
Suites et séries de fonctions

I Étude de suites de fonctions
Exercice 1 [Solution]
Étudier la convergence simple, uniforme, uniforme sur tout segment des suites de fonctions :

1. fn(x) = arctan
(x
n

)
, n ⩾ 1, sur R.

2. fn(x) =
na sin

(
x
n

)
− 1

na sin
(

x
n

)
+ 1

sur
[
0, π2

]
, où a ∈ R.

Exercice 2 (CCP MP 2012) [Solution]

On pose fn(x) = sin(nx)
1 + n2x2 . Montrer que (fn) converge simplement sur R+. Etudier la convergence uniforme sur [a,+∞[,

avec a > 0, puis sur R+∗.

Exercice 3 (Mines-Ponts PSI 2012) [Solution]

On pose fn(x) =


2n2x2 − nx− 1

2n2x+ 1 sin2 π

x
si x ∈

ï 1
n
, 1
ò

0 si x ∈
ï
0, 1
n

ï Etudier les convergences simple et uniforme de (fn) sur [0, 1].

Exercice 4 (CCP PSI 2016) [Solution]

Soit fn(x) = cos
ïÅ

1 + 1
n

ã
x

ò
.

1. Etudier la convergence simple de la suite (fn).
2. Y a-t-il convergence uniforme sur tout segment de R ? Sur R ?

Exercice 5 (CCINP PSI 2024) [Solution]
Pour x ∈ [0, 1] et n ⩾ 0, on pose fn(x) = sin

Ä
nxe−nx2ä

.

1. Étudier la convergence simple de (fn) sur [0, 1]
2. Étudier la convergence uniforme de (fn) sur [a, 1], avec a ∈]0, 1], puis sur [0, 1]

Exercice 6 (CCINP PSI 2021) [Solution]

On pose fn(x) = nx2

1 + nx
si x ⩾ 0 et fn(x) = nx3

1 + nx2 si x < 0.

1. Montrer que (fn) converge uniformément sur R vers f à déterminer.
2. Montrer que (f ′

n) converge simplement sur R mais ne converge pas uniformément sur [−1, 1].

Exercice 7 (Mines-Ponts PSI 2023) [Solution]

Pour n ⩾ 1 et x ∈ [0, 1], on pose fn(x) = e−x

1 + n2x2

1. Étudier la convergence simple de (fn) sur [0, 1]
2. Soit a ∈]0, 1[, a-t-on convergence uniforme sur [a, 1] ?
3. Étudier la convergence uniforme de (fn) sur [0, 1]

4. On pose un =
∫ 1

0
fn(t) dt. Déterminer la limite de (un).

5. Étudier la convergence de
∑

fn.

Exercice 8 (CCINP PSI 2022) [Solution]

Soit n ∈ N∗ et gn définie sur [0, 1] par gn(t) = et

Å
1 − t

n

ãn

.

1. Montrer que pour tout réel t ∈ [0, 1], |g′
n(t)| ⩽ et

n
puis que

∣∣∣∣1 − et

Å
1 − t

n

ãn∣∣∣∣ ⩽ tet

n
.

2. Étudier la convergence uniforme sur [0, 1] de la suite de fonctions In(x) =
∫ x

0
et

Å
1 − t

n

ãn

dt.

Exercice 9 (Mines-Ponts PSI 2014) [Solution]
Pour t ∈ [0, 1], on pose f0(t) = 0 et fn+1(t) = fn(t) + 1

2(t− fn(t)2). Étudier les convergences simples et uniformes de (fn)
sur [0, 1].



Exercice 10 (Centrale PSI 2023) [Solution]
Pour x ∈ [0, 1], on définit g sur [0, 1] par ∀y ∈ [0, 1], g(y) = y − x

2 y
2

1. Montrer que g est 1-lipschitzienne et que [0, 1] est stable par g

2. On définit la suite de fonctions (hn)n∈N par h0 = 1 et ∀x ∈ [0, 1],∀n ∈ N, hn+1(x) = hn

(x
2

)
− x

2hn

(x
2

)2

a) Montrer que ∀x ∈ [0, 1], hn(x) ∈ [0, 1]
b) Montrer que |hn+1(x) − hn(x)| ⩽

∣∣∣hn

(x
2

)
− hn−1

(x
2

)∣∣∣
c) En déduire que (hn)n∈N converge uniformément sur [0, 1]

indication : prouver |hn+1(x) − hn(x)| ⩽
∣∣∣h1

( x
2n

)
− h0

( x
2n

)∣∣∣ ; pour la CVU, utiliser f − hn =
+∞∑
k=n

hk+1 − hk

3. Justifier qu’il existe une fonction f continue sur [0, 1], telle que f(0) = 1 et ∀x ∈ [0, 1], f(x) = f
(x

2

)
− x

2 f
(x

2

)2

Exercice 11 (Centrale PSI 2023) [Solution]

1. Justifier l’existence, pour x ∈ R, et déterminer la valeur de φ(x) = ex

∫ +∞

x

e−t cos(t) dt et ψ(x) = ex

∫ +∞

x

e−t sin(t) dt

2. Déterminer les solutions bornées sur R de y′ − y + cos(x) = 0
indication : φ est une solution de l’équation

3. On considère la suite de fonctions (fn)n∈N définie par f0 = a cos +b sin et, pour n ∈ N et x ∈ R, fn+1(x) =

ex

∫ +∞

x

e−tfn(t) dt. Montrer que (fn)n∈N converge uniformément.
indication : prouver fn = αn cos +βn sin puis déterminer αn et βn

Exercice 12 (Centrale PSI 2022) [Solution]

Soit f ∈ C2([0, 1],R). On pose Bn(f)(x) =
n∑

k=0
f

Å
k

n

ãÇ
n

k

å
xk(1 − x)n−k, et Sn,r(x) =

n∑
k=0

Ç
n

k

å
xk(1 − x)n−k(k − nx)r,

pour x ∈ [0, 1].
1. Citer la formule de Taylor avec reste intégral
2. Montrer que Sn,0(x) = 1 et Sn,1(x) = 0

On admet Sn,2(x) = nx(1 − x)

3. Montrer qu’il existe M ⩾ 0 tel que |Bn(f)(x) − f(x)| ⩽ Mx(1 − x)
2n pour x ∈ [0, 1].

En déduire que (Bn(f))n∈N∗ converge uniformément sur [0, 1]

II Modes de convergence des séries de fonctions
Exercice 13 [Solution]
Étudier la convergence simple puis la convergence normale des séries de terme général

1. un(x) = xa(1 − x)nbnc sur [0, 1] où (a, b, c) ∈
(
R+∗)3.

2. un(x) = nxαe−nx2
sur R+∗ où α ∈ R.

Exercice 14 (Mines-Ponts PSI 2019) [Solution]
1. Convergence simple puis uniforme sur [0, 1] de la suite fn(x) = nαx(1 − x)n

2. Convergence simple puis uniforme de la série
∑
n⩾1

fn.

Exercice 15 (CCINP PSI 2019) [Solution]
1. Trouver les x tels que la suite (fn), fn(x) = xe−

√
n|x| converge ; calculer ∥fn∥∞, que peut-on en déduire ?

2. Déterminer le domaine de convergence D de
∑

fn. La convergence est-elle absolue sur D ? Normale ? Que dire de
la convergence sur R\] − a, a[, avec a > 0 ?

Exercice 16 (IMT PSI 2019) [Solution]
Pour n ∈ N∗, on pose gn(x) = sin(x) cosn(x) et fn(x) = xgn(x) avec x ∈

[
0, π2

]
1. Étudier les variations de gn.
2. Étudier la suite (fn) puis la série

∑
n⩾0

fn.



Exercice 17 (Mines-Ponts MP 2010) [Solution]
1. Si α > 0, on pose un(x) = sinα x cosn x ; montrer que

∑
n⩾0

un converge simplement sur
[
0, π2

]
et calculer sa somme.

2. À quelle condition sur α y a-t-il convergence normale ? uniforme ?

Exercice 18 (CCP PSI 2016) [Solution]

Soit fn(x) = xn e
−x

n! pour x ⩾ 0.

1. Montrer la convergence simple puis uniforme de la suite (fn) sur R+.

2. Étudier la série
∑

fn.

Exercice 19 (CCINP PSI 2019) [Solution]

1. Montrer que, pour t ∈
ï
−1

2 ,
1
2

ò
, | ln(1 + t) − t| ⩽ 2t2

2. Étudier la convergence simple et uniforme de
∑
n⩾1

ln
Å

1 + (−1)nx

n(1 + x2)

ã
sur R.

Exercice 20 [Solution]

on pose, pour n ∈ N∗ et x ∈ R+∗, fn(x) = (−1)n

xln n
.

1. Étudier la convergence simple de
∑

fn.

2. Étudier la convergence normale de
∑

fn.

3. Étudier la convergence uniforme de
∑

fn sur [a,+∞[⊂]1,+∞[. Qu’en déduire pour la somme f de cette série ?

4. Calculer lim
n→+∞

∣∣∣∣fn

Å
1 + 1

n

ã∣∣∣∣. Que dire de la convergence uniforme de
∑

fn sur ]1,+∞[ ?

indication : que dire de ∥fn∥∞ si
∑

fn converge uniformément ?

III Continuité, limites, équivalents de sommes de séries
Exercice 21 (Mines-Télécom PSI 2018) [Solution]

1. Montrer que pour x ∈ I =] − 1,+∞[, S(x) =
∑
n⩾1

Å 1
n

− 1
n+ x

ã
existe.

2. Montrer que S est continue sur I.

3. Montrer que S(x+ 1) − S(x) = 1
x+ 1 et en déduire un équivalent de S et −1+.

4. La série converge-t-elle normalement sur I ?

Exercice 22 (CCINP PSI 2021) [Solution]
Soit f(x) =

∑
n⩾1

x

nx+1

1. Déterminer le domaine de définition D de f .
2. Montrer que f est continue sur R+∗

3. Étudier la continuité de f en 0.
4. Déterminer la limite de f(x) − x en +∞.

Exercice 23 (CCINP PSI 2021) [Solution]

On pose, pour n ⩾ 2 et x > 0, un(x) = ln(x)
xn ln(n) .

1. Déterminer le domaine de convergence de
∑

un(x).

2. Montrer que
∑

un ne converge pas normalement sur ce domaine.

3. On pose Rn(x) =
+∞∑

k=n+1
uk(x) ; montrer que |Rn(x)| ⩽ 1

ln(n+ 1) puis montrer que la somme de la série
∑

un est

continue sur son domaine de convergence.



Exercice 24 (Mines-Télécom PSI 2024) [Solution]

Pour n ⩾ 2, on pose fn(x) = xe−nx

lnn et S(x) =
∑
n⩾2

fn(x)

1. Déterminer le domaine de définition de S.
2. Montrer que S est continue sur R+∗.
3. Montrer que S est continue en 0.

indication : CVU sur R+

Exercice 25 (Mines-Ponts PSI 2017) [Solution]

1. Étudier les convergences simple et uniforme de
∑
n⩾0

e−nx

1 + n
sur R+∗.

indication : utiliser Rn(1/n).
2. On note f la somme de la série précédente ; est-elle continue ? dérivable ?
3. Donner ses limites en 0 et +∞.

Exercice 26 (Centrale PSI 2014) [Solution]
1. Existence et continuité sur R+∗ de f(x) =

∑
n⩾1

x2−αe−nx pour α ∈ [0, 2[.

2. Trouver une CNS pour que la série converge normalement sur R+.
3. Si α = 1, y a-t-il convergence uniforme ?

Exercice 27 [Solution]

Pour tout k ∈ N∗, on définit uk : [1,+∞[→ R par uk(t) =


0 si t ∈ [1, k]Å

1 − k

t

ãt

si t > k

1. Montrer que
∑

uk converge normalement sur [1,+∞[.

2. En déduire lim
n→+∞

n−1∑
k=1

Å
k

n

ãn

. (indication : commencer poser p = n− k)

Exercice 28 [Solution]

Soit f(x) =
+∞∑
n=1

1
sh(nx)

1. Quel est l’ensemble de définition de f ?
2. Montrer que f(x) ∼

+∞
2e−x.

3. Mêmes questions pour
∑
n⩾1

1
sh2(nx)

.

Exercice 29 (CCINP PSI 2024) [Solution]
Pour x ∈ R∗ et n ∈ N∗, on pose fn(x) = 1

sh(nx)

1. Déterminer les valeurs de x pour lesquelles
∑

fn(x) converge.

On pose f(x) =
+∞∑
n=1

fn(x)

1. Déterminer le domaine de continuité de f
2. Étudier les variations de f
3. Montrer que pour u grand on a sh(u) ⩾ eu/2

4. Montrer que f(x) est équivalente à 1
sh x au voisinage de +∞.

Exercice 30 (CCP PSI 2023) [Solution]

1. Ensemble de définition de S(x) =
+∞∑
n=0

an

x+ n
, en fonction de a ?

2. On suppose |a| < 1 jusqu’à la fin de l’exercice, montrer que S est continue sur R+∗.
3. Déterminer une relation entre S(x+ 1) et S(x) et en déduire un équivalent de S en 0.



4. Montrer que xS(x) tend vers 1
1 − a

quand x tend vers +∞.

Exercice 31 (CCP PSI 2018) [Solution]
On note fn(x) = e−x

√
n et f(x) =

∑
n⩾1

fn(x).

1. Donner l’ensemble de définition D de f .
2. Pour a > 0, montrer la convergence normale sur [a,+∞[ puis étudier la convergence normale sur D.
3. f est-elle continue sur D ? Déterminer sa limite en +∞.

4. Montrer que
∫ n+1

n

e−x
√

t dt ⩽ e−x
√

n ⩽
∫ n

n−1
e−x

√
t dt et en déduire que f(x) ∼

x→0

2
x2 .

Exercice 32 (Mines-Télécom PSI 2023) [Solution]

Soit f(x) =
+∞∑
n=1

e−x
√

n

1. Déterminer le domaine de définition de f
2. Montrer que f est continue sur R+∗

3. Montrer que, pour tout k ∈ N, f(x) =
x→+∞

o

Å 1
xk

ã
Exercice 33 (Mines-Ponts PSI 2022) [Solution]

On donne f(x) =
+∞∑
n=0

e−n2x2
.

