt £(0) =0
1 — cos(z)

n=0

[o n\" 1 \" 1

o o/n _ .

2. [Junlloc = un (arctan ﬁ) = (1 n a/n) (1 m a/n) oo @ a®/?e D‘T donc CN sur [0,7/2] si et seulement
sia> 2.
. sin® x 09 , . .

Sia < 2alors ————— ~ 22% “ donc f n’est pas continue en 0 ; comme les w,, sont continue en 0, la convergence

1 —cos(x) z—0
n’est pas uniforme non plus.

—— 0 donc (f,) CVU vers

n)” 1 1
n! \/2mn n—+oo

Exercice 18 1. (fn) CS vers 0 sur R et || fulloo = fu(n) = (f

e
0 sur RT.

2. Z fn converge simplement sur RT vers 1 et la convergence ne peut pas étre uniforme sur Rt car hril fu(x) =0
Tr—r+00

+o00
donc xll}rfoo z_:l fnlx) # Z lim f,(x

r——+00

an

On a par contre CN sur tout segment puisque || fy,[|oo,0,q] < —
n!

Exercice 19 |/sujet/| 1. Etudier 2 fonctions

" 1" 1"
2. On vérifie 1 f$2 — donc 1 + ((1_’_)33) > 0 puis In (1 + n((l _: ;2)> = n((l _: xx) + O ( ) donc la série CVS
sur R.
(=) x x? x 1 1 (=) =z

nl(l) — 2 — - déduit ||f,(t) — ———< <

Ona \fa(t) n(1 + x?) n?(1 + 22)? car n(1 + x2?) 2n 2 On en déduit || fn(t) n(l+22)||
LI de plus E (D _@ g (=b" CVU sur R (la somme est une constante). Comme

4n? onz ' 4¢P n r2) 1 +a2

déduit Y f CVU sur R.

Exercice 20 |/sujet/| 1. fn(z)=

2. La convergence absolue n’étant vérifiée que sur Je?, +-00], il ne peut pas y avoir CN sur |1, 4-ocl.
1 1

( + 1)1n1 (n + 1)lna n— 400

continues sur |1, 4+o00[, on en déduit que la somme est aussi continue sur |1, +o00[.

(;122 donc an CS sur ]1, +o0|

3. Par CSSA, on a |R,(z)] < < 0 donc CU sur [a,+00[ si @ > 1; comme les f, sont

1 1 1
4. ’fn (1 + )‘ = exp {— In(n) (7 +o (7))} ——— 1 donc || fulleo = 1. Si on avait CU sur ]1,+oo[, on aurait
n n n n—-+oo

lfrlloo = |Rn=1 — Rulloo < ||Rn-1llco + [|Rnllocc —— 0, ce qui n’est pas le cas.
n—-+oo

1 1 1
Exercice 21 1. fo(z) = — =0 (—)

n+ax n?



2. || fulloo,fa,p] = fn(b) donc CN sur tout segment

1 1 1 1 —1 1
3. S(x+1)—S(z) =) ( — )_— par télescopage:; ona S(z) = ——— +S(z+1) = — +
(37 ) (Jf) n>1 n - n T 1 1 - ar telescopage ; on a (Jf) 1 - (JI ) 1 T

S(0) + o(1) par continuité de S en 0.

1

4. ||fnlloo = — donc non
n

Exercice 22 [[sujet] 1. D=R".
b
2. CVNTS avec |fn(2)| < 75 et 1+a>0.
n a

“+o0
3. f(z) = fai(x) +/ tl%dt =z + 1 donc f ne tend pas vers f(0) =0 en 0
1

4. 1+imf —id = 0 par double limite avec CVN sur [1, +o0o[ car f, décroit sur { 400 {

L
In(n)’

1
E ice 23 jet 1. 5i 1 al n = ((7))d n( n(l) = 0 et si 1, n
xercice [sujet] Siz > 1 alors uy(z) we WS onc E Un(x) CV, up(l) =0et siz < E Un ()
DVG. Ainsi, Dy = [1, +00].

1 1

2. 0 oo = £ DV (Bertrand

n a [Jun| nin(n) e ann(n) (Bertrand)

+oo

. In(z) 1 In(x)/a™t! 1 In(z) 1 _
3. S 1, |R, < g = < < érifi

1x > 1, ‘ (33)| W xkln(nJrl) 1n(n+1) lfl/x ln(nJrl):cfl ln(nJrl) car on verifie que

1
In(z) <  — 1. L’inégalité finale reste aussi valable si x = 1 donc [|Ry, e < 0 donc la série CU

In(n+1) n—o+too
sur [1,+oo[ et comme les u,, sont continues sur ce domaine, on en déduit que la somme de cette série est elle aussi
continue sur [1, 4+o00[.

1
Exercice 24 |[sujet]| 1. sixz >0, f,(x) = (—2> fn(0) =0et fr(x) o ™ siz < 0donc Dg =R"
n—+oo n n—+oo
be— "¢ 1
2. six € [a,b] C R alors |f,(z)| < ¢ = (7) donc CVNTS de R
Inn n?
1 —(nt+l)z 1 —x —z
3. |Ry(2)] < Z xe ‘T: x 2 — < e < ¢ car @y —% est
In(n+1) n—|—1 k> ‘. In(n+1) 1—e® In(n+1)1—e=® = In(n+1) l—e=®
bornée sur R™*.
2n —k/n 2n

1
Exercice 25 |[sujet/|| 1. On a u,(z) = o (ﬁ) donc CS sur R™; R, (1/n) > Z

n—roo

1
-2

-2
2n+1
2. On a [[tnlloo,fap) < un(a) donc CN sur tout segment de R** puis f est continue. De méme |u, ()]0 (] <

ne tend pas vers 0 donc || R, ||« non plus.

ne*’ﬂa

1+n nﬂ:Jroo

1
o ( 2> donce Z u,, CN sur tout segment de R** d’ot la classe C' sur RT*.
n

3. En +00 : [[un|loo,[1,400[ = un(1) donc CN sur [1, +o0[, le théoreme de double limite s’applique et limf =1

En 0 : f est décroissante donc admet une limite | € RT N {+o00}; si [ # +oc alors [ > Z un () pour tout

N

N € N; en faisant tendre x vers 0 dans I'inégalité (somme finie), on aurait [ > Z
n=0

ce qui est absurde puisque
n+1

cette somme partielle de SATP DV vers +o00. On a donc | = +oo.

1
Exercice 26 [[sujet] 1. On a | fullco,a] < p2—ema 4 (E) donc CN sur tout segment de R™ et la f est

n—-+oo

continue sur RT*.

2 -«
2. [l = (

* si et seulement si a < 1.

1
_ 2— -2
)= @-ape L

—x “+oo

e donc lim f(z) =1 et comme Z lim f,(x) =0, le théoréme de double limite assure
e~ x—0 z—0

1_
qu’il n’y a pas CU sur RT*.

3. Sia=1alors f(z) =



k k
Exercice 27 1. Comme In (1 - ?) < —7 (si k < t) donc |lug|lee < e * donc CN sur [1, +ocl.

n—1 n—1 n—1
k)" P\"
2. - = 1—-=) = = ; lcule alors la limite d le théoréme de doubl
]CZ(” I;( n) ;up(n) f(n); on calcule alors la limite de f en 400 par le théoréme de double

=1

1
o et e —k _
limite : tlgrnoo u(t) = e~" donc ng = kg_le =7
Exercice 28 |/sujet/| 1. Siz >0, f,(z) W 2e donc CS sur R* par imparité
2
= E gn(x) avec |gn(z)| < = — si z > 1 donc E gn CN sur [1,+00] et le théoreme de double limite
en* J—

n=1
permet de conclure

3. fu(x)? L 4e~2"* donc CS sur R* aussi. On trouve de méme Z fo(x)? ~ de

—+o0 r—+00
n=1

Exercice 29 1. fu(x) ~ 2¢ "l donc Dy = R*
n—-+0o0
2. |fu(2)| < fala) siz € [a,b] C R donc CVNTS de R™ et f est continue sur R* (par imparité)
3. fn décroit sur R donc f aussi (et imparité)
4. lim e *“/?sh(u) = 400
5

u—>+00

. pourx = letn = mng = uo (celui de la question précédente, ng est indép de x) et on choisit ng > 3, on a nx > ug donc

no—1 “+o00 no—1 7710:1:/2
77193/2 . 7kz/2 —z
fa(z) <e On en déduit 0 < f(x sha: < Z fr(z kz Z fr(z T o=o/7 oios © (6 )
no

(la somme restante est finie) ; comme —— 27"

shx w—H—oo
Exercice 30 |[sujet/| 1. Sila|] <1 alors j_ = o(a™) donc CS sur R\ Z™, idem pour a = —1 par CSSA ; pour

T+ n n—+oo

a=1ou |a] > 1 la série DV
2. |up(z)| < a" sin > 1 donc Zun CN sur R**

n>=1

1 1 1 1
3. aS(x+1)=8(x)—— donc S(x)=aS(x+1)+— ~ —car S(zx+1) — S(1) par continuité (donc o <;>)
T—

xr z—0 I

a” a”
4. =5 = ( 1) = — -
x (1‘ 1—a Z r+n T;)l—i—x/n pulb'l—‘rfv/n

théoreme de double hmlte donne la réponse.