1. Domaine de définition et continuité de f .
2. Donner la limite de f(x) quand x → +∞.
3. Donner un équivalent de f(x) quand x → 0+.

Exercice 34 (ENSAM PSI 2018) [Solution]

Soit f(x) =
+∞∑
n=0

(−1)n

n+ x
.

1. Montrer que f est définie sur R+∗.
2. Montrer que f est C1 sur R+∗ et étudier ses variations.
3. Calculer f(x) + f(x+ 1) et en déduire des équivalents de f en 0+ et +∞.

indication : pour l’équivalent en +∞, encadrer f(x) avec la valeur de f(x) + f(x+ 1) et la monotonie de f .

Exercice 35 (CCINP PSI 2024) [Solution]

Soit gn(y) = (−1)n

n+ (ln(n))y
, y ∈ R

1. Étudier la convergence
∑

gn.
indication : montrer que le CSSA est vérifié pour n ⩾ −y dans le cas y < 0.

2. Lorsqu’elle existe étudier la continuité de F (y) =
+∞∑
n=2

(−1)n

n+ (ln(n))y

Exercice 36 (Mines-Télécom PSI 2024) [Solution]

Soit f(x) =
+∞∑
n=2

e−nx

1 + (−1)nn

Déterminer le domaine de définition de f et montrer que f est continue.
indication : pour la continuité en 0, examiner f(x) − f(0).

Exercice 37 (ENSAM PSI 2018) [Solution]

Soit f(x) =
+∞∑
n=1

xn

1 − xn
lorsque la série converge.

1. Montrer que f est définie, continue et C1 sur ] − 1, 1[.

2. Pour x ∈ [0, 1[, on pose φx(t) = xt

1 − xt
. Montrer que

∫ b

a

φx(t) dt = ln(1 − xa) − ln(1 − xb)
ln x .

En déduire la limite et un équivalent de f en 1−.



Exercice 38 (Centrale PSI 2022) [Solution]

On pose : ∀n ∈ N∗, ∀x ∈ ]−1, 1[ , un(x) = (−1)n xn

1 − xn
. On pose : f(x) =

+∞∑
n=1

un(x).

1. Montrer que f est définie et de classe C1 sur ]−1, 1[.

2. On pose, pour n ∈ N∗ et x ∈ [0, 1[, vn(x) = (1 − x)un(x). Montrer que
∑
n⩾1

vn(x) converge uniformément sur [0, 1]

et en déduire un équivalent de f en 1−.

Exercice 39 (Centrale PSI 2019) [Solution]
1. Énoncer le théorème d’intégration par parties sur un intervalle [a, b[, a < b

2. Trouver une primitive de t 7→ e−
√

t

3. a) Trouver le domaine de définition et la valeur de I(x) =
∫ +∞

1
x

√
t dt

b) Trouver le domaine de définition et un équivalent en 1 de S(x) =
∑
n⩾1

x
√

n

Exercice 40 (Mines-Ponts PSI 2017) [Solution]

On note Hn =
n∑

k=1

1
k

, un(t) = tn ln(t)
Hn

et S(t) =
+∞∑
n=1

un(t)

1. Déterminer le domaine de définition de S et montrer que la série converge normalement sur tout ]0, a] ⊂]0, 1[.
En est-il de même sur ]0, 1[ ?

2. Montrer que S est continue sur ]0, 1]. Est-elle dérivable sur ce même intervalle ?

indication : montrer que |Rn(t)| ⩽ −t ln(t)
(1 − t)Hn+1

puis montrer qu’elle n’est pas dérivable en 1 (avec le taux d’accrois-

sement) en utilisant − ln(1 − t) =
∑
n⩾1

tn

n
si |t| < 1.

Exercice 41 (Mines-Ponts PSI 2018) [Solution]
On pose f(x) =

∑
n⩾1

ln(1 + e−nx).

1. Déterminer l’ensemble de définition D de f .
2. Montrer que f est continue et strictement décroissante sur D.
3. Montrer que f admet une limite finie en +∞ et la déterminer.

4. Déterminer un équivalent de f en 0+ ; on donne
∑
n⩾1

(−1)n+1

n2 = π2

12 .

indication : trouver l’équivalent en 0 en fonction d’une intégrale, poser y = e−xt, qui se calculera en utilisant la
somme donnée et ln(1 + t) =

∑
n⩾1

(−1)n+1 t
n

n
si t ∈ [0, 1].

Exercice 42 (Centrale PSI 2019) [Solution]
Pour x ∈ [1,+∞[, on pose u0(x) = x et un+1(x) = un(x) + 1

un(x)
1. Montrer que (un(x)) est bien définie. La suite (un(x)) admet-elle une limite ?

2. On pose fn(x) = (−1)n

un(x) ; montrer que
∑
n⩾0

fn converge simplement sur [1,+∞[.

3. Montrer que f : x 7→
+∞∑
n=0

fn(x) est continue sur [1,+∞[ mais que
∑

fn ne converge pas normalement sur [1,+∞[.

Exercice 43 (CCINP PSI 2022) [Solution]
Soient I = [−a, a] et φ continue sur I pour laquelle il existe c > 0 tel que ∀x ∈ I, |φ(x)| ⩽ C|x|. On chercher les fonctions

f , définies sur I, continues en 0 et telles que
{

f(x) − f
(x

2

)
= φ(x) pour x ∈ I

f(0) = 0

1. Montrer que S : x 7→
∑
n⩾0

φ
( x

2n

)
est définie et continue sur I.

2. Montrer que S est solution du problème posé



3. Montrer que la différence de 2 solutions du problème est nulle ; que peut on en déduire sur l’ensemble des solutions ?
4. On suppose φ de classe C1 sur I, montrer que f est aussi C1 sur I.

Exercice 44 (Centrale PC 2015) [Solution]
Trouver les fonctions f , continues en 0 telles que ∀x ∈ R, f(2x) − f(x) = ln(1 + x2).
indication : justifier que f(x) − f(0) =

∑
n⩾0

(f(2−nx) − f(2−(n+1)x) lorsque f est continue en 0.

IV Dérivabilité des séries de fonctions
Exercice 45 (CCINP PSI 2018) [Solution]

1. Déterminer le domaine de définition de f(x) =
∑
n⩾1

Å 1
n

− 1
n+ x

ã
2. Montrer que f est C1 sur R+.
3. Calculer f(1) et trouver un équivalent de f(p), p ∈ N∗, lorsque p tend vers +∞.

Exercice 46 (Mines-Télécom PSI 2024) [Solution]

1. Donner le domaine de définition de f(x) =
∑
n⩾1

arctan(nx)
n2 .

2. Étudier la continuité puis le caractère C1 de f .

Exercice 47 (CCINP PSI 2022) [Solution]

∀x ∈ R, f(x) =
+∞∑
n=1

cos(nx)
n3 + x2

1. Montrer que f est définie sur R.
2. Montrer que f est C1 sur R.

Exercice 48 (CCINP PSI 2022) [Solution]
Soient f(x) = x

sh x et fn(x) = 1
sh2 nx

1. f est-elle prolongeable par continuité en 0. Montrer que f est bornée sur R

2. Montrer que
∑
n⩾1

fn CVS sur R∗ ; on pose S(x) =
+∞∑
n=1

fn(x).

3. Montrer que S est C1 sur R+∗

4. Exprimer fn à l’aide de f et en déduire un équivalent simple de S en 0
5. Montrer que f est C∞ sur R.

Exercice 49 (Mines-Télécom PSI 2021) [Solution]

Soit f(x) =
+∞∑
n=0

(−1)n
[√
n+ x−

√
n
]

pour x ⩾ 0.

1. Montrer que f est bien définie
2. Montrer que f est continue sur R+ et C1 sur R+∗ ; étudier ses variations.
3. Montrer que lim

+∞
f = +∞.

indication : raisonner par l’absurde et commencer par vérifier que f(x) ⩾ S2n+1(x) avant de séparer les termes
pairs/impairs.

Exercice 50 (CCINP PSI 2023) [Solution]

Pour n ⩾ 1 et x ∈ R, on pose un(x) = ln(1 + nx2)
n2 et S(x) =

+∞∑
n=1

un(x)

1. Montrer que S est définie sur R
2. Montrer que S est continue sur R

3. Montrer que
∑

un ne converge pas normalement sur R.

4. Calculer S(0) et lim
+∞

S

5. Montrer que S est C1 sur R.



6. Par une comparaison série-intégrale, déterminer un équivalent en 0 de S′

Exercice 51 (CCINP PSI 2022) [Solution]

Soient un(x) = ln(1 + n2x2)
n2 ln(1 + n) et S(x) =

∑
n⩾1

un(x).

1. Trouver le domaine de définition D de S.
2. Montrer que S est continue sur D.
3. À l’aide d’une comparaison série-intégrale, montrer que

∑
u′

n(x) converge uniformément sur D.

4. Montrer que S est C1 sur D.

Exercice 52 (Mines-Télécom PSI 2021) [Solution]

1. Déterminer le domaine de convergence de la série de fonctions
∑
n⩾1

un avec un(x) = 1
n2x+ n

.

2. Montrer que sa somme S est C1 sur R+∗.

3. Montrer que, pour x > 0, on a

∣∣∣∣∣∣S(x) −
∑
n⩾1

1
n2x

∣∣∣∣∣∣ ⩽ ∑
n⩾1

1
n3x2 et en déduire un équivalent de S en +∞.

Exercice 53 [Solution]

On note f : x 7−→
+∞∑
n=0

e−nx

1 + n2

1. Déterminer l’ensemble de définition de f .
2. f est-elle continue sur son ensemble de définition ?
3. Déterminer lim

+∞
f .

4. Montrer que f est de classe C1 sur R+∗.
5. Montrer que f n’est pas dérivable en 0.

Exercice 54 (Mines-Ponts PSI 2018) [Solution]

1. Déterminer le domaine de définition de f(x) =
∑
n⩾2

xe−nx

lnn

2. Montrer que f est C1 sur R+∗

3. f est-elle dérivable en 0 ? Continue en 0 ?

Exercice 55 (CCINP PSI 2021) [Solution]

Pour x ⩾ 0 et n ⩾ 1, on pose un(x) = (−1)n e
−nx

n
et S(x) =

∑
n⩾1

un(x)

1. Montrer que
∑
n⩾1

un(x) converge pour x ⩾ 0.

2. S est-elle continue sur R+ ?
3. Montrer que S est C1 sur R+∗.
4. Calculer S(x) pour x ⩾ 0.

Exercice 56 (CCP PSI 2012) [Solution]

1. Montrer que le domaine de définition de f(x) =
+∞∑
n=1

e−nx

n2 est R+.

2. Montrer que f est continue sur R+ et de classe C2 sur R+∗.
3. Calculer f ′′(x) puis f ′(x) pour x > 0.
4. Montrer que f est non dérivable en 0.

5. Montrer que pour tout x ∈ R+, on a f(x) = f(0) +
∫ x

0
ln
(
1 − e−t

)
dt

Exercice 57 (Mines-Ponts PSI 2013) [Solution]

1. Donner le domaine de de définition D de f : x 7→
+∞∑
n=1

ln (1 + xn)



2. Montrer que f est continue et dérivable sur D.
En déduire un équivalent de f en 0.

3. Montrer que, pour x ∈ [0, 1[, ϕ : t 7→ ln
(
1 + xt

)
est intégrable sur R+ et en déduire un équivalent de f en 1.

Exercice 58 (Centrale PSI 2014) [Solution]

1. Déterminer l’ensemble de définition de f(x) =
∑
n⩾1

1
n+ n2x

.

2. Montrer que f est C1 sur R+∗.
3. Montrer que f(x) ∼

x→0
− ln x et déterminer un équivalent de f en +∞.

Exercice 59 (Mines-Ponts PSI 2016) [Solution]
Soit f(x) =

∑
n⩾1

x

n(1 + nx2)

1. Déterminer le domaine de définition de f ; étudier sa continuité et sa dérivabilité.
2. Donner un équivalent de f en +∞.

Exercice 60 (Mines-Ponts PSI 2024) [Solution]

1. Montrer que la série
∑
n⩾0

(−1)n

x+ n
converge pour tout x ∈ ]0,+∞[. On note S(x) sa somme.

2. Montrer que ∀x > 0,
∣∣∣∣∣S (x) −

n∑
k=0

(−1)n

x+ n

∣∣∣∣∣ ⩽ 1
x+ n

.

Montrer la convergence uniforme de la série de fonctions sur ]0,+∞[.
3. Déterminer la limite de S en +∞.
4. Montrer la convergence uniforme sur tout segment de R ne contenant aucun élément du type −n, n ∈ N.
5. Monter que S est dérivable en tout point de R \ {−n, n ∈ N}.

Exercice 61 (Mines-Ponts PSI 2018) [Solution]

Pour x > 1, on pose ζ(x) =
∑
n⩾1

1
nx

et η(x) =
∑
n⩾1

(−1)n+1

nx

1. Montrer que ζ et η sont définies sur ]1,+∞[.
2. Montrer que η(x) = (1 − 21−x)ζ(x) pour x > 1.

3. Montrer que ζ(x) ∼
x→1

1
x− 1 .

4. Montrer que ζ(x) =
x→1

1
x− 1 + γ + o(x− 1) où γ = ln 2

2 + η′(1)
ln 2 .

indication : montrer que η est C1 sur R+∗ puis utiliser Taylor-Young et vérifier que η(1) = ln(2).

5. Montrer que γ = lim
n→+∞

(
n∑

k=1

1
k

− ln(n)
)

.

indication : il s’agit de trouver une expression de η′(1) : poser un =
n∑

k=1

ln k
k

, montrer que
Å
un − 1

2(lnn)2
ã

CV et

relier η′(1) avec un et Hn =
n∑

k=1

1
k

en séparant les termes pairs et impairs.