< a" donc la série CN sur [1,+oo] et le

1
Exercice 31 [[sujet/| 1. siz >0, f,(2) =0 (—2> donc CS sur R™ et DVG si z < 0.
n—-+0oo n

2. siz > a alors |f,(x)| < fa(a) donc CN sur [a, +00[ mais || f, |« = 1 donc pas sur RT*.
3. f est continue par CN sur tout segment et Em f =0 par CN sur [1,4+00[ et théoréme de double limite.
o0

+oo
4. Comparaison série intégrale et changement de variable v = 2Vt dans / eV gy,
0

1
Exercice 32 1. siz >0, fo(z )_O<n > et DVGsiz <0
2. |fu(2)| < fola) siz € [a,b] C RT*

1 k\?
E gn(T); hm gn(x) =0 et |gn(x)] < gnla) =0 (—2> pour n > (7> dont le th de dble limite donne
n>=1
la réponse

Exercice 33 1. Dy =R" et f est paire. f est continue par CVNTS de R avec || fn [loo,[a,0) = fn(a)
2. Par double limite, limf = 1 par CVN sur [1, +oo[ avec || fnlloo,[1,400] = fn(1)
oo

oo 2,2 +oo 2,2 oo 2,2 u= act 1 +oo 2
3. Par comparaison série intégrale,/ e~ T dt < f(z) < 1+/ e~ qt et/ e~ dt / e " du
0 0 0 T Jo

L[ e
ce qui donne f(x) ~ 7/ e™" du.
0

z—0t T



4.

5.
Exercice 34 1. CSSA
1 y n+1
2. |f1(z)] < =8 > 1 donc Z fi CN sur RT™ (et f; est aussi C') Z 5 vérifie le CSSA donc f'(x)
n>1 n}O
est du signe de fj(x) <0
1 1
3. Par télescopage f(z)+ f(x+1) = —; par continuité de f en 1, f(x) =0 ff( )+o(x) ~ = et avec la décroissance
x =0 ¥ x
1 1 1
< < -
def,ona2x\f()\2(x )doncf()+002x

Exercice 35 [[sujet] 1 Siy > 0, le CSSA est vérifié. Si y < 0, on pose p,(t) = t 4 (Int)” et on a ¢ (t) = 1+
%(ln Hy Tt > 14+ Z donc le CSSA est vérifié pour n > —y.

2. Si [a,b] € R alors ||Ry oo, fa,] |gn+1( )| donc CVUTS de R*. Si [a,b] C R™, le CSSA est vérifié pour tout
n > —a et dans ce cas | R, ||m7[a b < |gn+1(—a)| donc CVUTS de R™ aussi.

1 1 —-1)" 1
Exercice 36 siz >0, fo(x) o © (ﬁ)’ siz < 0DVG et f,(0) = Ty = ( n) +0 (nz) donc
Dy =R*.

—na 1

On commence par la continuité sur R™ par CVNTS avec | f,,(x)| < c 7 =0 <—2) siz € [a,b] C RT*. Puis la continuité
n— n
R | e " —1 1—e™* 1—e™™

0: — £(0) = — < i 2 € [0,1] done CVN sur [0,1] (d
en 0: f(z) — f(0) nz:; T T ) Y Ty ey si x € [0,1] donc sur [0,1] (donc

continue en 0)

Exercice 37 1. Si z €] — 1,1 alors f,(x) = _ndersetn — 400 ~ z" donc an(x) est ACV; si

n
11—z
nanfl

z € [—a,a] C] — 1,1, |f(z)] < -2 ~na™"! donc foL CN sur tout segment de | — 1, 1]
—+oo +oo

2. Calcul de lintégrale facile. Par décroissance de ¢,, on a / p(t)dt < f(z) < fi(x) +/ @ (t)dt donc
1 1

fz) ~ In(1—x) N In(1—x)

z—1 Inz rx—1

n

Exercice 38 1. Siz €]—1,1] alors f,(z) = i ~ " donc Z fn(z) est ACV;siz € [—a,a] C]—1,1],

1— 2" no+oo

n—1
|f(z)] < (177?7&71)2 ~ na""! donc Z /), CN sur tout segment de | — 1,1]
2. vp(z) = _’_0(62_31” donc Zvn ) vérifie le CSSA; on a donc |R,, ()| < |vpt1(z)| < |vng1(1)] = e
vy, | est une fonction croissante sur [0, 1}
L1 - (=)™ —In2
0] déduit double limite, (1 — n —— =-In2d ~
n en déduit, par double limite, (1 — ) Zv — Z - n oncf(x)xﬁli T
n>1 n>=1
Exercice 39 [[sujet/| 1. Cours
- _ VE
2. / e Viqr 2t 2/ ue” “du; on trouve ensuite t — 7267\/%(\/Z+ 1)
0 0
3. a) Siz€]0,1] eViin@)  — 0( ! ) alors quesiz > 1, 2V > 1donc Dy =|0, 1[ puis I(z) ust(nz)” 1/+OO e Ve du
’ b t—+o0 t2 ’ (lIl x)2 (Inx)?

donc I(x) = 2W

b) S est définie sur ]0,1[ (mémes arguments que pour I) et par comparaison série/intégrale, on trouve I(z) <
2

S(z) < 1+ I(z) donc S(z) ~

Tr—r

1 (Inz)2 ~ (1-2)2
Exercice 40 |[[sujet] 1. u,(t) = o(t™) donc CS sur [0,1]; un(1) =0 et DVG si t > 1 car H,, < n. La fonction u,
n—-+0o0

est décroissante (et négative) sur J0,e~1/"] donc si n est assez grand (dépendant de a), 1%nlloo,]0,a) = —un(a) donc
-1

CN sur ]0,a] ; par contre [ty]|oo = tn(e™1/™) = donc avec H,, ~ In(n), pas de CN sur |0, 1] (Bertrand).

n



too Lk n+1
. t*| In(t)] —In(t)t —In(t)t ) —In(¢t)t
2. Sit€)0,1], |[R,(?)] < = < ; la fonction ¢t +— est prolongeable par
10 1], [Fn (®)] k;rl H, Hp1(1—t) = Hpp1(1—1) 1—t P & P

continuité au segment [0, 1] donc bornée; | R, (t)| <

X

—— 0 (valable si ¢t = 1) aussi donc CU sur ]0,1] et S
}]n+1 n—-+4oo

est continue sur ]O 1]

S(t

o . In(t) ) S(t) L
>
t—l g H et11ex1steK>Otelques1t€[1/2,1[,t_l/Kpuls KE
S(t) —S5(1)

-1 t—1

n= 1

—K1In(1l —t) car H, < n; on a donc

400 donc S n’est pas dérivable en 1.

Exercice 41 1. Siz >0 fo(x) ~ e ™ donc la série CV car |e | < 1 puis DVG pour < 0 et D = R**.

—++oo
- Ifnlloo,fa,p) = fn(a) donne la continuité; toutes les f,, sont strictement décroissantes donc f aussi.
3. 1+1mf = 0 par double limite avec || fn|oo,[1,400] = fn (1)
o0

—xt

+oo +oo +o0 —e
4. Pour z > 0, on trouve / In(1+e ™) dt < f(z) < / In(1 4 e *")dt; on trouve / In(l+e®)dt "=
1 0 0
1 (Mn(1 1 —1)n+t 1 !
,/0 In(1+y) dy = — Z %7 par CVU sur [0,1] car |R,(z)] < T et comme /0 In(1+e ") dt

<In2,
t Yy n>1

on trouve le méme équivalent pour le terme de gauche et f(x) Y 190
x
Exercice 42 |[sujet/| 1. On prouve par récurrence que u,(z) > 1 donc (u,(z)) est définie. up41(z) — un(z) = 0 donc

(un(x)) croit; si elle CV vers £ alors on a £ = £ 4+ — qui n’a pas de solution donc lim u,, (z) = 4oc.