Exercice 62 (ICNA PSI 2017) [Solution]

1. Déterminer l’ensemble de définition de ζ(x) =
+∞∑
n=1

1
nx

.

2. Etudier la continuité et la dérivabilité de ζ.

3. Montrer que
∫ +∞

2
(ζ(x) − 1) dx =

+∞∑
n=2

1
n2 ln(n) .

Exercice 63 (Mines-Ponts PSI 2018) [Solution]

1. Déterminer le domaine de définition D de f(x) =
+∞∑
n=0

(−1)n

1 + nx
et montrer que f est continue sur D.

2. Montrer que f est C1 sur R+∗ et donner f ′(x) sous forme d’une somme.



3. Calculer l = lim
x→+∞

f(x) puis déterminer un équivalent de f(x) − l en +∞.

Exercice 64 (AADN PSI 2009) [Solution]
1. Domaine de définition et limite en 0 de f(x) =

∑
n⩾1

(−1)n−1 n

n2 + x2 .

indication : étudier f(x) − f(0).
2. Montrer que f est C∞.

indication : décomposer en éléments simples sur C.

Exercice 65 (Centrale PSI 2009) [Solution]

1. Déterminer l’ensemble de définition D de f(x) =
+∞∑
n=1

nx2n−1

1 − x2n
.

2. f est-elle de classe C1 sur D ? Etudier ses variations.

Exercice 66 (ENSEA-ENSIIE PC 2014) [Solution]

On pose u0 = 1 et un+1(x) =
∫ x

0
un(t− t2) dt

1. Montrer que ∀n ⩾ 1,∀x ∈ [0, 1], 0 ⩽ un(x) ⩽ xn

n!
2. Montrer que

∑
un converge sur [0, 1] vers une fonction u dérivable telle que u′(x) = u(x− x2).

Exercice 67 (ENSAM PSI 2014) [Solution]
Soit f continue de R dans R et a > 0.

1. Montrer que (fn) définie par f0 = f et fn+1(x) =
∫ x

a

fn(t) dt est bien définie.

2. Montrer que fn est de classe Cn sur R, calculer ses dérivées successives et leur valeur en a. En déduire une expression
de fn à l’aide d’une intégrale de f .

3. Montrer l’existence de g(x) =
+∞∑
n=1

fn(x) et donner une expression de g en fonction de f . (indication : x est fixé)

4. Montrer que g est solution d’une équation différentielle du premier ordre à coefficients constants et en donner les
solutions.

Exercice 68 (Mines-Ponts PSI 2023) [Solution]

Soit f0 ∈ C1([a, b]). On pose, pour n ∈ N et x ∈ [a, b], fn+1(x) =
∫ x

a

fn(t) dt.

1. On suppose que
∑

fn converge simplement sur [a, b] et que les hypothèses du théorème de dérivation des séries de

fonctions sont satisfaites. Calculer S(x) =
+∞∑
n=0

fn(x) en fonction de f0.

2. Montrer que les hypothèses précédentes sont vérifiées si
∑

fn converge uniformément sur [a, b]

3. Calculer S lorsque f0(x) = sin(2x) et [a, b] = [0, 1]

V Intégration par convergence uniforme
Exercice 69 [Solution]

Étudier la convergence de la suite (un)n⩾1 définie par un =
∫ 1

0

ne−t + t2

n+ t
dt.

Exercice 70 (Mines-Ponts PSI 2013) [Solution]
On cherche r = a

b
avec (a, b) ∈ (N∗)2 tel que er = p

q
avec (p, q) ∈ (N∗)2. On pose Pn = 1

n!X
n(bX − a)n.

1. Montrer que P (k)
n (0) et P (k)

n (r) sont des entiers pour (n, k) ∈ (N∗)2.

2. Montrer que q
∫ r

0
Pn(t)et dt est un entier et que lim

n→+∞
Pn(t)et dt = 0. Conclure.

Exercice 71 (ENSIIE PSI 2009) [Solution]

1. Montrer que, pour tout n ∈ N∗, fn définie par f1 = 0 et ∀n ∈ N∗, fn+1(x) =
∫ x

0

»
fn(t)2 + t2 dt est C1 sur R.



2. Montrer que ∀x ∈ R+, 0 ⩽ fn+1(x) − fn(x) ⩽ xn+1

(n+ 1)! . En déduire que la suite (fn) admet une limite simple f puis

que f est continue sur R.
3. Montrer que f est solution de l’équation différentielle y′ =

√
y2 + t2 avec y(0) = 0.

Exercice 72 (CCINP PSI 2024) [Solution]

Pour α > 0, on pose fα(x) =
+∞∑
n=0

sinα(x) cosn(x)

1. Déterminer le domaine de définition de fα

2. Trouver une forme simplifiée de fα sur
[
0, π2

]
3. Discuter de l’intégrabilité de fα sur

]
0, π2

]
4. La série converge-t-elle uniformément sur

[
0, π2

]
?

5. Pour n ∈ N, on pose un(α) =
∫ π

2

0
sinα(x) cosn(x) dx

a) Étudier la convergence de
∑
n⩾0

un(α)

b) Calculer
∫ π

2

0
f3(x) dx.

Exercice 73 (Mines-Télécom PSI 2019) [Solution]
Soient (αn) telle que

∑
αn est absolument convergente, ωn ̸= 0 et un(x) = αn cos(2πωnx)

1. Montrer que f : x 7→
+∞∑
n=1

un(x) est définie et continue sur [0, 1].

2. Calculer
∫ 1

0
f(t) dt.

3. Justifier que 1
N

N∑
k=1

f

Å
k

N

ã
converge quand N tend vers +∞.

Exercice 74 (Mines-Ponts PSI 2018) [Solution]

Pour x ∈ R et y > 0, on pose f(x, y) =
∫ 1

0
txty

dt.

1. Justifier l’existence de f(x, y).

2. On pose fn(t) =
{ 1

n! (xt
y ln t)n si t ∈]0, 1]
0 si t = 0

Montrer que
∑

fn converge normalement sur [0, 1].

3. En déduire
∫ 1

0
tt dt =

∑
n⩾1

(−1)n+1

nn
.

Exercice 75 (CCINP PSI 2022) [Solution]
Soit φ : R → R continue. On suppose qu’il existe C ∈ R tel que : ∀x ∈ R, |φ(x)| ⩽ C

1 + x2 . On pose ∀x ∈ R, f(x) =

φ(x) +
+∞∑
n=1

[φ(x+ n) + φ(x− n)].

1. Montrer que f est définie et continue sur R.
2. Montrer que f est 1-périodique.

3. Soit g une fonction 1-périodique continue de R dans R. Montrer que φg est intégrable sur R et que :
∫ +∞

−∞
φ(x)g(x) dx =∫ 1

0
f(x)g(x) dx.



VI Intégrations par convergence dominée
Exercice 76 [Solution]
Déterminer la limite quand n tend vers +∞ de :∫ +∞

0

cos t
n

1 + t2
dt ;

∫ +∞

0

(
1 + x

n

)−n

x− 1
n dx ;

∫ n

0

(
1 + x

n

)n

e−2x dx ;
∫ 1

0
xn ln x

(1 − x2)1/4 dx

Exercice 77 (CCP MP 2014) [Solution]

Calculer lim
n→+∞

∫ +∞

0

dx
1 + x2 + xne−x

.

Exercice 78 (CCP PSI 2010) [Solution]
Soit α ∈ R.

1. Étudier l’intégrabilité sur R+∗ de f : t 7→ arctan t
tα

.

2. Existence de In =
∫ +∞

0

arctan t
t3/2 + tn

dt et limite quand n tend vers +∞.

Exercice 79 (CCINP PSI 2018) [Solution]
1. Montrer que | sin x| ⩽ |x| pour tout x ∈ R

2. Montrer l’existence de In =
∫ +∞

0

sin(t/n)
t(1 + t2) dt

3. Montrer que lim
n→+∞

In = 0 et en trouver un équivalent.

Exercice 80 (CCINP PSI 2021) [Solution]

Soit In =
∫ +∞

0

sin(nx)
1 + n4x3 dx, pour n ⩾ 1.

1. Justifier l’existence de In.

2. Montrer que In = 1
n5/3 Jn avec Jn =

∫ +∞

0

n1/3 sin
(

t
n1/3

)
1 + t3

dt.

3. Montrer que lim
+∞

Jn = K =
∫ +∞

0

t

1 + t3
dt

4. Montrer, par changement de variable que K =
∫ +∞

0

1
1 + t3

dt.

5. En déduire 2K =
∫ +∞

0

1 + t

1 + t3
dt = 4π

3
√

3

6. Conclure In ∼ 2π
3
√

3n5/3

Exercice 81 (CCINP PSI 2023) [Solution]

Soit In =
∫ +∞

0

arctan(x+ n)√
x(n+ x)

dx

1. Justifier l’existence de In, pour n ⩾ 1
2. Déterminer la limite de (In)n⩾1

3. Calculer
∫ +∞

0

dx√
x(n+ x)

dx

4. Déterminer un équivalent de In.

Exercice 82 (CCINP PSI 2024) [Solution]

Pour n ∈ N, on pose In =
∫ 1

0
ln (1 + tn) dt

1. Montrer que In est bien défini.
2. Montrer la convergence de (In)n∈N et déterminer sa limite.

3. Montrer que In ∼
n→+∞

1
n

∫ 1

0

ln(1 + u)
u

du.

4. En admettant
+∞∑
n=1

1
n2 = π2

6 , montrer que In ∼
n→+∞

π2

12n



Exercice 83 (Mines-Ponts PSI 2019) [Solution]

Pour n ⩾ 1, on pose In =
∫ +∞

0

arctan(nt)
(1 + n4t2)2 dt.

1. Justifier l’existence de In

2. Limite et équivalent de In ?

Exercice 84 (Mines-Ponts PSI 2019) [Solution]

1. Montrer que In =
∫ 1

0

xn

1 + x+ x2 dx est définie.

2. Trouver la limite et un équivalent de In quand n tend vers +∞.

Exercice 85 (Mines-Ponts PSI 2018) [Solution]

Soit In =
∫ 1

0
ln(x) ln(1 − xn) dx, pour n ⩾ 1.

1. Justifier l’existence de In.
2. Déterminer lim

n→+∞
In.

3. Déterminer un équivalent de In

Exercice 86 (CCP PSI 2018) [Solution]
1. Résoudre l’équation sh(x) = 1.

2. On pose α = ln(1 +
√

2) et In =
∫ α

0
(sh t)n dt. Déterminer lim

n→+∞
In.

3. Montrer que nIn + (n− 1)In−2 =
√

2 pour n ⩾ 2.
4. Déterminer un équivalent de In.

Exercice 87 (CCINP PSI 2019) [Solution]

Pour x ∈ R, on pose In(x) =
∫ x

0

dt
chn t

1. Montrer que In(x) existe pour n ∈ N
2. Étudier la convergence simple et la convergence uniforme de (In)
3. Trouver une relation entre In et In+2

4. En déduire la valeur de I =
∫ ln 2

0

sh2 t

ch3 t
dt

Exercice 88 (CCP PSI 2013) [Solution]

Pour n > 0 et x > 0, on pose fn(x) = sin(nx)
nx+ x2

1. Montrer que les fn sont prolongeables par continuité en 0 et intégrables sur [0,+∞[.

2. Montrer que la suite de terme général un =
∫ +∞

0
fn(x) dx converge et déterminer sa limite.

Exercice 89 (Mines-Télécom PSI 2024) [Solution]

Soit fn(x) = e−x

1 + n2x2 et un =
∫ 1

0
fn(x) dx.

1. Montrer que (fn)n∈N converge simplement sur [0, 1].
2. Soit a ∈ ]0, 1[. Montrer que (fn)n∈N converge uniformément sur [a, 1].
3. La suite de fonctions (fn)n∈N converge-t-elle uniformément sur [0, 1] ?
4. Trouver la limite de (un)n∈N.

Exercice 90 (CCP PSI 2017) [Solution]

On pose fn(t) =
Å

1 − t

n

ãn−1
ln(t) si t ∈]0, n] et fn(t) = 0 si t > n.

1. Montrer que (fn) converge simplement sur R+∗ et déterminer sa limite.

2. Montrer que
∫ +∞

0
ln(t)e−t dt = lim

n→+∞

∫ n

0
fn(t) dt.

3. Sachant que
n∑

k=1

1
k

= ln(n)+γ+o(1), montrer que
∫ +∞

0
ln(t)e−t dt = −γ. On pourra faire le changement de variable

t = nu puis une IPP.



Exercice 91 (CCP PSI 2018) [Solution]

Pour n ⩾ 1 et x ∈ R+, on pose fn(x) =
{ (

1 − x

n

)n

sin(x) si x ∈ [0, n]
0 sinon

1. Étudier la convergence simple de (fn).

2. Étudier la convergence de (vn)n⩾1, où vn =
∫ +∞

0
fn(t) dt.

3. a) Étudier les variations de x 7→ ln(1 + x) − x.
b) En déduire que (fn) converge uniformément.

indication : montrer que |fn(x) − f(x)| ⩽ 1 − en1/4−n ln(1−n−3/4) si x ∈
î
0, n1/4

ó
et |fn(x) − f(x)| ⩽ 2e−x si

x ⩾ n1/4

Exercice 92 (Mines-Télécom PSI 2024) [Solution]

Soit un =
∫ n

0

(
1 − x

n

)n

cos(x) dx. Étudier la convergence de la suite (un).

Exercice 93 (CCINP PSI 2024) [Solution]

Soient fn(x) =
(1 + x

n )n − 1
x

et In =
∫ 1

0
fn(x) dx.

1. Énoncer le théorème de convergence dominée
2. Montrer que In est bien définie.

3. Montrer que lim
n→+∞

In =
+∞∑
k=1

1
k × k!

indication : chercher la limite de In sous forme d’une intégrale pour commencer

Exercice 94 (Centrale PSI 2011) [Solution]

1. Pour quels entiers n, In =
∫ +∞

0

t

sin t+ tn
dt est-elle définie ?

2. Donner la limite I de (In) sous forme d’une intégrale.
3. Calculer lim

n→+∞
n(In − I) (on pourra faire un changement de variable).

Exercice 95 (Centrale PSI 2007) [Solution]
cours : changement de variable.

Application : équivalent en +∞ de un =
∫ 1

0
tnf(t) dt où f ∈ C0([0, 1]) et f(1) ̸= 0.

Exercice 96 (CCP PSI 2013) [Solution]

Déterminer la limite de n
∫ 1

0
tnf(t) dt où f est continue sur [0, 1].

Exercice 97 (Mines-Ponts MP 2011) [Solution]

Calculer lim
n→+∞

∫ n

0

x+ 1
xnex + x2 + x+ 1 dx.

Exercice 98 (ENTPE-EIVP PC 2014) [Solution]

Calculer lim
n→+∞

∫ +∞

0

xn

xn+2 + 1 dx

Exercice 99 (Mines-Ponts PSI 2013) [Solution]

Étudier la convergence de la suite de terme général un =
∫ +∞

1
exp(−xn) dx, puis la convergence de la série de terme

général un.

Exercice 100 (Centrale PSI 2022) [Solution]

Pour n ⩾ 1, on pose un =
∫ +∞

0

1 − cosn x

x2 dx

1. Justifier l’existence de un pour n ⩾ 1

2. Montrer que un =
√
n

2
√

2
vn avec vn =

∫ +∞

0

1 − cosn
(»

2t
n

)
t
√
t

dt.

3. Montrer qu’il existe α > 0 tel que si t ∈ [0, α] alors ln(cos t) ⩾ −2t2



4. Déterminer un équivalent de un quand n tend vers +∞ ; on donne
∫ +∞

0

e−x

√
x

dx =
√
π.

Exercice 101 (ENSEA PSI 2016) [Solution]
1. Énoncer le théorème de convergence dominée.
2. Soient (an) et (bn) deux suites réelles bornées telles qu’il existe c < d pour lesquels ∀x ∈ [c, d], (an cos(nx) +

bn sin(nx)) tend vers 0.
Montrer qu’il existe φn tel que an cos(nx) + bn sin(nx) =

√
a2

n + b2
n cos(nx+ φn).

3. Calculer In =
∫ d

c

(an cos(nx) + bn sin(nx))2 dx et montrer qu’à partir d’un certain rang on a In ⩾
(a2

n + b2
n)(d− c)
4 .

4. Conclure que (an) et (bn) tendent vers 0.

VII Intégration terme à terme
Exercice 102 (ENSAM PSI 2011) [Solution]

1. Convergence de la série de terme général (−1)nan où an =
∫ 1

0

√
1 − t2 tn dt et calcul de sa somme.

2. Etablir une relation entre an et an+2.
3. Convergence de la série de terme général an et calcul de la somme.

Exercice 103 (Mines-Ponts PSI 2010) [Solution]

Justifier la convergence de
∫ +∞

0

x

ch x dx et expression sous forme d’une série.

Exercice 104 (CCP PSI 2015) [Solution]

1. Montrer que
∑
n⩾1

1
nn

et I =
∫ 1

0
xx dx existent.

2. Pour (n, p) ∈ N2, on pose fn,p(t) = tp(ln t)n. Calculer
∫ 1

0
fn,p(t) dt

3. Montrer que I =
+∞∑
n=1

(−1)n+1

nn
.

Exercice 105 (Mines-Ponts PSI 2021) [Solution]

Soit x > 0 ; on pose f(x) =
∫ 1

0
tt

x

dt. Montrer que f(x) =
+∞∑
n=0

(−1)n

(xn+ 1)n+1

Exercice 106 (ENSEA/ENSIIE PSI 2024) [Solution]

On admet que
+∞∑
n=1

(−1)n−1

n2 = π2

12 . On considère la suite (un)n∈N définie par ∀n ∈ N, un =
∫ 1

0
ln(1 + tn) dt

1. Rappeler le développement en série entière de t 7→ ln(1 + t) au voisinage de 0.

2. Montrer que un =
+∞∑
k=1

(−1)k−1

k(kn+ 1) .

3. Montrer que f : x 7→
+∞∑
k=1

(−1)k−1

k(k + x) est de classe C1 sur ] − 1, 1[.

4. Démontrer que un ∼ π2

12n .

5. Montrer que un = a+ b

n
+ c

n2 + o

Å 1
n2

ã
.

Exercice 107 (Mines-Ponts PSI 2007) [Solution]

Pour a > 0 et b > 0, montrer que
+∞∑
n=0

(−1)n

an+ b
=

∫ 1

0

tb−1

1 + ta
dt.

Exercice 108 (ENTPE-EIVP PC 2015) [Solution]

Calculer
∑
n⩾0

(−1)n

∫ 1

0
x2n(1 − x) dx de deux façons différentes et en déduire la valeur de

∑
n⩾0

(−1)n

(2n+ 1)(2n+ 2) .



Exercice 109 (Centrale PSI 2024) [Solution]

Pour x ∈]0, π[ fixé, on définit Sx : t 7−→
+∞∑
p=1

tp−1 sin(px)

1. Montrer que Sx est définie sur [0, 1[ et calculer Sx(t) pour t ∈ [0, 1[.

2. Justifier que Sx est intégrable sur [0, 1[ et calculer
∫ 1

0
Sx(t) dt.

3. Justifier la convergence et déterminer la valeur de
+∞∑
p=1

sin(px)
p

.

indication : TCD appliqué aux sommes partielles

Exercice 110 (CCP PSI 2006) [Solution]

Montrer que 1
xα

∫ x

0

tα−1

1 + t
dt existe pour x ∈]0, 1[ et α > 0. En déduire

+∞∑
n=0

(−1)n

23n(1 + 3n)

Exercice 111 (CCINP PSI 2022) [Solution]

Soit I =
∫ +∞

0

√
t

et − 1 dt. On donne
∫ +∞

0
e−t2

dt =
√
π

2
1. Montrer que I existe

2. Montrer que I =
√
π

2

+∞∑
n=1

1
n

√
n

Exercice 112 (CCINP PSI 2018) [Solution]

Montrer que J =
∫ +∞

0

x2

ex − 1 dx existe et vaut
∑
n⩾1

2
n3

Exercice 113 (CCINP PSI 2022) [Solution]

1. Montrer l’existence de I =
∫ +∞

0

x

sh x dx

2. Montrer que I =
+∞∑
n=0

2
(2n+ 1)2

Exercice 114 (Mines-Télécom PSI 2024) [Solution]

Soit Γ(x) =
∫ +∞

0
tx−1e−t dt

1. Déterminer le domaine de définition de Γ
2. Donner le développement en série entière de 1

1 − x

3. Montrer que ∀x > 0,
∫ +∞

0

txe−t

1 − e−t
dt = Γ(x+ 1)

+∞∑
n=1

1
nx+1

Exercice 115 (CCINP PSI 2023) [Solution]

Soit I =
∫ +∞

0

sin t
sh t dt.

1. Montrer que I converge.

2. Montrer que ∀t ∈ ]0,+∞[ , sin t
sh t = 2e−t sin t

+∞∑
n=0

e−2nt.

3. Montrer que I =
+∞∑
n=0

2
(2n+ 1)2 + 1.

indication : utiliser | sin(t)| ⩽ t pour appliquer le TITT

4. Montrer que : π4 ⩽ I ⩽ 1 + π

4 .
indication : comparaison série/intégrale

Exercice 116 (Mines-Télécom PSI 2024) [Solution]

Montrer que
∫ +∞

0

sin t
et − 1 dt =

+∞∑
n=1

1
1 + n2 en montrant la convergence de la série et de l’intégrale.

indication : | sin | ⩽ t



Exercice 117 (Mines-Ponts PSI 2018) [Solution]

1. Montrer l’existence de I =
∫ 1

0

ln(1 − t2) ln(t)
t2

dt.

2. Montrer que I =
+∞∑
n=1

1
n(2n− 1)2 et en déduire la valeur de I à l’aide de constantes usuelles.

indication : − ln(1 − u) =
+∞∑
n=1

un

n
si |u| < 1

Exercice 118 (Centrale PSI 2019) [Solution]

1. Soient (un) ∈
(
R+∗)N et α ∈ R tels que un+1

un
= 1 − α

n
+ O

Å 1
n2

ã
. On pose bn = ln(nαun) et an = bn+1 − bn.

Montrer que
∑

an converge et en déduire qu’il existe λ > 0 tel que un ∼ λ

nα
.

2. Pour x ∈] − 1, 0[, on pose f(x) =
∫ 1

0

1 − (1 − t)x

t
dt.

a) Justifier que f est bien définie.

b) À l’aide de 1, montrer que f(x) =
+∞∑
n=1

(−1)n+1x(x− 1) . . . (x− n+ 1)
n× n!

indication : (1 − t)x =
+∞∑
n=0

(−1)nx(x− 1) . . . (x− n+ 1)
n! tn si |t| < 1

Exercice 119 (ENSAM PSI 2015) [Solution]

1. Pour α ∈ R, justifier l’existence de I(α) =
∫ +∞

0

sinαx
ex − 1 dx.

2. Montrer que I(α) =
∑
n⩾1

a

b+ n2 avec (a, b) ∈ R2.

3. En déduire un équivalent de I(α) quand α tend vers +∞.

Exercice 120 (Mines-Télécom PSI 2024) [Solution]

Montrer que
∫ +∞

0

+∞∑
n=1

e−nt

√
n

dt =
+∞∑
n=1

1
n

3
2

.

Exercice 121 (CCINP PSI 2018) [Solution]
Soit (an) une suite complexe telle que

∑
|an| converge.

1. Montrer que f(x) =
∑
n⩾0

an
xn

n! e
−x est continue sur R+.

2. Montrer que f est intégrable sur R+ et calculer
∫ +∞

0
f(t) dt.

Exercice 122 (CCINP PSI 2019) [Solution]

1. Montrer que I =
∫ +∞

0

cos(t)
1 + et

dt existe.

2. Montrer que I =
+∞∑
n=1

(−1)n+1 n

1 + n2

Exercice 123 (Mines-Ponts PSI 20121) [Solution]

1. Étudier la convergence et la convergence absolue de
∑
n⩾0

(−1)n 2n+ 1
(2n+ 1)2 + x2

2. Montrer que
+∞∑
n=0

(−1)n 2n+ 1
(2n+ 1)2 + x2 =

∫ +∞

0

e−t

1 + e−2t
cos(xt) dt

Exercice 124 (ENSEA PSI 2018) [Solution]

Nature et somme de la série
∑
n⩾0

un avec un = (−1)n

∫ π/2

0
cosn(x) dx.

Exercice 125 (Mines-Ponts PSI 2018) [Solution]



1. Montrer que
∫ 1

0

(ln t)2

1 + t2
dt =

∫ +∞

1

(ln t)2

1 + t2
dt

2. Montrer que
∫ +∞

0

(ln t)2

1 + t2
dt = 4

+∞∑
n=0

(−1)n

(2n+ 1)3

Exercice 126 (CCINP PSI 2024) [Solution]

On pose I =
∫ 1

0

t(ln t)2

(1 − t)2 dt

1. Justifier l’existence de I

2. Montrer que I = 2
(+∞∑

n=1

1
n2 −

+∞∑
n=1

1
n3

)

Exercice 127 (Mines-Ponts PSI 2015) [Solution]

1. Déterminer le domaine de convergence de f(x) =
∑
n⩾1

(−1)n

n2 + x2 .

2. Montrer que f est intégrable sur R et calculer cette intégrale.
indication : pour le calcul de l’intégrale, on a calculé la somme de la série dans le chapitre sur les séries.

Exercice 128 (AADN PSI 2012) [Solution]
1. Montrer que la série de fonctions définies sur [0, 1] par fn(t) = tn sin(πt) converge simplement et déterminer la

somme de
∑
n⩾0

fn notée F . Y a-t-il convergence uniforme ?

2. Montrer que
∑
n⩾0

∫ 1

0
fn(t) dt =

∫ π

0

sin x
x

dx.

Exercice 129 (CCP PSI 2018) [Solution]

Soit un =
∫ 1

0
xn sin(πx) dx.

1. Montrer que
∑

un converge.

indication : montrer que un = O

Å 1
n2

ã
soit par IPP, soit en vérifiant que sin(πx) ⩽ π(1 − x)

2. Montrer que
+∞∑
n=0

un =
∫ π

0

sin t
t

dt.

Exercice 130 (TPE-EIVP PSI 2018) [Solution]

Existence et valeur de
∫ 1

0

ln t
t− 1 dt sachant que

+∞∑
n=1

1
n2 = π2

6 .

Exercice 131 (Mines-Ponts PSI 2022) [Solution]

Soit f ∈ C0([0, 1],R+). On pose un =
∫ 1

0
f(t)tn dt pour tout n ∈ N et I =

∫ 1

0

f(t)
1 − t

dt.

Montrer que I et
∑

un sont de même nature . Lien entre les deux en cas de convergence ?



Solutions

Exercice 1 [sujet] 1. (fn) CS vers 0 sur R, uniformément sur [−a, a] car ∥fn∥∞,[−a,a] = fn(a) −−−−−→
n→+∞

0 mais pas

sur R+ car fn(n) = π

4 .

2. Si a > 1, (fn) CS sur I vers f : x 7→
ß

1 si x > 0
−1 si x = 0 donc pas de CU sur I (fn est continue et pas f) ; par contre

∥fn − 1∥∞,[α,0] = 2
1 + na sin α

n

donc CU sur [α, π/2] si α > 0.

Si a = 1 alors (fn) CS vers f : x 7→ x− 1
x+ 1 puis

∣∣∣∣fn(x) − x− 1
x+ 1

∣∣∣∣ ⩽ x − n sin x
n

⩽
π

2 − n sin π

2n −−−−−→
n→+∞

0 donc CU
sur I.
Si a < 1 alors (fn) CS vers −1 et |fn(x) + 1| ⩽ 2na sin(x/n) ⩽ 2na sin π

2n −−−−−→
n→+∞

0 donc CU sur I.