14
2. Z fn(z) CV par CSSA avec la question 1

U (2)? —

Un(2)” —1

un(x)? 7
récurrence. La CVS de (f,,) en 1 donne la CVU de Z fn sur [1,400[ puis la continuité de f (les f,, sont continues
par récurrence).

Par contre || fnlloo = |fn(1)] = tn+1(1) — upn (1) donc an DV (série télescopique)

3. Par CSSA, |[Ry|l < [[fns1lloc = fut1(1) car uy, est croissante sur [1,4-o00[ : uj, () = uy,(z) 0 par

Exercice 43 [[/sujet/ 1. ’Lp (2%) ’ < C;in donc CVN sur [
2. facile

T X
3. si f et g sont solutions et u = f — g, on a u(z) = u (5) = (2—”) et, comme u est continue en 0, en faisant tendre

n vers +00, on trouve u(x) = u(0) = 0 donc w est nulle. I y a donc une unique solution (qui est S)

1
4. si uy(z) = ¢ <2£n) alors |ul, ()] < 2—n\|<,0/||OO car ¢’ est continue donc bornée sur le segment I. Zu’n CVN sur
donc S est C*.

Exercice 44 Si f est solution alors lim f(27"x) = f(0) par continuité en 0 de f donc f(z) = f(0) +

n—-+oo
2
Z(f(Z*”x) — f(27 D)) par télescopage puis f(z) = f(0) + Zln (1 + %) Réciproquement, toute fonction
n=0 n>=0
2
a
de cette forme est solution car continue sur R par CN sur tout segment : || fn oo [~q,a] < I

Exercice 45 1. fo(z) ~ % (siz#0) donc Dy =R\Z™*
n—+oo N

1
2. I lloort < 3 donc Zf{l CVN sur R*.

P
1
3. f(1)=1 tél t = - ~ 1 .
f(1) par télescopage et f(p) nEZI e n(p)
1
Exercice 46 |/sujet] - [[falloo = —5 donc f est définie et continue sur R.

1
’ o ’ . 4% / Y
2. fr(x)= w1 % nZa?) donc E fn CVN sur tout segment de R™™ car || f},[|c0,[a,0] = fr.(@) oo B2

sur R* (f est impaire) mais f n’est pas C' sur R : si on suppose f’ continue en 0, on a, pour z > 0 et tout N € N*,

donc f est C*



N
1
fl(x) > Z ——————— puis en faisant tendre z vers 0 (somme finie et on a supposé lign ' = f'(0)), on aurait

k(1 + k222)

k=
N
1 1
1 (0) > Z 7 bour tout N € N*, ce qui est absurde car lim Z 7=

=1 N—+oco =1
. - 1
Exercice 47 1. |fo(2)] < 3
/ . , n|sinnz| 2lzcosnz| 1  2a
2. an CVNTS [—a,a] de R car, si |z| < a, |f,(2)| < . SRR

Exercice 48 |/sujet/ 1. li(r)nf =1 et par convexité de sh sur R+, onash(z) >z >0donc0< f(z) <1sur R* donc

sur R par parité.

2. fu(x) e o (%)

3. On applique le théoréme de dérivation avec | f, (x)| =

o (%) si [a,b] C RT*

2n ch(nx)
sh® nz

2n ch(na)

o - / _ _
qui décroit (redériver) donc || f, [l sc,[a,6] = P ra e

f(na)? LS f(a)? imite. Tim S~ 007 SR L fne)?) 1
4. fo(z) = 32 donc S(x) = e z_:l et par double limite, ilgbz —a = Z_:l 3 car | =3 < 2
donc CVN sur ]0, 1]
1 h
5. @ = 27 st ¢ car DSE sur R (utiliser le DSE de sh) et ne s’annule pas car f(0) = 1 donc f est C* sur R
x x

T
Exercice 49 [[sujet] 1. Par CSSA avec vVn+z —yVn= ————
Vn+z+n

2. CVUTS sur RT avec CSSA et |R,(z)| < |foi1(®)| < Vn+1+b—n P 0 donc CY sur RT.
n oo

+oo
-1)" 2
fo(z) = 25/# donc CVUTS par CSSA avec . §n+1 fe(z)| < Jnta m 0. (pas sur R" car fy n’est pas
1)”
dérivable en 0). Puis E > 0 tjs par CSSA

3. Si f ne tend pas vers +o0o en +oo alors f CV vers £ (croissante) et f(z ) ¢. Comme R, (x) est du signe de fp41(z),
Ropt1(z) = 0 donc £ > f(x) = Sopy1(x) + Ropy1(x) = Sopta(x Z fop(x) — fopt1(x). Comme $EIJ£IOO fop(z) —

n
fopr1(z) = /2p+1 — /2p, en faisant tend x vers x vers +oo (somme finie), on aurait ¢ > Z V2p+1—+/2p,
p=0

pour tout n; ce qui est absurde puisque c’est la somme partielle d'une SATP DV

Exercice 50 1. uy(z) =0 (#)
2. [Jtnlloo,[=a,a] = Un(a) donc CVNTS
3. u, n’est pas bornée sur R
4. S(0) =0et S(x) = ui(x) m} 400

2z 1 1
! _ ! _ ! _
5. u,(x) = Py donc [|u), |l = us, <\/ﬁ) =3

/+m2xdt<5’( )</+002xdt+ ' (2) done S'(z) ~ —daln(x)
. ) t(]_—’—th) S T) X ) t(1-|-t;y2) u(r onc X 30 X X

=2}

2
Exercice 51 |[sujet/]| 1. Six # 0 alors uy,(z) N et u,(0) =0 donc D =R (et S est paire.
n—+oo N

2. [Jtnlloo,[=a,a] = Un(a) donc CN sur tout segment de R.

2x " 2x
3. P < ul = < dt d § t <
our z > 0, 0 < u,,(z) (1 £ n)(1 1 nZa?) /n O+ 222 onc ul,(x) CS et 0 < Ry(x)

/Jm 20 at < — 2 /Jm 2 gy = 2 { tan( t)r e ™ done CVU
L I+ +rea?) S htn) ), T+222C T @+l S ) N
sur R* puis sur R par imparité.




4. Facile

Exercice 52 1. fn(0) = 1 et fo(z) ~ % (signe fixe) donc Dg =R\ {-1/n,n € N*}
n

n—4+oco xrn
— 1
2 flla)e — 4 /el — d ' CVNTS de R**
fn(x) n(nx + 1)2 onc ||fn||oo TL(TLQ + 1)2 2 onc Z f” €
1 1 1 1 1 1
o 5oy oy L . _ 1 (1)~ iy
5(s) =~ n2x oy c(nr+1) 22 nz; one 5(z) artoo £ n2 +0 too T nz:l n?

1
Exercice 53 1. Siz <0 alors DVG et sur R, || f[loc < —— donc CS et CN sur R**

14+n
2. oui : cf 1.
3. Par double limite et CN sur R™, 1+imf =1

ne—na

4. Si[a,b] C RT*, [ falloo,fae) = T T

1
0 (—2> donc Z f/ CN sur tout segment de R™*
n

5 —f'(z) = Z 271 16_”” est décroissante donc admet une limite ] € RN 400 en 0; si | # +oo alors pour tout N,
n
n>0
Yon Yoo
onal > E me*m puis quand  — 0 (somme finie), | > ngo o ce qui est absurde puisque la somme
partielle de cette SATP DV vers +oo; on a donc lign f' = —o0 et comme f est continue sur R, par le TAF, on
- f(0
obtient que lim f@) = 10) =limf = -0
0 x 0
1
Exercice 54 1. fo(z) =0 (—2> siz >0, f,(0) =0et DVG si z >0 donc Dy = R™.
n——+o00 n
. , e~ (1 + nb) ,
2. Si[a,0] CR™, |[fh oo o) < — ., donc > £}, CVN sur tout segment de R
— f(0 —nzx
3. g(z) = M = Z 617 est une fonction décroissante donc tend vers [ € RU{+o00} en 0; comme la série est
x nn
n>=2
—nx N
. . . 1
a termes positifs, on a g(x Z pour tout N > 2; si on suppose [ finie, quand z — 0, on obtient [ > Z —
Inn = Inn
pour tout N ce qui est absurde (somme partielle d’une SATP DV). On en déduit | = 400 donc f n’est pas dérivable
en 0.
1
o) la CVU d " R* il n’ CVN) : |R < “"zix
n prouve la e ZfL sur (car il n’y a pas ) ¢ |Rp(z)] < k; xe” n(n £ 1)
n+1
—(n+1)z 1 —z —z
e < e < ¢ car T — e est bornée sur RT*.
1—e=® Inn+1)1—e* " In(n+1) l—e=®
Exercice 55 1. CSSA (indispensable pour x = 0)
1
2. CVU sur R" car, par CSSA, |R,,(z)| < |uni1(2)] < —
n
3. CVNTS de Zu’n car |ul,(z)] < ™ pour z € [a,b] C RT*
+oo =7
4. On a aussi S'(z) = Z(—l)”“e‘m i prpee donc S(z) = —In(1 — e™*) 4+ C pour & > 0. On trouve ensuite
e x
n=1
C=0car C = hrf S(z) = 0 par double limite (et CVU sur RT) et on étend & x = 0 par continuité de S en 0
r——+00
(donc S(0) = —1n(2))
1
Exercice 56 1. Sur R, ||fullsc = — donc CN sur R et DVG si z < 0.
n
_ ,—nz
2. Continue sur R™ par CN sur R*. Puis u),(z) = ¢ = o(e™"") donc Zfé CS sur R et si [a,b] € RT*,
n n—+00
|l oo fa,p) = €~ donc Zug CN sur tout segment de R**
—T —n
3. f'(z) = . i e puis f/(x) = C +In(l — e *) avec C = kg& fr=0car || fhlloo,i,400] = en et o(e™™) donc

Z /7, ON sur [1,+00] et le théoréeme de double limite donne la limite de f’ en +oo.

4. On a lién f' = —oco et f est continue sur R* donc le TAF donne f non dérivable en 0.



x
5. t+ In(1 — e~ ") est continue et intégrable sur R™™ (car Kot In(t)) donc = — / In(1 — e *) dt est la primitive de f’
- 0
qui tend vers 0 en 0, c’est donc f — f(0).

Exercice 57 |[sujet/| 1. Si|z| <1 alors u,(z) ~ 2" donc la série est ACV, si x > 1, DVG et si x < —1 les termes
n—-—+oo
n’existent pas
2. ||unloo,—a,q) < @ donc CN sur tout segment de ] — 1, 1[ puis continuité sur | — 1,1[; [[ul,|lcc,[—a,q) < na" " =
s n—r+00

1
0 (—2> donc E u,, CN sur tout segment de | — 1,1[. On a alors f'(0) = 1 et par Taylor-Young, f'(z) ~ .
n z—0

tin(z)

3. ¢ est continue par morceaux sur R et ¢(t) e avec In(z) < 0 donc ¢ est intégrable sur R*. Par comparaison

t——+oo
+oo _ tln(z) —1 (1
a une intégrale, f est équivalente en 1 & / B(t)dt "= / n(l+u) dt
0 In(z) Jo U
. . . 1z . _
Exercice 58 |[sujet/|| 1. Six # 0 alors f,(z) ot (signe fixe) donc Dy =R\ Z
1
2. Si [a,b] C R, || f1lloo,jab] < 2 donc Zﬂl CN sur tout segment de R**
oo at
3. Par comparaison avec une intégrale, f est équivalente a / P en 0 puis calculer cette intégrale.
1 x
1 1
En 400, zf(x) = ; m qui CN sur R™ par m < 2 et le théoreme de double limite donnera
+oo
1 1
f(z) 200 5;ﬁ~

1
Exercice 59 1. Siz #0, fo(xr) ~ — et f,(0) = 0 donc CS sur R (et impaire). De plus, si [a,b] C

n—+oo rn?
b b
R, |l fnlloo,fa,p) < m Yo an? donc CN sur tout segment de RT* et continuité sur R™*; de méme
n na?) n—+oo an

1 b2 b?
| frlloo, (a8 < ﬁ N T donc Zﬂt CN sur tout segment de R™* et f est C! sur RT*.
n(1+ na2)? n—+oo a2n

+oo
xdt
Pour la continuité en 0 : si x > 0, par comparaison & une intégrale, f est équivalente en 0 & / o carlgul
1 t(]. + tx ) x—0
f(@)

—2z1In(z) donc f est bien continue en 0 mais pas dérivable car le méme calcul donne ——= ~o In(x)
X T—r

1 1 1
2. xzf(x) = nE>1 T 179 et " 1759 < 2 donc CN sur [1,+o00] et me théoreme de double limite donne
+oo
1 1
@) 25 2
n=1

Exercice 60 1. CSSA

1
2. CSSA puis ||Ryflec € = ——— 0

n n—+oo
3. 0 par double limite
1

n-+a

4. Si[a,b] C] — (n+1),n], le CSSA est vérifié pour n > —a et on a || Ry [|o0a,p) <
1
5. [lup,lloo,fa,p) < e (pour n > —asi [a,b] C] — (n+1),—n)[) donc Zu; CVNTS de Dg
Exercice 61 |[sujet| 1. Fait en cours
2. Fait en cours (séparer les termes pairs et impairs dans n(x))
3. Fait en cours

1
4. 1 est C' sur R™ fait en cours puis () ) (n(1)+(x—1)n'(1)+o(x—1)) donne le résultat en utilisant

wil 1 — 6(1_1
7(1) = In2 (fait en cours, soit avec le développement asymptotique de H,, soit & partir du DSE de In(1 + z) qui
CU sur [0, 1] grace au CSSA)

1
5. Poser v, = u, — - (Inn)?, montrer que Z(’Un+]_ —vp,) CV (par DL) donc (v,,) CV vers un réel I. En séparant les

2
2n
—1kInk 1 2
termes pairs et impairs, on trouve Z % = (In2)H,, + u, — ug, et comme u,, = ( n2n) +1+0(1), on obtient
k=1

le résultat annoncé.



Exercice 62 [[sujet/| 1. x>1

2. cours
32x(C—1)_ZECN ¢ [3,+oo] car | =] < —— et le théoréme de double limite donne ¢ — 1 1
: —n>2nz sur |9, 00| ca " \(n/2)ge e théoreme de double e donne oo 58 =
—z1n(2) s . teo 1 1 1
e donc ¢ — 1 est intégrable sur [2, +oo[. On termine par TITT avec — =5 = ol
9 n® n2ln(n) n—+oo  \n?2

Exercice 63 |[sujet/| 1. Sixz ¢ {0} U{—-1/n,n € N*} alors Z fn(x) CV par CSSA (vérifié & partir d’un certain rang

donc D = R*\ {~1/n,n € N*}. Si [a,b] C R*™, on a, par CSSA, ||Ry||co,jap) < T ——— 0, si [a,b] C
1 1 1
}—N,—Ni { alors le CSSA est vérifié pour n > N + 1 donc on a || Ry ||oc,[a,5) < Tob et si [a,b] C] — o0, —1],

le CSSA donne || Ry, [a,5 < donc CVU sur tout segment de D.

Z fula

k=14+n

1+nb

n

2. Sur R™, > f}(x) vérifie le CSSA donc si [a,b] C RY™, < R i 0 donc > f}

oo,[a7b]
CVU sur tout segment de RT*.

3. Par CVU de an sur [1, +oo[ (par CSSA et majoration du reste), on a Emf =1puis f(z) - 1=

1 —1)"
Ez(n) car f(x)—l—z nw \x2zn2

n>1 n>1 n>1

Exercice 64 |/sujet/| 1. La série CV toujours par CSSA (vérifié & partir d'un certain rang mais qui dépend de z!). On
1 2

(71)”‘7 _ n z _ z?
a f(z) _;T = ;1(—1) 2 1 g2y Vérifie le OSSA dés = 1 done |Ru ()] < ¢y ya oy S

1
n_l_lmOdonc CUsuerulshmf f(0)

2. fo(z) = (=" ( L - > donc fiF) = (=" (( (—1)"ik! - (=1)"ik! ) ce qui donne la CN sur

2 r+in x—in 2 x +in)ktl  (z —in)kt+l

k! k! Los i .
R de Z FB) par [f8)(2)] < @2+ n2yFr < 3T 2vec k> 1 (la CS pour k = 0 suffit et a déja été prouvée).

1 -n
. - . 2n—1 _ 5 ~ RN
Exercice 65 |[sujet/| 1. Si|z| <1, alors f,(z) nx oo © (n2> et si |z| > 1 alors f,(x) donc

n——+00 n—+4oo I
DVG
om—1 2n—2 An—2 1
2. |fl(x) < n( n (ia_ aM)—i;a e (ﬁ) si x € [—a,a] C] —1,1] donc Zf,’l CN sur tout segment de
(2’[1 _ 1)x2n—2 + x4n—2
| =110 fi(2) =) _n 0 >0.
n>1
t" t"(1—t)" t"
Exercice 66 |/sujet/| 1. Par récurrence sur n en remarquant que si u,(t) < ) alors u, (t — t?) < % < o

1 x
2. [lunlloo < — donc E u, CN sur [0, 1] vers ¢ telle que (intégration sur un segment avec CN) u(z) = / u(t—t?)dt;
n:. 0
comme t +— u(t — t?) est continue, u est C' et u/(t) = u(t — ).