Exercice 2 [sujet] (fn) CS vers 0 ; si x ⩾ a alors |fn(x)| ⩽ 1
1 + n2a2 −−−−−→

n→+∞
0 donc CU sur [a,+∞[ et (fn(1/n)) ne

tend pas vers 0 donc pas CU sur R+.

Exercice 3 [sujet] Si x > 0 alors fn(x) = 2n2x2 + nx+ 1
2n2x+ 1 sin2 π

x
à partir d’un certain rang donc lim

n→+∞
fn(x) = x sin2 π

x

et fn(0) = 0. Si x ∈
ï
0, 1
n

ï
, |fn(x) − f(x)| = x sin2 π

x
⩽ x ⩽

1
n

et si x ∈
ï 1
n
, 1
ò
, |fn(x) − f(x)| = |(n+ 1)x+ 1|

2n2x+ 1 sin2 π

x
⩽

(n+ 1)x+ 1
2n2x+ 1

etude fct
⩽

1
n

donc ∥fn − f∥∞ ⩽
1
n

donc CVU sur [0, 1]

Exercice 4 [sujet] 1. (fn) CS vers cos sur R

2. si x ∈ [−a, a] alors |fn(x) − cos(x)| = 2
∣∣∣∣sin xn sin

Å
2 + 1

n

ã
x

∣∣∣∣ ⩽ 2a
n

−−−−−→
n→+∞

0 donc CU sur [−a, a] ; par contre

|f(nπ) − cos(nπ)| = 2 donc pas de CU sur R.

Exercice 5 [sujet] 1. (fn) CVS vers 0 sur [0, 1]

2. si x ∈ [a, 1], |fn(x)| ⩽ nxe−nx2
⩽ ne−na2

−−−−−→
n→+∞

0 donc CVUTS de ]0, 1] alors que fn

Å 1√
n

ã
= sin

Å√
n

e

ã
ne tend

pas vers 0 donc pas de CVU sur [0, 1]

Exercice 6 [sujet] 1. f(x) = x puis, pour x ⩾ 0, |fn(x) − x| = x

1 + nx
⩽

1
n

alors que si x < 0, |fn(x) − x| =
−x

1 + nx2 ⩽
1

2
√
n

(étude de fct) donc CVU sur R.

2. si x > 0, f ′
n(x) = nx(2x+ nx)

(1 + nx)2 −−−−−→
n→+∞

1, f ′
n(0) = 0 et pour x < 0, f ′

n(x) = nx2(3 + nx2)
(1 + nx2)2 −−−−−→

n→+∞
1 ; pas de CVU

sur [−1, 1] car les f ′
n sont continues en 0 et pas la limite simple de f ′

n

Exercice 7 [sujet] 1. lim
n→+∞

fn(x) = f(x) =
ß

0 si x > 0
1 si x = 0

2. |fn(x)| ⩽ 1
1 + n2a2 −−−−−→

n→+∞
0 donc CVUTS de ]0, 1]

3. f n’est plus continue en 0
4. lim un = 0 par TCD avec |fn(x)| ⩽ 1

5. un ⩾ e−1
∫ 1

0

dx
1 + n2x2 = e−1

n
arctan(n) ∼ e−1

n

π

2 donc (SATP)
∑

un DVG

Exercice 8 [sujet] 1. |g′
n(t)| = t

n
et

Å
1 − t

n

ãn−1
⩽
et

t
puis par IAF, |g(t) − g(0)| ⩽ tet

n

2. On a
∣∣∣∣In(x) −

∫ x

0
1 dt

∣∣∣∣ ⩽ ∫ x

0

∣∣∣∣et

Å
1 − t

n

ãn

− 1
∣∣∣∣ dt ⩽ 1

n

∫ x

0
tet dt ⩽ 1

n

∫ 1

0
tet dt donc (fn) CU sur [0, 1] vers f : x 7→∫ x

0
dt = x.

Exercice 9 [sujet] Si (fn(x)) converge vers f(x) alors f(x) =
√
x (car fn(x) ⩾ 0) puis |fn+1(x) −

√
x| = |fn(x) −

√
x|
Å

1 − 1
2(

√
x+ fn(x))

ã
⩽
Å

1 −
√
x

2

ã
|fn(x) −

√
x| ce qui donne par récurrence |fn(x) −

√
x| ⩽

√
x

Å
1 −

√
x

2

ãn

=

gn(
√
x) ; on étudie gn(t) = t

Å
1 − t

2

ãn

pour trouver ∥gn∥∞ = gn

Å 2
n+ 1

ã
⩽

2
n+ 1 donc ∥fn − √∥∞ ⩽ ∥gn∥∞ −−−−−→

n→+∞
0

donc (fn) CU sur [0, 1] vers la fonction racine carrée.



Exercice 10 [sujet] 1. on vérifie g′(y) = 1 − xy ∈ [0, 1] donc (IAF) g est 1-lip et [0, 1] est stable (variations)

2. a) h0 ∈ [0, 1] et hn+1(x) = g
(
hn

(x
2

))
, d’où le résultat par récurrence

b) |hn+1(x) − hn(x)| =
∣∣∣g (hn

(x
2

))
− g

(
hn−1

(x
2

))∣∣∣ 1−lip
⩽

∣∣∣hn

(x
2

)
− hn−1

(x
2

)∣∣∣
c) On en déduit |hn+1(x) − hn(x)| ⩽

∣∣∣h1

( x
2n

)
− h0

( x
2n

)∣∣∣ = x

2n+1 ⩽
1

2n+1 donc
∑

(hn+1(x) − hn(x)) est

ACV et (hn) CVS vers f sur [0, 1]. Puis |f(x) − hn(x)| =
∣∣∣∣∣

+∞∑
k=n

hk+1(x) − hk(x)
∣∣∣∣∣ ⩽

+∞∑
k=n

1
2k+1 = 1

2n
donc

∥f − hn∥∞ ⩽
1
2n

−−−−−→
n→+∞

0 donc (hn) CVU vers f sur [0, 1]

3. par récurrence, on vérifie que hn est continue sur [0, 1] donc f aussi par CVU ; hn(0) = 1 donc f(0) = 1 et par
passage à la limite dans la relation qui définit hn(x), on trouve l’équation fonctionnelle de f

Exercice 11 [sujet] 1. |e−teit| = e−t est intégrable sur [x,+∞[ puis on trouve φ(x) = 1
2(cos(x) − sin(x)) et ψ(x) =

1
2(cos(x) + sin(x))

2. φ(x) = −ex

∫ x

0
e−t cos(t) dt + exφ(0) donc φ est C1 sur R et φ′(x) = φ(x) − cos(x). Les solutions sont y(x) =

αex + φ(x) avec α ∈ R. On a ensuite |φ(x)| ⩽ ex

∫ +∞

x

e−t dt = 1 donc φ est bornée et y est bornée sur R si et
seulement si α = 0

3. Si fn = αn cos +βn sin alors fn+1 = αn + βn

2 cos +βn − αn

2 sin ; on a donc
Å
αn+1
βn+1

ã
= 1

2

Å
1 1

−1 1

ãÅ
αn

βn

ã
puis

Å
αn

βn

ã
=

1
2n

Å
1 1

−1 1

ãn Å
a
b

ã
; on vérifie ensuite lim

n→+∞

1
2n

Å
1 1

−1 1

ãn

= 0 (calculer la puissance) donc (αn, βn) −−−−−→
n→+∞

(0, 0)

et ∥fn∥∞ ⩽ |αn| + |βn| et (fn) CVU vers 0 sur R

Exercice 12 [sujet] 1. cours

2. Sn,0 facile ; si k ⩾ 1, k
Ç
n

k

å
= n

Ç
n− 1
k − 1

å
donc Sn,1(x) = n

n∑
k=1

Ç
n− 1
k − 1

å
xk(1 − x)n−k − nxSn,0(x) j=k−1= nx(x+ 1 −

x)n−1 − nx = 0

3. on a
∣∣∣∣f Åknã− f(x) −

Å
k

n
− x

ã
f ′(x)

∣∣∣∣ ⩽ M

2

Å
k

n
− x

ã2
avec M = max

[0,1]
|f ′′| (th des bornes atteintes) ; en sommant

et avec l’inég triangulaire, on obtient
∣∣∣∣Bn(f) − Sn,0(x)f(x) − 1

n
Sn,1(x)f ′(x)

∣∣∣∣ ⩽ M

2n2Sn,2(x) qui donne le résultat.

x(1 − x) ⩽ 1
4 donc ∥Bn(f) − f∥∞ ⩽

M

8n donc (Bn(f)) CVU sur [0, 1] vers f .

Exercice 13 [sujet] 1. On a un(x) =
n→+∞

o

Å 1
n2

ã
pour x ∈ [0, 1] fixé donc

∑
un CS sur [0, 1]. De plus ∥un∥∞ =

un

Å
a

a+ nb

ã
∼

n→+∞

(a
b

)a

e−a 1
na−c

donc CN sur [0, 1] si et seulement si a− c > 1.

2. un(x) =
n→+∞

o

Å 1
n2

ã
donc CS sur R+∗. Puis u′

n(x) = n(α− 2nx2)xα−1e−nx2
on discute sur le signe de α :

— Si α < 0 alors un n’est pas bornée sur R+∗ donc la CN n’a même pas de sens.
— Si α = 0 alors ∥un∥∞ = lim

x→0
un(x) = n donc pas de CN.

— Si α > 0 alors ∥un∥∞ = un

Å…
α

2n

ã
=
(α

2

)α/2
× 1
nα/2−1 donc CN si et seulement si α/2 − 1 > 1

Exercice 14 [sujet] 1. (fn) CVS vers 0 sur [0, 1] pour tout α ∈ R ; ∥fn∥∞ = fn

Å 1
n+ 1

ã
∼ nα−1

e
donc (fn) CVU

sur [0, 1] si et seulement si α < 1

2. fn(x) = =
n→+∞

o

Å 1
n2

ã
donc

∑
fn CVS sur [0, 1] pour tout α ∈ R ; d’après la première question,

∑
fn CVN sur

[0, 1] si et seulement si α < 0. Si α ⩾ 0 alors Rn

Å 1
n

ã
⩾

2n∑
k=n+1

kα 1
n

Å
1 − 1

n

ãk

⩾ n × (n + 1)α 1
n

Å
1 − 1

n

ã2n

∼ nα

e2

qui ne tend pas vers 0 donc pas de CVU sur [0, 1]



Exercice 15 [sujet] 1. (fn) CVS sur R vers 0 ; ∥fn∥∞ = fn

Å 4
n

ã
= 4e−4

n
donc CVU sur R.

2. fn(x) =
n→+∞

o

Å 1
n2

ã
si x ̸= 0 et fn(0) = 0 donc ACV sur R ; pas de CVN sur R avec la première question mais

CVN sur E = R\] − a, a[ car ∥fn∥∞,E = fn(a) pour n grand et la CVS en a donne la CVN sur E.

Exercice 16 [sujet] 1. g′
n(x) = cosn x[(n+1) cos(x)−n] donc ∥gn∥∞ = gn

Å
arccos n

n+ 1

ã
=

 
1 −
Å

n

n+ 1

ã2 Å n

n+ 1

ãn

2. ∥fn∥∞ ⩽
π

2 ∥gn∥∞ ⩽
π

2

 
1 −
Å

n

n+ 1

ã2
−−−−−→
n→+∞

0 donc (fn) CVU sur
[
0, π2

]
vers 0.∑

fn CVS sur
[
0, π2

]
; S(x) = x sin(x)

1 − cos(x) si x ̸= 0 donc lim
x→0

S(x) = 2 alors que S(0) = 0 donc pas de CVU sur[
0, π2

]
. Il y a par contre CVN sur tout segment de

]
0, π2

]
car ∥fn∥∞,[a,b] ⩽ b cosn(a) (car cos décroit sur

[
0, π2

]
) et

| cos(a)| < 1.

Exercice 17 [sujet] 1. si | cos(x)| < 1 alors
∑

un(x) CV et un(0) = 0 donc
∑

un(0) CV aussi. Puis f(x) =∑
n⩾0

un(x) = sinα x

1 − cos(x) si x > 0 et f(0) = 0.

2. ∥un∥∞ = un

Å
arctan

…
α

n

ã
=
Ç √

α/n

1 + α/n

åα Å 1
1 + α/n

ãn

∼
n→+∞

αα/2e−α 1
nα/2 donc CN sur [0, π/2] si et seulement

si α > 2.
Si α ⩽ 2 alors sinα x

1 − cos(x) ∼
x→0

2xα−2 donc f n’est pas continue en 0 ; comme les un sont continue en 0, la convergence

n’est pas uniforme non plus.

Exercice 18 [sujet] 1. (fn) CS vers 0 sur R+ et ∥fn∥∞ = fn(n) =
(n
e

)n 1
n! ∼ 1√

2πn
−−−−−→
n→+∞

0 donc (fn) CVU vers

0 sur R+.
2.

∑
fn converge simplement sur R+ vers 1 et la convergence ne peut pas être uniforme sur R+ car lim

x→+∞
fn(x) = 0

donc lim
x→+∞

+∞∑
n=1

fn(x) ̸=
+∞∑
n=0

lim
x→+∞

fn(x).

On a par contre CN sur tout segment puisque ∥fn∥∞,[0,a] ⩽
an

n!

Exercice 19 [sujet] 1. Étudier 2 fonctions

2. On vérifie x

1 + x2 ⩽
1
2 donc 1 + (−1)nx

n(1 + x2) > 0 puis ln
Å

1 + (−1)nx

n(1 + x2)

ã
= (−1)nx

n(1 + x2) + O

Å 1
n2

ã
donc la série CVS

sur R.