Exercice 67 |/sujet/| 1. f, est continue par récurrence
2. Par récurrence sur n : f, est C", f,(lk) (a) =0sik <n-—1c¢et f,(L") = f. Avec Taylor, on en déduit f,(x) =

n _ +\n—1
anHoo [a,z] S < [ flloo, az]( a) donc CN sur le segment [a,z] (ou [z,a]) et g(z / (@) (z t) dt =

(n—1)!

4. g(z) =€" (t)e~* dt est donc C* et solution de y'(z) — y(x) = f(z)



—+o0
Exercice 68 [[sujet]] 1. f, est C' par récet f, ., = f, puis S’ = Zf,/L = fo+ an—l = f) + 5. On en déduit

n=1

S(x) = ae® 4+ €° /f e fi(t)dt et S(a) = fo(a) donne a = e * fo(a)

2. [[falloe = Il fn-1lloc
1 x x X
3. [[falles < on donc an CVU sur [0,1] et S(z) = ex/ e 'sin(2t) dt = e* Im (/ e_(H‘Q”tdt) =
0 0

—t t2 1 1
%; (fn) CSsur [0,1] vers f:t e b et |fu(t) —e!| < te
n

1
CU sur [0, 1] vers f; par intégration lim wu,, = / e tdt=1—¢"!
0

Exercice 69 |/sujet/| On pose f,(t) =

donc (fy)

Exercice 70 1. Ona PM(0) =0si k <nouk > 2n et, si k €[n,2n], par la formule de Leibniz, P{¥)(0) =

n(n—1)...(2n—k+1)bp* " (—a)?"* est entier. Puis P, (r— X) = P,(X) donne les dérivées en r par symétrie.

T
2. u, =q / P, (t)e' dt est un entier par IPP successives avec la question précédente et le fait que ge” € Z. On a
0

[ Pnexp[[oc < —7"(br)"e" donc (P, exp) CU sur [0,7] vers 0 et par intégration (un) tend vers 0. Or (uy,) est une
n

suite d’entiers, elle est donc nulle & partir d’un certain rang et comme P, exp est continue et positive sur [0,7], on
en déduit P, exp = 0 sur [0, 7] ce qui est absurde. On vient donc de prouver par ’absurde que si r € Q alors e” est
irrationnel donc en particulier (avec r = 1), e est irrationnel.

Exercice 71 [[sujet]] 1. Par récurrence : si f, est C'(R) alors t + 1/ f,(t)2 + 2 est continue sur R donc f, ;1 est
C'(R).

2. fn+1(l”)fn(:c)/0x(fn() Fai( fo(t) + fna(t)

\/t2+fn 24 /2 + fr1(t)?

dt donne le résultat par récurrence sur n car

V4 fu(t) +\/t2+fn 1(t)?
n+1
On en déduit || fri1 — fulloo,[—asa) < h donc Z(fnﬂ — fn) CN sur tout segment de R ce qui donne la CS de
(fn) et la continuité de f = Z(an — fn) par télescopage.

n>1
3. Pour z € R fixé, on vérifie la CU de (g,,) sur [0,z] (ou [z, 0]) avec g, () = /12 + fn(t)? car |gn(t) — /12 + f(t)?]| =
fn(t )+ f(@)
falt) = ()] — )
VI + fu(t)2 4+ /12 + f(1)
/ V2 + f(t)2dt puis f(x / \/12 4+ f(t)2dt ce qui prouve que f est C* par continuité de f et, en dérivant,

fl(x) = /22 + f(x)2.

Exercice 72 |[sujet/|| 1. on pose gn(z) = sin®(z) cos”(x) géométrique de raison cos(z) donc Zgn ) ACV si |cosz| <
1 et si cos(z) = £1 alors fo(x) =0 donc D, =R

sin® x . E}O 77}

— sz —

2. fa(x) =19 1—cosz "2
0 siz=0

< [[fn = fllso,jo,s] donc par intégration, on obtient lim frt1(x) =

3. fa( )r—>0 r2-a

@ @ n a/2,—a
[« [« «@ « a®’/“e .
4. ||gnlloc = 9n (arctan n+1) = ( n+1) (1+n+1) (1+n+1> n_:rdeonc CVN si et seule-

ment si « > 2. Pour a < 2 f, n’est pas continue en 0 donc pas de CVU

7r
donc f, intégrable sur ]0, 5] si et seulement si o > 1

N s s
2 2
5. a) up(a)=0et,sia>1, E up (@) = / E sin® z cos™ x dx < / fo(z)dz; SATP dont les sommes partielles
n=0 0

n+1 % 1
sont majorées donc Zun (o) CV. Pour a < 1, up () = up(l) = {—%} =— donc Zun(a) DV
n 0

s “+oo

1 1 1
b) wu,(3) = /2 sin 2(1—cos? z) cos™ x da = donc, par CVN sur / fa(x)dz = Z <
0

n+1 n—|—3 n—+1

| W

1
1+ ==
Jr2

1
n+3

3



Exercice 73 |[sujet]| 1. |Juy| < |apn| donc CVN sur [0, 1]

sin (27w, )
2. P N,
ar CV /f t)dt = Z/ up(t)dt = Zan o

n>1 n>1

0 .
3. fest C” sur [0,1] donc Ngliloo I Z f( / f(t)dt (somme de Riemann).

Exercice 74 [[sujet]] 1. t*% = =" In(®) P 0 car y > 0.
—

2 fulle = 2 (1)

3. Les f, sont continues sur [0, 1] donc on peut intervertir Z / / sur le segment [0, 1] par CN : Z falt) = = ¢*"" par
n=0

nIPP (—1)n+t
nn

DSE de exp et/ fa(t)dt

Exercice 75 [[sujet] 1. Si x € [—a,a] alors pour n > a, on a (z +n)?> > (a +n)? et (x —n)® > (n — a)? donc

C c
nlloo,[—a.a d NTS de R.
[ £l ]S (n+a)? + (n—a)? onc CVNTS de

400 “+ o0
2. Les deux séries CV donc, avec des changements d’indices, f(z+1) = p(z+1) + Z o(x+k)+ Z p(x—h) = f(z)
k=2 h=0
Cligllo
1422’

3. g est continue sur R et 1-périodique donc bornée et |p(x)g(x)| < intégrable sur R.

1 1 400 1
129lse0:1) < 11l o done L série CVN su [0, etona | fla)g(e)do = [ glwhg(orar+ Y [ ot
0 0 —1Jo
1 1
dz+ | p(z—n)g(z) dz. Par changements de variables et avec la 1-périodicité de g, on a / p(r+n)g(z)dr =
0

n)g(x)
n+1 0 1 —n+1 1
/ o(u)g(u) du et / ol —n)g(z)dz = / w(u)g(u)du ce qui donne, avec Chasles, / f(z)g(x)de =
n+oo 0 —-n 0
| et da.
—00
Exercice 76 TCD a chaque fois
cos% d limit /+°° dt o«
11| S 75 done limite e 2
N —2
o~ (1+3) " sizz1 oo
2. ’(1 + 7) | < 12 si n > 2 donc limite / e *dx=1.
n — si x €]0,1] 0

Jz

—+oo
3. On prolonge par 0 sur |n, +oo[ puis | f(z)| < e™* donc limite / e dt =1.
0

n Inx [1n z| oo ! Inz
4. |x (]_—(52)1/4 < (1—[1;2)1/4 donc limite /0 mdx
. ; 1 1 L. Lo dz T
Exercice 77 |[sujet] ‘ T Ep— < a2 donc limite /0 T2

o ot et f(t) et 2% donc f, est intégrable sur R™* si et seulement si a €]1,2].