On a
∣∣∣∣fn(t) − (−1)nx

n(1 + x2)

∣∣∣∣ ⩽ 2 x2

n2(1 + x2)2 car
∣∣∣∣ x

n(1 + x2)

∣∣∣∣ ⩽
1

2n ⩽
1
2 . On en déduit

∥∥∥∥fn(t) − (−1)nx

n(1 + x2)

∥∥∥∥
∞

⩽

2 1
4n2 = 1

2n2 ; de plus
∑
n⩾1

(−1)nx

n(1 + x2) = x

1 + x2

∑
n⩾1

(−1)n

n
CVU sur R (la somme est une constante). Comme

n∑
k=1

fk(t) =
n∑

k=1

(−1)kx

k(1 + x2) +
n∑

k=1

Ç
fk(t) − (−1)kx

k(1 + x2)

å
, somme d’une série CVU et d’une série CVN sur R, on en

déduit
∑

fk CVU sur R.

Exercice 20 [sujet] 1. fn(x) = (−1)n

nln x
donc

∑
fn CS sur ]1,+∞[

2. La convergence absolue n’étant vérifiée que sur ]e2,+∞[, il ne peut pas y avoir CN sur ]1,+∞[.

3. Par CSSA, on a |Rn(x)| ⩽ 1
(n+ 1)ln x

⩽
1

(n+ 1)ln a
−−−−−→
n→+∞

0 donc CU sur [a,+∞[ si a > 1 ; comme les fn sont

continues sur ]1,+∞[, on en déduit que la somme est aussi continue sur ]1,+∞[.

4.
∣∣∣∣fn

Å
1 + 1

n

ã∣∣∣∣ = exp
ï
− ln(n)

Å 1
n

+ o

Å 1
n

ããò
−−−−−→
n→+∞

1 donc ∥fn∥∞ ⩾ 1. Si on avait CU sur ]1,+∞[, on aurait

∥fn∥∞ = ∥Rn−1 −Rn∥∞ ⩽ ∥Rn−1∥∞ + ∥Rn∥∞ −−−−−→
n→+∞

0, ce qui n’est pas le cas.

Exercice 21 [sujet] 1. fn(x) = 1
n

− 1
n+ x

= O

Å 1
n2

ã



2. ∥fn∥∞,[a,b] = fn(b) donc CN sur tout segment

3. S(x+ 1) −S(x) =
∑
n⩾1

Å 1
n+ x

− 1
n+ x+ 1

ã
= 1

1 + x
par télescopage ; on a S(x) = − 1

1 + x
+S(x+ 1) −1= − 1

1 + x
+

S(0) + o(1) par continuité de S en 0.

4. ∥fn∥∞ = 1
n

donc non

Exercice 22 [sujet] 1. D = R+.

2. CVNTS avec |fn(x)| ⩽ b

n1+a
et 1 + a > 0.

3. f(x) ⩾ f1(x) +
∫ +∞

1

x

t1+x
dt = x+ 1 donc f ne tend pas vers f(0) = 0 en 0

4. lim
+∞

f − id = 0 par double limite avec CVN sur [1,+∞[ car fn décroît sur
ï 1

ln(n) ,+∞
ï
.

Exercice 23 [sujet] 1. Si x > 1 alors un(x) =
n→+∞

o

ÅÅ 1
x

ãnã
donc

∑
un(x) CV, un(1) = 0 et si x < 1,

∑
un(x)

DVG. Ainsi, Df = [1,+∞[.

2. On a ∥un∥∞ = 1
n ln(n) et

∑ 1
n ln(n) DV (Bertrand)

3. Si x > 1, |Rn(x)| ⩽
+∞∑

k=n+1

ln(x)
xk ln(n+ 1) = 1

ln(n+ 1)
ln(x)/xn+1

1 − 1/x ⩽
1

ln(n+ 1)
ln(x)
x− 1 ⩽

1
ln(n+ 1) car on vérifie que

ln(x) ⩽ x − 1. L’inégalité finale reste aussi valable si x = 1 donc ∥Rn∥∞ ⩽
1

ln(n+ 1) −−−−−→
n→+∞

0 donc la série CU

sur [1,+∞[ et comme les un sont continues sur ce domaine, on en déduit que la somme de cette série est elle aussi
continue sur [1,+∞[.

Exercice 24 [sujet] 1. si x > 0, fn(x) =
n→+∞

o

Å 1
n2

ã
, fn(0) = 0 et fn(x) −−−−−→

n→+∞
−∞ si x < 0 donc DS = R+

2. si x ∈ [a, b] ⊂ R+∗ alors |fn(x)| ⩽ be−na

lnn = o

Å 1
n2

ã
donc CVNTS de R+∗

3. |Rn(x)| ⩽ 1
ln(n+ 1)

∑
k⩾n+1

xe−kx = 1
ln(n+ 1) × xe−(n+1)x

1 − e−x
⩽

1
ln(n+ 1)

xe−x

1 − e−x
⩽

C

ln(n+ 1) car x 7→ xe−x

1 − e−x
est

bornée sur R+∗.

Exercice 25 [sujet] 1. On a un(x) =
n→∞

o

Å 1
n2

ã
donc CS sur R+∗ ; Rn(1/n) ⩾

2n∑
k=n+1

e−k/n

k + 1 ⩾ e−2
2n∑

k=n+1

1
k + 1 ⩾

e−2 n

2n+ 1 ne tend pas vers 0 donc ∥Rn∥∞ non plus.

2. On a ∥un∥∞,[a,b] ⩽ un(a) donc CN sur tout segment de R+∗ puis f est continue. De même ∥u′
n(x)∥∞,[a,b] ⩽

ne−na

1 + n
=

n→+∞
o

Å 1
n2

ã
donc

∑
u′

n CN sur tout segment de R+∗ d’où la classe C1 sur R+∗.

3. En +∞ : ∥un∥∞,[1,+∞[ = un(1) donc CN sur [1,+∞[, le théorème de double limite s’applique et lim
+∞

f = 1.

En 0 : f est décroissante donc admet une limite l ∈ R+ ∩ {+∞} ; si l ̸= +∞ alors l ⩾ f(x) ⩾
N∑

n=0
un(x) pour tout

N ∈ N ; en faisant tendre x vers 0 dans l’inégalité (somme finie), on aurait l ⩾
N∑

n=0

1
n+ 1 ce qui est absurde puisque

cette somme partielle de SATP DV vers +∞. On a donc l = +∞.

Exercice 26 [sujet] 1. On a ∥fn∥∞,[a,b] ⩽ b2−αe−na =
n→+∞

o

Å 1
n2

ã
donc CN sur tout segment de R+∗ et la f est

continue sur R+∗.

2. ∥fn∥∞ = un

Å2 − α

n

ã
= (2 − α)2−αeα−2 1

n2−α
donc CN sur R+∗ si et seulement si α < 1.

3. Si α = 1 alors f(x) = xe−x

1 − e−x
donc lim

x→0
f(x) = 1 et comme

+∞∑
n=1

lim
x→0

fn(x) = 0, le théorème de double limite assure

qu’il n’y a pas CU sur R+∗.



Exercice 27 [sujet] 1. Comme ln
Å

1 − k

t

ã
⩽ −k

t
(si k < t) donc ∥uk∥∞ ⩽ e−k donc CN sur [1,+∞[.

2.
n−1∑
k=1

Å
k

n

ãn

=
n−1∑
p=1

(
1 − p

n

)n

=
n−1∑
p=1

up(n) = f(n) ; on calcule alors la limite de f en +∞ par le théorème de double

limite : lim
t→+∞

uk(t) = e−k donc lim
+∞

f =
+∞∑
k=1

e−k = 1
e− 1 .

Exercice 28 [sujet] 1. Si x > 0, fn(x) ∼
n→+∞

2e−nx donc CS sur R∗ par imparité

2. exf(x) =
∑
n⩾1

gn(x) avec |gn(x)| ⩽ 2
en−1 − 1 si x ⩾ 1 donc

∑
gn CN sur [1,+∞[ et le théorème de double limite

permet de conclure
3. fn(x)2 ∼

n→+∞
4e−2nx donc CS sur R∗ aussi. On trouve de même

∑
n⩾1

fn(x)2 ∼
x→+∞

4e−2x

Exercice 29 [sujet] 1. fn(x) ∼
n→+∞

2e−n|x| donc Df = R∗

2. |fn(x)| ⩽ fn(a) si x ∈ [a, b] ⊂ R+∗ donc CVNTS de R+∗ et f est continue sur R∗ (par imparité)
3. fn décroît sur R+∗ donc f aussi (et imparité)
4. lim

u→+∞
e−u/2 sh(u) = +∞

5. pour x ⩾ 1 et n ⩾ n0 ⩾ u0 (celui de la question précédente, n0 est indép de x) et on choisit n0 ⩾ 3, on a nx ⩾ u0 donc

fn(x) ⩽ e−nx/2. On en déduit 0 ⩽ f(x) − 1
sh x ⩽

n0−1∑
k=2

fk(x) +
+∞∑

k=n0

e−kx/2 =
n0−1∑
k=2

fk(x) + e−n0x/2

1 − e−x/2 =
x→+∞

o
(
e−x

)
(la somme restante est finie) ; comme 1

sh x ∼
x→+∞

2e−x

Exercice 30 [sujet] 1. Si |a| < 1 alors an

x+ n
=

n→+∞
o(an) donc CS sur R \ Z−, idem pour a = −1 par CSSA ; pour

a = 1 ou |a| > 1 la série DV
2. |un(x)| ⩽ an si n ⩾ 1 donc

∑
n⩾1

un CN sur R+∗

3. aS(x+ 1) = S(x) − 1
x

donc S(x) = aS(x+ 1) + 1
x

∼
x→0

1
x

car S(x+ 1) −−−→
x→0

S(1) par continuité (donc o
Å 1
x

ã
)

4. xS(x) − 1
1 − a

=
∑
n⩾0

an

Å
x

x+ n
− 1
ã

= −
∑
n⩾0

an

1 + x/n
puis

∣∣∣∣ an

1 + x/n

∣∣∣∣ ⩽ an donc la série CN sur [1,+∞[ et le

théorème de double limite donne la réponse.

Exercice 31 [sujet] 1. si x > 0, fn(x) =
n→+∞

o

Å 1
n2

ã
donc CS sur R+∗ et DVG si x ⩽ 0.

2. si x ⩾ a alors |fn(x)| ⩽ fn(a) donc CN sur [a,+∞[ mais ∥fn∥∞ = 1 donc pas sur R+∗.
3. f est continue par CN sur tout segment et lim

+∞
f = 0 par CN sur [1,+∞[ et théorème de double limite.

4. Comparaison série intégrale et changement de variable u = x
√
t dans

∫ +∞

0
e−x

√
t dt.

Exercice 32 [sujet] 1. si x > 0, fn(x) = o

Å 1
n2

ã
et DVG si x ⩽ 0

2. |fn(x)| ⩽ fn(a) si x ∈ [a, b] ⊂ R+∗

3. xkf(x) =
∑
n⩾1

gn(x) ; lim
x→+∞

gn(x) = 0 et |gn(x)| ⩽ gn(a) = o

Å 1
n2

ã
pour n ⩾

Å
k

a

ã2
dont le th de dble limite donne

la réponse

Exercice 33 [sujet] 1. Df = R∗ et f est paire. f est continue par CVNTS de R+∗ avec ∥fn∥∞,[a,b] = fn(a)
2. Par double limite, lim

+∞
f = 1 par CVN sur [1,+∞[ avec ∥fn∥∞,[1,+∞[ = fn(1)

3. Par comparaison série intégrale,
∫ +∞

0
e−x2t2

dt ⩽ f(x) ⩽ 1+
∫ +∞

0
e−x2t2

dt et
∫ +∞

0
e−x2t2

dt u=xt= 1
x

∫ +∞

0
e−u2

du

ce qui donne f(x) ∼
x→0+

1
x

∫ +∞

0
e−u2

du.



4.
5.

Exercice 34 [sujet] 1. CSSA

2. |f ′
n(x)| ⩽ 1

n2 si n ⩾ 1 donc
∑
n⩾1

f ′
n CN sur R+∗ (et f0 est aussi C1) ; f ′(x) =

∑
n⩾0

(−1)n+1

(n+ x)2 vérifie le CSSA donc f ′(x)

est du signe de f ′
0(x) ⩽ 0

3. Par télescopage f(x)+f(x+1) = 1
x

; par continuité de f en 1, f(x) =
x→0

1
x

−f(1)+o(x) ∼ 1
x

et avec la décroissance

de f , on a 1
2x ⩽ f(x) ⩽ 1

2(x− 1) donc f(x) ∼
+∞

1
2x

Exercice 35 [sujet] 1. Si y ⩾ 0, le CSSA est vérifié. Si y < 0, on pose φy(t) = t + (ln t)y et on a φ′
y(t) = 1 +

y

t
(ln t)y−1 ⩾ 1 + y

t
donc le CSSA est vérifié pour n ⩾ −y.

2. Si [a, b] ⊂ R+ alors ∥Rn∥∞,[a,b] ⩽ |gn+1(a)| donc CVUTS de R+. Si [a, b] ⊂ R−, le CSSA est vérifié pour tout
n ⩾ −a et dans ce cas ∥Rn∥∞,[a,b] ⩽ |gn+1(−a)| donc CVUTS de R− aussi.

Exercice 36 [sujet] si x > 0, fn(x) =
n→+∞

o

Å 1
n2

ã
, si x < 0 DVG et fn(0) = 1

1 + (−1)nn
= (−1)n

n
+ O

Å 1
n2

ã
donc

Df = R+.