Exercice 78 1. f(¢t)

1
L arctant
2. [fu(t)| < f3/2 donc limite /0 Wdt

Exercice 79 1. Etude de fct

in(t 1 sin(t 1
sin(t/n) 1 osin(t/n) O(i) done I, existe.
t(14+1t2) t=0 n  t(1+1¢2) to+oo t3
3|1|<1/+Oo Clt(' iste) par Q1 donc lim I, = 0. Pui T, 0ty — s [ A T
. — ul existe ar onc nmdi, = U. uls par , Nip = — car
1+e2 4 P P noteo Jo 1422 2
nsin(t/n)
< 1
t(14t2) 142 P Q




i 1
Exercice 80 1. sin(ne) = O(—)

1+ ntz3 z—+too 3

2. Poser t = zn*/3

t
3. Par TCD avec |f,(t)| < 5 (Isin(u)] < |u])
dt 4 [t dt 2 2t — 1]+
4. Ajouter les 2 valeurs de K puis 2K = / — 0 = 7/ —_— = {arctan }
o I-tHE 3o g (2a) V3 V3 o
V3
5. facile
. - T
Exercice 81 |/sujet/| 1. f,(x) o 32
o 0l < [T __de e /*‘x’ du 2
. X in X 5 V5 = 7 5 — 8 =
2 )y Vx(n+z) 0o n+ur  2yn
3. fait au dessus
Heo dx O e dz 72
4. arctan(n —— < I, < = ———— donne I,, ~ ——
(n) o vVz(n+zx) 2 Jo Vz(n+a) 2y/n

Exercice 82 |[sujet/|| 1. f, est continue sur le segment [0, 1]

1
1
2. Oglng/ t" dt = —— donc lim I,, = 0 (ou TCD)
0 n+1

1 In(1 In(1
3. On pose u = t" < t = u'/™ qui donne I,, = 7/ Mul/" du puis TCD avec g, (u) n{1+u) et
n Jo u n——+oo )
In(1 In(1 Yn(1
|gn (u)] < In(1 +u) intégrable sur 0, 1] car lim In(1 +u) =1; on finit avec / In(1 +u) du #0
u u—0 u 0 u
In(1 = L -1 1 UIn(1
4. siu €]0,1], In(l +u) = Z( 1)""'1 pu1s TITT avec/ (— 1)"+1u du = —gionen dedu1t/ In(1 +v) du
u n=1 0 n 0 u
+oo n+1 +oo n+1 2
Z puis en séparant les termes pairs/impairs (sur la somme partielle!), Z 12
. - arctan(nt) ™
Exercice 83 |/sujet/| 1. A+ it oo Tri
) arctan(nt) /2 ) w=n2t 1 [T°° arctan(u/n)
2. limI, = 0 par TCD avec Arnim2| S A1 puis I, = 2 | ﬁdu donc limn?I, =
+oo
u arctan(u/n) /2
———du=1 TCD <
/0 e U par avec e e
Exercice 84 [[sujet/| 1. fct continue sur [0, 1]
1
1
2.0 < I, € / " dx = 1 donc limI,, = 0 (ou par TCD en dominant par 1); on pose u = z" : nl, =
0 n
1 1/n 1 d 1 1/n
u U U
d — = TCD — 1 <1
/0 1+ ul/n ta2/m Y oo o 3 3 bat T ul/n 1 w2/

Exercice 85 1. In(z)In(1 —2z") = o(lnz) et In(z)In(1 —2™) ~ (x—1)In(l —2") — 0.
z—0 z—1 z—1
2. |In(z)In(1 —2")| = |Inz| x (—=In(1 —2")) < |Inz| x (—In(1 — z)) donc lim I,, = 0.

3. I u=s" 1/1 lnum(l_u)ul/"du puis 1nuln(1—u)u1/n < Inuln(l — w)
0

qui est intégrable sur ]0,1[ (car

n? U U U

u—0 u

C "Inuln(l -
~ 1nuet—>0)d0nc[n~ﬁavecC’:/ Mdu>0.
0

Exercice 86 1.she=1"8 X?-2X-1=0eX=1+v2car X =" >0
2. lim I, = 0 par TCD car |sh™¢| < 1 sur [0, o]
3. IPP
4. (I,) est décroissante donc (2n — 1)I,, < nl, + (n — 1)I,,_2 < (2n — 1)I,,_o puis I,, ~ %ﬂ

Exercice 87 1. F est CM" sur [0, 2] (ou [z,0])



2. Par TCD (sur [0,2]), lim I,(z) =0 car

n—-4o0o

1
ch"t
TCD avec

pourn > 1

< —
ch™t cht

z Chzt — Sh t Ipp
3. Iia(x) = —dt
+2(2) /0 ch" ¢

4. I =I,(In2)

~1 ‘ 1
In(w) - {Sht(n—i—l)ch”HtL B n+1I”(x)

— I5(In2) puis I; se calcule en posant u = e*

lim fu(r) = et fu(o) = 0()

Tr——400 xz

Exercice 88 [[sujet/| 1.

1 . +oo
2. |ful(2)| < { 2z 7 > 1 car |sin(nz)| < nz donc limu,, = / 0dt =0.
0

1 siz€0,1]
1. (fn) CVS vers 0

_

1+ n2a?

1 1
3. Non car f, (7) = 56_1/” —_—
n

n——+oo

Exercice 89 |/sujet/
2. |[fnlloc a1 <

! >0

2

4. limu, = 0 par TCD avec |f,(z)] <1

Exercice 90 m

1. (fs) CS vers e 'In(t) (forme exponentielle et DL)

< 1; la CV est uniforme car ||1,]|oo = /
0

oo gt

ch™t n—+4oo 0 par

2. |fu(®)] < |In(t)]e" V7 < |In(t)|e 2 sin > 2
/ fa(t)dt = nln(n )/ (1—u)”_1du+n/0 (1 —u)" ' In(u) du puis nln(n)/o (1—u)""'du = In(n) et n/o (1—
Ny e L S

)" n(u) du "2 ‘A P lau=-Y [a-wtdu= -,

k=0

1. (fn) CS sur RT vers x — e “sin(x)

Exercice 91 |/sujet/
e 1
2. limwv, = / e “sin(z)dr = 5 par TCD avec |f,(z)| < e *|sinz| < e™®
0
3. a) z+ In(l+z)— =z croit sur | — 1,0] et décroit sur R*

) Si € 0] (o) = )] < et =) < 1
sur [O,n1/4]. Si z > n'/* alors |[fn(z) — f(2)] < 2e~

2€—n1/4 + (1 _ en1/4+n1n(1—n73/4)> s 0
n—-+o0o
(1 m)” {2 [0,n]
Exercice 92 |[sujet/| On pose f,(x) = { n cos(z) siz "
0 siz>n

ertrn(=e/n) done | f (@) - f(x)| < 1-
< 2e” n'* En regroupant les deux, on a || f, —

6n1/4+n In(1—n—3/%)

Flloo

N

et on applique le TCD : si n est grand, f,(z) =

(1 - E) cos(x) ——— e Fcos(z) et |fn(x)] < e ¥|cos(z)] < e™* par concavité de In. On en déduit lim w, =
n n—+00 n——+o0o
+o0 +o00 ) 1 1
/ e~ % cos(x)dz = Re </ e~ (1= dm) = Re < ) = -
0 0 1—1 2
Exercice 93 [[sujet/| 1. cours
2. lim f,(x) =1
z—0
1oz T x x too k-1
-1 -1 -1 -1
3. limI, = / ¢ dz par TCD avec |f,(z)| < € et 1. Puis, pour z €]0,1], ¢ = x
0 T x T z—0 k!
k=1
okl 1
et on intégre terme & terme avec le TITT ou CVN sur [0, 1] car X < pl

1. fo n'est pas CM° sur RT* car

Exercice 94 |/sujet]

t—>2

[1,+00[ que pour n > 3 (et lintégrale DV si f, n’est pas intégrable car f,, >

li(r)nfnzlsin>3.

~

1oy sit>1
2._[: dt n X
| st var 5,001 <

o~

Sn(0) si ¢t €]0,1]

lim  fo(t) = +o0; fu(t)

~ —— n’est intégrable sur
t—+oo tn—1

0 au voisinage de +00). Enfin



w— t’ +o0 2/n—1 1 ul/n u2/n—1 U2/3_1
3. n(l, — I Y qu- du pui < ,

il ) /1 u + sin(ul/n) “ /0 sin(ul/™)(u + sin(u!/™)) W PWs pat e T sin(ul/m) u—1) o

] +o0 u2/n—1 +o00 du 1 1/n 1 du

lim ———du = / ———————et lim du = / _ ,
notoo Ji w4+ sin(ul/m) 1 uw(u+sin(l))  notoeo Jyosin(ul/?)(u + sin(ul/™)) o sin(1)(u+sin(1))

ult/m 1
< . . .

par S/ (o sm(a7) | S S/ (1 (/) puisque sin est croissante sur [0, 1].

1 1
Exercice 95 |/sujet/| On pose u = t" : nu, = / w7 f (™) du —— 1f(1)du = f(1) par TCD et continuité de
0 0

n——+o0o

fen 1 avec ’ul/"f(ul/”)‘ < || flleo car f est continue sur le segment [0, 1] donc bornée.

Exercice 96 n / e f(e) e = / /" f ") du —— / FO =) du= f(1) car [u!/" @) < [|£]oo-
0 n o0
z+1 Loz41
Exercice 97 |[sujet/|| On compléte par 0 sur |n,4oo[ puis nEI-sr-loo ey dz = /0 mdx car
1
% stz
siz>1

e?+ax2+x+1

' i

“+oo n 1 +oo d
Exercice 98 [[sujet] On a ngrfoo/o x”%—l—l do = /0 dz +/1 ?;: ¢

f ‘ { 1 six € [0, 1]
< 1

o) siz>1
o 1 +oo +oo e~ U
Exercice 99 |[sujet/ limu,, = 0 car |exp(—2")| < e"“puisu, = — / e %u!/" 1 du donc nu, P —du =
n Jq n—+oo  Jg U
C
C > 0 car ‘e_“ul/"_1’ < e " donc u, ~ — (positif) et Zun DV.
n
. _ 1—cos"z n 1—cos"z 1
Exercice 100 [/sujet/| 1. = 0 3 et = = (0] (;)
2t
2. on pose T = \/ —
n
In(cost) 1
lim S8 2
3.l =5 2
1 —cos ( 2t) 1 et
4. on trouve la limite de (v,,) par TCD :si f, (1) = ——— >, ona hm fn(t) = ———. Reste la domination :
—+oo tVt
2
sit > 1 alors |fn(t)| < 7; sit < 1 alors \/ € {0 \/> C ] si n = ng (np ne dépend pas de t) et
2t 2t 2t 1—e ¥
n (42 = 1 VE) ] > {72—}:*4‘5.0 d D] = fult) < — S sur 0,1
cos ( n) exp{nncos( n) exp n— e n a donc |f,(t)] = fn(t) i sur 10, 1] si
n = ng.
+oo —x too —z
1-— 2 z=t2 2 vV
On a donc lim v, = / —c dz 2 f/ ¢ _ R —/m. Au final, u,, ~ v
n——+o00 0 mﬁ 3 Jo ﬁ 3 3\/§
Exercice 101 |/sujet/| 1. cours
a b
2. il suffit que cos(y,,) = ——— et sin(p,) = ————— donc ,, est un argument du complexe a,, — ib,, (qui est
q (n) e (n) o ¢ g p (a
non nul)
d— in(2nz + 2¢,) 1" d—c)(a2 + b?
3. Onal, = (aj +b7) 5 °y {sm( nz Rl d )} ) donc lim I,, = % ce qui donnera la minoration a
n [

partir d’un certain rang (1/2 > 1/41)

4. Si (ay) ou (by,) ne tend pas vers 0, la minoration précédente prouve que (I,,) ne tend pas vers 0, ce qui est absurde
car |ay, cos(nx) + by sin(nz)| < K (car (a,) et (by) sont bornée) donc le TCD donne lim I,, = 0.

Exercice 102 [[sujet/| Proche des intégrales de Wallis

1
1
1. CSSAavecOéang/ tdt = =
0 n



2 ! 2
2.an+QIEP 3( +—D‘/)t"ﬂ_ftQP/zdt::g(n471Xan——an+j
0

1 n
V1—t2
3. On prouve Z a, = dt en utilisant le TCD appliqué & S, (t) = Z(—l)k\/ 1 — t2t* car le TITT est plus
n=0 k=0

1—(=1 n+1tn+1 2v1 — 2

difficile & appliquer (la CVA de Zan n’est pas évidente) : on a |S,(¢)| = V1 — 2 ( T i—t S g

ce qui permettra de conclure
x = Foo 1

Exercice 103 Siz>0,o0na () = 2;;0(—1)":667(2”“” puis TITT avec /0 ‘xe*(gnﬂ)w ECE

1
Exercice 104 |[sujet/| 1. n "< -—sin>2et li(x)n ezn(@) _ q
n

n!
2. IPP successives €} f,, ,(t)dt = (—1)" ———
2"(Inz)™

3. TITT avec **) = Z '
n!

n=0
> t2Int)" Ltz it tInt)"
Exercice 105 [[sujet]| t*© = E % et on applique le TITT avec / #dt = (—1)"/ %dt 'EP
n! 0 n! 0 n!
n=0

1 ! 1
- - "nt) " ‘dt = = ———
(n— Dl(zn + 1) /0 () (zn + 1)n+1

Exercice 106 1. cours

(71)n+1

tnk ! 1 1
n _ k+1 _
2. Pour n fixé, In(1+t") E gk (t) avee g (t) = (—1) - et TITT avec/0 lgx(t)| dt = CESCEY e iR

3. Par CVNTS de |—,1,1] : Hf,’c||oo,[_u7a] < 5 pour k > a

(2 () s 0

400 k
1 1 1 -1
5. Par DL,(0) de f (Taylor-Young) : f (ﬁ) = f(0)+ ﬁf’(O) +o0 (ﬁ) et c= f'(0) = ( k‘3)
k=1
n 1 — (=1)rt+lg(n+la 9¢b—1
Exercice 107 Par TCD avec Sy, (t) = kz_otb*l(—l)ktk“ et | S, (t)] = t*~1 ( 1)+ a < T+
Exercice 108 [[sujet]] / "(1—-x)dr = LI L et par TITT la somme de la série vaut
/ m+1 2n+2 (ntlEnt2) P

1
) 11—z T 1
auss1 /0 m dz = Z — 5 111(2)

too ix
Exercice 109 [/sujet/| 1. (sin(pz)) est bornée donc R > 1 puis, si [¢t| < 1, 5, (¢) = Im <Z tp_leip”’) =1Im ( - ) =

1—tew
p=1
sinx
1 —2tcosx + 2
1 1 t=1
1 dt t — cos
2. |cosz| < 1 donc S, est continue sur [0, 7] et / Sy (t)dt = — / 5 = {arctan <ﬂ> =
0 sinz Jg 14+ (w) sin x =0
sinx
2sin? x/2 cos T sin(r/2—z) w-—=x
arctan ——— — + arctan —— = — -+ arctan =
2sinz/2cosx/2 sinz 2 cos(m/2 — x) 2
sin(px)

1
= / tP~1sin(px) dt mais le TITT ne s’applique pas (car la série & trouver n’est en fait
0

3. On remarque
pas ACV) donc on applique le TCD & la suite des sommes partielles de S, : on pose T,(t) = Zt”_l sin(pz),
p=1
1 n . n
sin(px) . . . —1
T,(t)dt = , 1 T,(t) = Su(t t € [0,1] et |Tn(t)] = |1 P e || =
ona [ Ta = ST puis tim T(0) = S.0) s ¢ € [0.1] et [T,(0) m<2 ‘ )

p=1 p=1




141

<
V1 —2tcosx + 2
©= sin(px) ! T—x
de tout cela Z — = / Sy (t)dt =
0

qui est intégrable sur [0,1] car continue sur ce segment. On déduit

()

1 — tei®

p=1 P 2
ta—1 1 ta—1 too
Exercice 110 |/sujet/| 7 o fa puis i ;}(*1)%0&”71 si t €]0,z] et on applique le TITT (x < 1 fixé)
T xa+n ; 1 1
avec |(71)"t°‘+"*1| dt = . La derniere somme s’obtient avec a = 3 et v = 3 (poser u = /3 pour calculer
oa+n
lintégrale)
Exercice 111 1. f(¢t) Vi L et f(t) (1>
X suje . = ~ — = o\ —
/ et—1 0 /¢t oo \t2

+oo
2. f(t) = Z Vte™™ puis TITT (chgt de variable pour le calcul des intégrales)
n=1

2 2 2
T T 1 T
Exercice 112 |/sujet/| ili% 1= 0 et 1 oo ® (ﬁ) donc J existe. Pour z > 0, 1= E>1x26_m” puis on
nz