On commence par la continuité sur R+∗ par CVNTS avec |fn(x)| ⩽ e−na

n− 1 = o

Å 1
n2

ã
si x ∈ [a, b] ⊂ R+∗. Puis la continuité

en 0 : f(x) − f(0) =
+∞∑
n=2

e−nx − 1
1 + (−1)nn

et
∣∣∣∣ e−nx − 1
1 + (−1)nn

∣∣∣∣ = 1 − e−nx

n+ (−1)n
⩽

1 − e−n

n+ (−1)n
si x ∈ [0, 1] donc CVN sur [0, 1] (donc

continue en 0)

Exercice 37 [sujet] 1. Si x ∈] − 1, 1[ alors fn(x) = xn

1 − xn
_ndersetn → +∞ ∼ xn donc

∑
fn(x) est ACV ; si

x ∈ [−a, a] ⊂] − 1, 1[, |f ′
n(x)| ⩽ nan−1

(1 − an)2 ∼ nan−1 donc
∑

f ′
n CN sur tout segment de ] − 1, 1[

2. Calcul de l’intégrale facile. Par décroissance de φx, on a
∫ +∞

1
φx(t) dt ⩽ f(x) ⩽ f1(x) +

∫ +∞

1
φx(t) dt donc

f(x) ∼
x→1

ln(1 − x)
ln x ∼ ln(1 − x)

x− 1

Exercice 38 [sujet] 1. Si x ∈]−1, 1[ alors fn(x) = xn

1 − xn
∼

n→+∞
xn donc

∑
fn(x) est ACV ; si x ∈ [−a, a] ⊂]−1, 1[,

|f ′
n(x)| ⩽ nan−1

(1 − an)2 ∼ nan−1 donc
∑

f ′
n CN sur tout segment de ] − 1, 1[

2. vn(x) = (−1)n

1
x + 1

x2 + . . . 1
xn

donc
∑

vn(x) vérifie le CSSA ; on a donc |Rn(x)| ⩽ |vn+1(x)| ⩽ |vn+1(1)| = 1
n+ 1 car

|vn| est une fonction croissante sur [0, 1].

On en déduit, par double limite, (1 − x)f(x) =
∑
n⩾1

vn(x) −−−→
x→1

∑
n⩾1

(−1)n

n
= − ln 2 donc f(x) ∼

x→1−

− ln 2
1 − x

Exercice 39 [sujet] 1. Cours

2.
∫ x

0
e−

√
t dt u=

√
t= 2

∫ √
x

0
ue−u du ; on trouve ensuite t 7→ −2e−

√
t(

√
t+ 1)

3. a) Si x ∈]0, 1[, e
√

t ln(x) =
t→+∞

o

Å 1
t2

ã
alors que si x ⩾ 1, x

√
t ⩾ 1 doncDI =]0, 1[ puis I(x) u=t(ln x)2

= 1
(ln x)2

∫ +∞

(ln x)2
e−

√
u du

donc I(x) = 2x(1 − ln x)
(ln x)2

b) S est définie sur ]0, 1[ (mêmes arguments que pour I) et par comparaison série/intégrale, on trouve I(x) ⩽

S(x) ⩽ 1 + I(x) donc S(x) ∼
x→1

2
(ln x)2 ∼ 2

(1 − x)2

Exercice 40 [sujet] 1. un(t) =
n→+∞

o(tn) donc CS sur [0, 1[ ; un(1) = 0 et DVG si t > 1 car Hn ⩽ n. La fonction un

est décroissante (et négative) sur ]0, e−1/n] donc si n est assez grand (dépendant de a), ∥un∥∞,]0,a] = −un(a) donc

CN sur ]0, a] ; par contre ∥un∥∞ = un(e−1/n) = e−1

nHn
donc avec Hn ∼ ln(n), pas de CN sur ]0, 1[ (Bertrand).



2. Si t ∈]0, 1[, |Rn(t)| ⩽
+∞∑

k=n+1

tk| ln(t)|
Hn+1

= − ln(t)tn+1

Hn+1(1 − t) ⩽
− ln(t)t

Hn+1(1 − t) ; la fonction t 7→ − ln(t)t
1 − t

est prolongeable par

continuité au segment [0, 1] donc bornée ; |Rn(t)| ⩽ C

Hn+1
−−−−−→
n→+∞

0 (valable si t = 1) aussi donc CU sur ]0, 1] et S

est continue sur ]0, 1].
S(t) − S(1)

t− 1 =
+∞∑
n=1

tn ln(t)
Hn(t− 1) et il existe K > 0 tel que si t ∈ [1/2, 1[, ln(t)

t− 1 ⩾ K puis S(t) − S(1)
t− 1 ⩾ K

+∞∑
n=1

tn

Hn
⩾

−K ln(1 − t) car Hn ⩽ n ; on a donc S(t) − S(1)
t− 1 −−−→

t→1
+∞ donc S n’est pas dérivable en 1.

Exercice 41 [sujet] 1. Si x > 0 fn(x) ∼
n→+∞

e−nx donc la série CV car |e−x| < 1 puis DVG pour x ⩽ 0 et D = R+∗.

2. ∥fn∥∞,[a,b] = fn(a) donne la continuité ; toutes les fn sont strictement décroissantes donc f aussi.
3. lim

+∞
f = 0 par double limite avec ∥fn∥∞,[1,+∞[ = fn(1).

4. Pour x > 0, on trouve
∫ +∞

1
ln(1 + e−xt) dt ⩽ f(x) ⩽

∫ +∞

0
ln(1 + e−xt) dt ; on trouve

∫ +∞

0
ln(1 + e−xt) dt y=e−xt

=

1
x

∫ 1

0

ln(1 + y)
y

dy = 1
x

∑
n⩾1

(−1)n+1

n2 , par CVU sur [0, 1] car |Rn(x)| ⩽ 1
n+ 1, et comme

∣∣∣∣∣
∫ 1

0
ln(1 + e−xt) dt

∣∣∣∣∣ ⩽ ln 2,

on trouve le même équivalent pour le terme de gauche et f(x) ∼
0

π2

12x

Exercice 42 [sujet] 1. On prouve par récurrence que un(x) ⩾ 1 donc (un(x)) est définie. un+1(x) − un(x) ⩾ 0 donc
(un(x)) croit ; si elle CV vers ℓ alors on a ℓ = ℓ+ 1

ℓ
qui n’a pas de solution donc lim un(x) = +∞.

2.
∑

fn(x) CV par CSSA avec la question 1

3. Par CSSA, ∥Rn∥∞ ⩽ ∥fn+1∥∞ = fn+1(1) car un est croissante sur [1,+∞[ : u′
n+1(x) = u′

n(x)un(x)2 − 1
un(x)2 ⩾ 0 par

récurrence. La CVS de (fn) en 1 donne la CVU de
∑

fn sur [1,+∞[ puis la continuité de f (les fn sont continues
par récurrence).
Par contre ∥fn∥∞ = |fn(1)| = un+1(1) − un(1) donc

∑
fn(1) DV (série télescopique)

Exercice 43 [sujet] 1.
∣∣∣φ( x2n

)∣∣∣ ⩽ C
a

2n
donc CVN sur I

2. facile
3. si f et g sont solutions et u = f − g, on a u(x) = u

(x
2

)
rec= u

( x
2n

)
et, comme u est continue en 0, en faisant tendre

n vers +∞, on trouve u(x) = u(0) = 0 donc u est nulle. Il y a donc une unique solution (qui est S)

4. si un(x) = φ
( x

2n

)
alors |u′

n(x)| ⩽ 1
2n

∥φ′∥∞ car φ′ est continue donc bornée sur le segment I.
∑

u′
n CVN sur I

donc S est C1.

Exercice 44 [sujet] Si f est solution alors lim
n→+∞

f(2−nx) = f(0) par continuité en 0 de f donc f(x) = f(0) +∑
n⩾0

(f(2−nx) − f(2−(n+1)x)) par télescopage puis f(x) = f(0) +
∑
n⩾0

ln
Å

1 + x2

4n+1

ã
. Réciproquement, toute fonction

de cette forme est solution car continue sur R par CN sur tout segment : ∥fn∥∞,[−a,a] ⩽
a2

4n+1 .

Exercice 45 [sujet] 1. fn(x) ∼
n→+∞

x

n2 (si x ̸= 0) donc Df = R \ Z−∗

2. ∥f ′
n∥∞,R+ ⩽

1
n2 donc

∑
f ′

n CVN sur R+.

3. f(1) = 1 par télescopage et f(p) =
p∑

n=1

1
n

∼
p→+∞

ln(p).

Exercice 46 [sujet] 1. ∥fn∥∞ = 1
n2 donc f est définie et continue sur R.

2. f ′
n(x) = 1

n(1 + n2x2) donc
∑

f ′
n CVN sur tout segment de R+∗ car ∥f ′

n∥∞,[a,b] = f ′
n(a) ∼

n→+∞

1
n3a2 donc f est C1

sur R∗ (f est impaire) mais f n’est pas C1 sur R : si on suppose f ′ continue en 0, on a, pour x > 0 et tout N ∈ N∗,



f ′(x) ⩾
N∑

k=1

1
k(1 + k2x2) puis en faisant tendre x vers 0 (somme finie et on a supposé lim

0
f ′ = f ′(0)), on aurait

f ′(0) ⩾
N∑

k=1

1
k

, pour tout N ∈ N∗, ce qui est absurde car lim
N→+∞

N∑
k=1

1
k

= +∞.

Exercice 47 [sujet] 1. |fn(x)| ⩽ 1
n3

2.
∑

f ′
n CVNTS [−a, a] de R car, si |x| ⩽ a, |f ′

n(x)| ⩽ n| sinnx|
n3 + x2 + 2|x cosnx|

(n3 + x2)2 ⩽
1
n2 + 2a

n6

Exercice 48 [sujet] 1. lim
0
f = 1 et par convexité de sh sur R+, on a sh(x) ⩾ x ⩾ 0 donc 0 ⩽ f(x) ⩽ 1 sur R+ donc

sur R par parité.

2. fn(x) =
n→+∞

o

Å 1
n2

ã
3. On applique le théorème de dérivation avec |f ′

n(x)| = 2n ch(nx)
sh3 nx

qui décroit (redériver) donc ∥f ′
n∥∞,[a,b] = 2n ch(na)

sh3 na
=

n→+∞

o

Å 1
n2

ã
si [a, b] ⊂ R+∗

4. fn(x) = f(nx)2

n2x2 donc S(x) = 1
x2

+∞∑
n=1

f(nx)2

n2 et par double limite, lim
x→0

+∞∑
n=1

f(nx)2

n2 =
+∞∑
n=1

1
n2 car

∣∣∣∣f(nx)2

n2

∣∣∣∣ ⩽ 1
n2

donc CVN sur ]0, 1]

5. 1
f(x) = sh x

x
est C∞ car DSE sur R (utiliser le DSE de sh) et ne s’annule pas car f(0) = 1 donc f est C∞ sur R

Exercice 49 [sujet] 1. Par CSSA avec
√
n+ x−

√
n = x√

n+ x+
√
n

2. CVUTS sur R+ avec CSSA et |Rn(x)| ⩽ |fn+1(x)| ⩽
√
n+ 1 + b−

√
n −−−−−→

n→+∞
0 donc C0 sur R+.

f ′
n(x) = (−1)n

2
√
n+ x

donc CVUTS par CSSA avec

∣∣∣∣∣∣
+∞∑

k=n+1
f ′

k(x)

∣∣∣∣∣∣ ⩽ 2√
n+ a

−−−−−→
n→+∞

0. (pas sur R+ car f0 n’est pas

dérivable en 0). Puis f ′(x) =
+∞∑
n=0

2(−1)n

√
n+ x

⩾ 0 tjs par CSSA

3. Si f ne tend pas vers +∞ en +∞ alors f CV vers ℓ (croissante) et f(x) ⩽ ℓ. Comme Rn(x) est du signe de fn+1(x),

R2n+1(x) ⩾ 0 donc ℓ ⩾ f(x) = S2n+1(x) + R2n+1(x) ⩾ S2n+1(x) =
n∑

p=0
f2p(x) − f2p+1(x). Comme lim

x→+∞
f2p(x) −

f2p+1(x) =
√

2p+ 1 −
√

2p, en faisant tend x vers x vers +∞ (somme finie), on aurait ℓ ⩾
n∑

p=0

√
2p+ 1 −

√
2p,

pour tout n ; ce qui est absurde puisque c’est la somme partielle d’une SATP DV

Exercice 50 [sujet] 1. un(x) = o

Å 1
n3/2

ã
2. ∥un∥∞,[−a,a] = un(a) donc CVNTS
3. un n’est pas bornée sur R
4. S(0) = 0 et S(x) ⩾ u1(x) −−−−−→

x→+∞
+∞

5. u′
n(x) = 2x

n(1 + nx2) donc ∥u′
n∥∞ = u′

n

Å 1√
n

ã
= 1
n3/2

6.
∫ +∞

1

2x
t(1 + tx2) dt ⩽ S′(x) ⩽

∫ +∞

1

2x
t(1 + tx2) dt+ u′

1(x) donc S′(x) ∼
x→0

−4x ln(x)

Exercice 51 [sujet] 1. Si x ̸= 0 alors un(x) ∼
n→+∞

2
n2 et un(0) = 0 donc D = R (et S est paire.

2. ∥un∥∞,[−a,a] = un(a) donc CN sur tout segment de R.

3. Pour x > 0, 0 ⩽ u′
n(x) = 2x

ln(1 + n)(1 + n2x2) ⩽
∫ n

n−1

2x
ln(1 + t)(1 + t2x2) dt donc

∑
u′

n(x) CS et 0 ⩽ Rn(x) ⩽∫ +∞

n

2x
ln(1 + t)(1 + t2x2) dt ⩽ 1

ln(1 + n)

∫ +∞

n

2x
1 + x2t2

dt = 2
ln(1 + n)

[
arctan(xt)

]t=+∞

t=n
⩽

π

ln(1 + n) donc CVU

sur R+ puis sur R par imparité.



4. Facile

Exercice 52 [sujet] 1. fn(0) = 1
n

et fn(x) ∼
n→+∞

1
xn2 (signe fixe) donc DS = R \ {−1/n, n ∈ N∗}

2. f ′
n(x) = −1

n(nx+ 1)2 donc ∥f ′
n∥[a,b]

∞ = 1
n(na+ 1)2 ∼ 1

n3a2 donc
∑

f ′
n CVNTS de R+∗

3.

∣∣∣∣∣∣S(s) −
∑
n⩾1

1
n2x

∣∣∣∣∣∣ =
∑
n⩾1

1
n2x(nx+ 1) ⩽

1
x2

∑
n⩾1

1
n3 donc S(x) =

x→+∞

1
x

∑
n⩾1

1
n2 +O

Å 1
x2

ã
∼

+∞

1
x

∑
n⩾1

1
n2 .