“+oo
2
applique le TITT avec f,(z) = 2%~ > 0 et / fn(x)dr = — par deux IPP.
0 n

) 1
Exercice 113 [/sujet/| 1. hi  slet -2~ 2me T =o0 (—)
x

S z—0 shzx + 2
—X

2
(2n+1)2

T 2xe

+00 400
x>0 — . IPP
=272 e T gy puis TITT (H4) / | fr(x)|dz "=
shx 1—e 2 Z 0 "

n=0

Exercice 114 [[sujet]| 1. Fait en cours : Dp = R

2. cours
) - tx —t +o0o Y 7(n+1)t . —+o0 N —(n+1)t u:(n-‘rl)t
3. pourz >0 fixéett>0,onale ‘| <1donc 1ot :Zt e puis TITT avec [t%e |dt =
—e 0
n=0
I(z+1) 1
metI+1>1dOHCZW CV
. . sint sint _ —t
Exercice 115 1. v 1et T e O(e™)
int int 1
2. Sit>0, e ?| < 1donc % = 2% = 2sin(t)eitl_7€_2t = ;}25111(15)67(2n+1)t
+oo +oo PP 1 +oo
3. TITT avec/ | sin(t)e” Dt d¢ g/ te~ (Dt gy = 55 et, pour la conclusion,/ sin(t)e” D qp =
0 0 (2n+1) 0
+oo ) 1
Im / e—(2n+1—z)t dt)=Tm—°>-
0 2n+1—1
1 L 24t 1 1
4. sineN, ——— < < t t — —————— est intégrabl R* d
sin CEESEE /n SN (2n+3)2+le (2t+1)2+les intégrable sur onc en
¢ €N, ont I</+OO 2db 1y t/+oo 2dt [arct (2t+1)]+°° i
sommant, pour n , on trouve I < —————<1—-1e —————— = | arctan =—
P o +1)PA1 o @+1)211 o 4
Exercice 116 Pour l'intégrabilité sin let sint - _ (l)
X sujet]| Pour Iintégrabilité, ——— —=let o— = o{ 5 |-

+oo +oo +oo 1 +oo
Puis S(t) = Z sin(t)e”" donc / |fn(t)] dt < / te”"" dt = — donc on a le résultat par TITT avec / fa(t)dt =
1 0 0 n 0

400 ) 1
Im (/ e~ (it dt) = —
0 n< + 1

Exercice 117 |/sujet/| 1.

n 0 donc I existe.
t2 t—0 t2 t—1



In(1 — ¢2) In(t TR -2 n(¢ ! 1
2. On a‘pplique le TITT avec w = — n; Tn() pour t E]O, ].[ et \/0 t2n721 ( )dt ILP m
n 2n n
1 1 2 2 1 1
Pour le calcul, comme m =g 1+ Gn 12’ on trouve g m =2H,—2H5,+2 (kzl =i ;
72 too 1 2
T 21n(2) en utilisant H,, = In(n) + v+ 0(1) et kz_l =5

. - « 1
Exercice 118 1. On vérifie a,, = O ( > donc Zan CV, (b,) CV vers [ donc n m A=¢" >0.

1-(1-1¢ 1-(1-t¢ -1
2. a) 1im¥=met ( i ~
t—0 t t t—1 (1 —¢)==
+00 s
- arlz—=1)...(z—n+1) , 1—(1-1¢)"* npzlz—=1) ... (z—n+1) ,_
b) Pourt €]0,1[, (1—¢)* = Z(—l) pr t" donc ——— = Z(—l) + pr
n=0 n=1
—z)(l—z)...(n—x—1 n 2
puis on applique le TITT avec u,, = / [fn(®)|dt = (2)1=2). . .(nzz-1) done L — 1 Tt +
0 n x n! Up, n
1 A
O(ﬁ) donc u,, ~ a2 et x+2> 1.
Exercice 119 |/sujet/| 1. (s;niw;: oo © (x—) et 3113% leni)wc =a
sin ax = e e |al
2. T = Zsin azre” " si > 0 puis TITT avec / |sin aze™ | da < / lajze™™" dz = — et enfin on
er — — 0 0 n
n=1
+oo +oo ) «a
calcule / sinaze™ " dz = Im (/ e~ (n—ic)z dﬂ?) = 5 2
0 0 n + «a

s

—+oo
3. Par comparaison a une intégrale I équivaut a / — 5 quand « tend vers 400 puis lim [ (@) = =
0 a4+t a—+o0

—nt

est continue sur R™* (TITT H2) par CVNTS de

|M+

Exercice 120 W /sujet/| On commence par montrer que S(t

" 1
B avee | fullgon < fula) = o).

+o0
1
On applique ensuite le TITT avec / fa(t)dt = 73
0 n

n

b
Exercice 121 |[sujet/| 1. [fn(®)| <[an|—e™* = o(|a,|) donc CN sur tout segment de RT
n! —+00

oo IPP oo -~
2. Par TITT avec / |fn(t)|dt "= |ay|, on trouve / f)ydt = Z an,
0 0 =

1
Exercice 122 [[sujet] 1. CM” sur R et o (t—2) en +00

n
2. Le TITT ne s’applique pas car la série a trouver n'est pas ACV. f(t) = lim Z( 1)F cos(t)e” kD! puis
n—-+0oo
k=0

+oe kE+1 D1 — (—1)nHle—(nt1)t
/ cos(t)e” kDt qp = % et on termine avec le TCD : |S,(t)] = cos(t)(1 — (=1)"""e <
0 1+ (/{3 + 1) 14 et
2| cos(t)]

1+et

2 1 1
Exercice 123 [[sujet/|| 1. CV par CSSA mais pas ACV car m e 5
n B 1— (_1)n+167(2n+2)t
Yo 2kt 1)t -t
2. On applique le TCD a S, ( E ) cos(zt) = e e

k=0
2k+1

+oo
intégrable sur R™. On termine avec /0 e~ D cog(at) dt = Ry i

cos(xt) donc |S,(t)| <

2e7t

1+e 2t



m/2 n /2 dt
Exercice 124 M Zuk / 1)* cosk (t) dt p— /0 T oot par TCD en utilisant la majoration

1—(=1)"*! cos(n +1)t 2 dt { tr”

S,(t)] = < .Ont S = —_— t =1

[Sn(®) ’ 1+ cost 1+cost — o o owve / 2cos2t/2 My o
. - (Int)? 1 L ) 1

Exercice 125 |[sujet/|| 1. —— = o| — ) donc l'intégrale de gauche CV et vaut celle de droite par u = —.

1412 t=0 \/f t
. (Int)? Z+°° 2 y on| g, IPP 2
2. Sit 6]0, 1[ alors 1t 2 = nzo( ) (h’l t) " puls TITT avec ’ ' lnt t n‘ dt m

Exercice 126 1. limf =0et limf =1

+oo 1
21PP 21
2.sit €)0,1 t"(Int TITT n(t)|dt = t"(Int)?dt "= ————. 0O d I =
sit€]0,1], f nzon nt)? puis avec/ [ fr (D) n/o (Int) 1) n a donc
+oo n +oo 1 +oo 1
) Y —— S S N —
T;)(TLJrl)S ;(nJrl)z ;(n+1)3
1
Exercice 127 |[sujet]| - [[falloo € —5 donc CN sur R done f est continue sur R
2. Par CSSA |f(x)] < 522 donc (avec la continuité précédente), f est intégrable sur R. On applique le TCD & R, (t) =
z
X (~1)F 1 1 , ,
k;ﬂ i CSSA, on a |R,(t)| < CESIEET < 522 donc nll)r_{loo RRn(t) dt = 0 ce qui donne par
= dx
linéarité de U'intégrale sur la somme partielle de la série (donc une somme finie) / f@)de = Z(—l)" / 5 =
R n=1 R T
+oo
_1)"
(=1) = —1In(2)

n

3
Il
_

sin(7rt)

gt t
£ sin(mt) donc R, (1 —1/n) ——— me~! donc
11—t 1-— n—+4oo

Exercice 128 1. F(t) =

(| Rnlloo) ne tend pas vers 0

; pas de CU car R, (t) =

2. TITT 1 t)|dt lt"' t dt21<PP ! 2 1t"+2' t)dt ) < 5
. aVeC/ ‘fn( )| —A Sln(’]T ) NS m +/O Sln(’fr ) S m ,on en

1 x=m(1—t) T G
déduit > / Folt) dt = / sin(rt) =Y, / RGO
0 1-— t 0 X

n>0

1 1
Exercice 129 [[sujet (1-w)de = ( - )
xercice <mofoat z)dz = n+1l n+2

2. Par TITT avec / |z" sin(mz)| der < m———— puis changement de variable u = 7z.
0

(n+ 1)(n +2)

1
Int 1
Exercice 130 [[sujet] / Ldt = Z/ —t"In(t) dt = Z (n—+1)2 %

n>=0 n=0
somme ﬁlllC - tn+1 1-— tn+1 f(t)
Exercice 131 |[sujet| — SiI CV alors Zuk f ﬁdt et comme f > 0, f(t) T < -
k=0

donc Z ug < I donc la série CV (SATP dont les somme partielles sont majorées)

x +oo

— Si Zun CV alors / /() tdt / Z f(#)t" dt que l'on peut intégrer terme a terme sur le segment [0, z] si

|z] < 1 par CVN car |f(£)t"| < ||f]leoz™. On a donc 1 —tdt Z/ frde < Zun car f > 0) donc I

CV (intégrale d’une fonction positive dont une primitive est majoree)
+oo

En casde CV,ona I = Z u, par TITT (et H4 est la CV de Zun car f > 0).
n=0
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