Exercice 53 [sujet] 1. Si x < 0 alors DVG et sur R+, ∥fn∥∞ ⩽
1

1 + n2 donc CS et CN sur R+∗

2. oui : cf 1.
3. Par double limite et CN sur R+, lim

+∞
f = 1

4. Si [a, b] ⊂ R+∗, ∥fn∥∞,[a,b] = ne−na

1 + n2 =
n→+∞

o

Å 1
n2

ã
donc

∑
f ′

n CN sur tout segment de R+∗

5. −f ′(x) =
∑
n⩾0

n

n2 + 1e
−nx est décroissante donc admet une limite l ∈ R ∩ +∞ en 0 ; si l ̸= +∞ alors pour tout N ,

on a l ⩾
N∑

n=0

n

n2 + 1e
−nx puis quand x → 0 (somme finie), l ⩾

N∑
n=0

n

n2 + 1 ce qui est absurde puisque la somme

partielle de cette SATP DV vers +∞ ; on a donc lim
0
f ′ = −∞ et comme f est continue sur R+, par le TAF, on

obtient que lim
0

f(x) − f(0)
x

= lim
0
f ′ = −∞

Exercice 54 [sujet] 1. fn(x) =
n→+∞

o

Å 1
n2

ã
si x > 0, fn(0) = 0 et DVG si x > 0 donc Df = R+.

2. Si [a, b] ⊂ R+∗, ∥f ′
n∥∞,[a,b] ⩽

e−na(1 + nb)
lnn donc

∑
f ′

n CVN sur tout segment de R+∗

3. g(x) = f(x) − f(0)
x

=
∑
n⩾2

e−nx

lnn est une fonction décroissante donc tend vers l ∈ R∪{+∞} en 0 ; comme la série est

à termes positifs, on a g(x) ⩾
N∑

n=2

e−nx

lnn pour tout N ⩾ 2 ; si on suppose l finie, quand x → 0, on obtient l ⩾
N∑

n=2

1
lnn

pour tout N ce qui est absurde (somme partielle d’une SATP DV). On en déduit l = +∞ donc f n’est pas dérivable
en 0.
On prouve la CVU de

∑
fn sur R+ (car il n’y a pas CVN) : |Rn(x)| ⩽

1
ln(n+ 1)

∑
k⩾n+1

xe−kx = 1
ln(n+ 1) ×

xe−(n+1)x

1 − e−x
⩽

1
ln(n+ 1)

xe−x

1 − e−x
⩽

C

ln(n+ 1) car x 7→ xe−x

1 − e−x
est bornée sur R+∗.

Exercice 55 [sujet] 1. CSSA (indispensable pour x = 0)

2. CVU sur R+ car, par CSSA, |Rn(x)| ⩽ |un+1(x)| ⩽ 1
n+ 1

3. CVNTS de
∑

u′
n car |u′

n(x)| ⩽ e−na pour x ∈ [a, b] ⊂ R+∗

4. On a aussi S′(x) =
+∞∑
n=1

(−1)n+1e−nx = e−x

1 + e−x
donc S(x) = − ln(1 − e−x) + C pour x > 0. On trouve ensuite

C = 0 car C = lim
x→+∞

S(x) = 0 par double limite (et CVU sur R+) et on étend à x = 0 par continuité de S en 0
(donc S(0) = − ln(2))

Exercice 56 [sujet] 1. Sur R+, ∥fn∥∞ = 1
n2 donc CN sur R+ et DVG si x < 0.

2. Continue sur R+ par CN sur R+. Puis u′
n(x) = −e−nx

n
=

n→+∞
o(e−nx) donc

∑
f ′

n CS sur R+∗ et si [a, b] ⊂ R+∗,

∥u′′
n∥∞,[a,b] = e−na donc

∑
u′′

n CN sur tout segment de R+∗

3. f ′′(x) = e−x

1 − e−x
puis f ′(x) = C + ln(1 − e−x) avec C = lim

+∞
f ′ = 0 car ∥f ′

n∥∞,[1,+∞[ = e−n

n
=

n→+∞
o(e−n) donc∑

f ′
n CN sur [1,+∞[ et le théorème de double limite donne la limite de f ′ en +∞.

4. On a lim
0
f ′ = −∞ et f est continue sur R+ donc le TAF donne f non dérivable en 0.



5. t 7→ ln(1 − e−t) est continue et intégrable sur R+∗ (car ∼
t→0

ln(t)) donc x 7→
∫ x

0
ln(1 − e−t) dt est la primitive de f ′

qui tend vers 0 en 0, c’est donc f − f(0).

Exercice 57 [sujet] 1. Si |x| < 1 alors un(x) ∼
n→+∞

xn donc la série est ACV, si x ⩾ 1, DVG et si x ⩽ −1 les termes
n’existent pas

2. ∥un∥∞,[−a,a] ⩽ an donc CN sur tout segment de ] − 1, 1[ puis continuité sur ] − 1, 1[ ; ∥u′
n∥∞,[−a,a] ⩽ nan−1 =

n→+∞

o

Å 1
n2

ã
donc

∑
u′

n CN sur tout segment de ] − 1, 1[. On a alors f ′(0) = 1 et par Taylor-Young, f ′(x) ∼
x→0

x.

3. ϕ est continue par morceaux sur R+ et ϕ(t) e
t→+∞

t ln(x) avec ln(x) < 0 donc ϕ est intégrable sur R+. Par comparaison

à une intégrale, f est équivalente en 1 à
∫ +∞

0
ϕ(t) dt u=et ln(x)

= −1
ln(x)

∫ 1

0

ln(1 + u)
u

dt

Exercice 58 [sujet] 1. Si x ̸= 0 alors fn(x) ∼
n→+∞

1/x
n2 (signe fixe) donc Df = R \ Z−

2. Si [a, b] ⊂ R+∗, ∥f ′
n∥∞,[a,b] ⩽

1
n2a2 donc

∑
f ′

n CN sur tout segment de R+∗

3. Par comparaison avec une intégrale, f est équivalente à
∫ +∞

1

dt
t+ t2x

en 0 puis calculer cette intégrale.

En +∞, xf(x) =
∑
n⩾1

1
n2 + n/x

qui CN sur R+∗ par
∣∣∣∣ 1
n2 + n/x

∣∣∣∣ ⩽ 1
n2 et le théorème de double limite donnera

f(x) ∼
x→+∞

1
x

+∞∑
n=1

1
n2 .

Exercice 59 [sujet] 1. Si x ̸= 0, fn(x) ∼
n→+∞

1
xn2 et fn(0) = 0 donc CS sur R (et impaire). De plus, si [a, b] ⊂

R+∗, ∥fn∥∞,[a,b] ⩽
b

n(1 + na2) ∼
n→+∞

b

an2 donc CN sur tout segment de R+∗ et continuité sur R+∗ ; de même

∥f ′
n∥∞,[a,b] ⩽

1 + nb2

n(1 + na2)2 ∼
n→+∞

b2

a2n2 donc
∑

f ′
n CN sur tout segment de R+∗ et f est C1 sur R+∗.

Pour la continuité en 0 : si x > 0, par comparaison à une intégrale, f est équivalente en 0 à
∫ +∞

1

x dt
t(1 + tx2)

calcul∼
x→0

−2x ln(x) donc f est bien continue en 0 mais pas dérivable car le même calcul donne f(x)
x

∼
x→0

− ln(x)

2. xf(x) =
∑
n⩾1

1
n(n+ 1/x2) et

∣∣∣∣ 1
n(n+ 1/x2)

∣∣∣∣ ⩽ 1
n2 donc CN sur [1,+∞[ et me théorème de double limite donne

f(x) ∼
x→0

1
x

+∞∑
n=1

1
n2 .

Exercice 60 [sujet] 1. CSSA

2. CSSA puis ∥Rn∥∞ ⩽
1
n

−−−−−→
n→+∞

0

3. 0 par double limite

4. Si [a, b] ⊂] − (n+ 1), n[, le CSSA est vérifié pour n ⩾ −a et on a ∥Rn∥∞,[a,b] ⩽
1

n+ a

5. ∥u′
n∥∞,[a,b] ⩽

1
(n+ a)2 (pour n ⩾ −a si [a, b] ⊂] − (n+ 1),−n)[) donc

∑
u′

n CVNTS de DS

Exercice 61 [sujet] 1. Fait en cours
2. Fait en cours (séparer les termes pairs et impairs dans η(x))
3. Fait en cours
4. η est C1 sur R+∗ fait en cours puis ζ(x) =

x→1

1
1 − e(x−1) ln 2 (η(1)+(x−1)η′(1)+o(x−1)) donne le résultat en utilisant

η(1) = ln 2 (fait en cours, soit avec le développement asymptotique de Hn, soit à partir du DSE de ln(1 + x) qui
CU sur [0, 1] grâce au CSSA)

5. Poser vn = un − 1
2(lnn)2, montrer que

∑
(vn+1 − vn) CV (par DL) donc (vn) CV vers un réel l. En séparant les

termes pairs et impairs, on trouve
2n∑

k=1

(−1)k ln k
k

= (ln 2)Hn +un −u2n et comme un = (lnn)2

2 + l+o(1), on obtient

le résultat annoncé.



Exercice 62 [sujet] 1. x > 1
2. cours

3. 2x(ζ − 1) =
∑
n⩾2

2x

nx
CN sur [3,+∞[ car

∣∣∣∣ 2x

nx

∣∣∣∣ ⩽ 1
(n/2)3 et le théorème de double limite donne ζ − 1 ∼

x→+∞

1
2x

=

e−x ln(2) donc ζ − 1 est intégrable sur [2,+∞[. On termine par TITT avec
∫ +∞

2

∣∣∣∣ 1
nx

∣∣∣∣ dt = 1
n2 ln(n) =

n→+∞
o

Å 1
n2

ã
.

Exercice 63 [sujet] 1. Si x /∈ {0} ∪ {−1/n, n ∈ N∗} alors
∑

fn(x) CV par CSSA (vérifié à partir d’un certain rang

donc D = R∗ \ {−1/n, n ∈ N∗}. Si [a, b] ⊂ R+∗, on a, par CSSA, ∥Rn∥∞,[a,b] ⩽
1

1 + na
−−−−−→
n→+∞

0, si [a, b] ⊂ò
− 1
N
,− 1

N + 1

ï
alors le CSSA est vérifié pour n ⩾ N + 1 donc on a ∥Rn∥∞,[a,b] ⩽

1
1 + nb

et si [a, b] ⊂] − ∞,−1[,

le CSSA donne ∥Rn∥∞,[a,b] ⩽
1

1 + nb
donc CVU sur tout segment de D.

2. Sur R+∗,
∑

f ′
n(x) vérifie le CSSA donc si [a, b] ⊂ R+∗,

∥∥∥∥∥
+∞∑

k=1+n

f ′
k(x)

∥∥∥∥∥
∞,[a,b]

⩽
n

(1 + na)2 −−−−−→
n→+∞

0 donc
∑

f ′
n

CVU sur tout segment de R+∗.

3. Par CVU de
∑

fn sur [1,+∞[ (par CSSA et majoration du reste), on a lim
+∞

f = 1 puis f(x) − 1 =
+∞∑
n=1

(−1)n

1 + nx
∼

+∞

1
x

∑
n⩾1

(−1)n

n
car

∣∣∣∣∣∣f(x) − 1 −
∑
n⩾1

(−1)n

nx

∣∣∣∣∣∣ ⩽ 1
x2

∑
n⩾1

1
n2

Exercice 64 [sujet] 1. La série CV toujours par CSSA (vérifié à partir d’un certain rang mais qui dépend de x !). On

a f(x) −
∑
n⩾1

(−1)n−1

n
=

∑
n⩾1

(−1)n x2

n(n2 + x2) vérifie le CSSA dès n = 1 donc |Rn(x)| ⩽ x2

(n+ 1)((n+ 1)2 + x2) ⩽

1
n+ 1 −−−−−→

n→+∞
0 donc CU sur R puis lim

0
f = f(0)

2. fn(x) = (−1)n−1

2

Å
i

x+ in
− i

x− in

ã
donc f (k)

n = (−1)n−1

2

Ç
(−1)kik!

(x+ in)k+1 − (−1)kik!
(x− in)k+1

å
ce qui donne la CN sur

R de
∑

f (k)
n par |f (k)

n (x)| ⩽ k!
(x2 + n2)k+1 ⩽

k!
n2(k+1) avec k ⩾ 1 (la CS pour k = 0 suffit et a déjà été prouvée).

Exercice 65 [sujet] 1. Si |x| < 1, alors fn(x) ∼
n→+∞

nx2n−1 =
n→+∞

o

Å 1
n2

ã
et si |x| > 1 alors fn(x) ∼

n→+∞

−n
x

donc
DVG

2. |f ′
n(x)| ⩽ n

(2n− 1)a2n−2 + a4n−2

(1 − a2n)2 =
n→+∞

o

Å 1
n2

ã
si x ∈ [−a, a] ⊂] − 1, 1[ donc

∑
f ′

n CN sur tout segment de

] − 1, 1[ ; f ′(x) =
∑
n⩾1

n
(2n− 1)x2n−2 + x4n−2

(1 − x2n)2 ⩾ 0.

Exercice 66 [sujet] 1. Par récurrence sur n en remarquant que si un(t) ⩽ tn

n! alors un(t− t2) ⩽ tn(1 − t)n

n! ⩽
tn

n!

2. ∥un∥∞ ⩽
1
n! donc

∑
un CN sur [0, 1] vers i telle que (intégration sur un segment avec CN) u(x) =

∫ x

0
u(t− t2) dt ;

comme t 7→ u(t− t2) est continue, u est C1 et u′(t) = u(t− t2).

Exercice 67 [sujet] 1. fn est continue par récurrence
2. Par récurrence sur n : fn est Cn, f (k)

n (a) = 0 si k ⩽ n − 1 et f (n)
n = f . Avec Taylor, on en déduit fn(x) =∫ x

a

(x− t)n−1

(n− 1)! f(t) dt

3. ∥fn∥∞,[a,x] ⩽ ∥f∥∞,[a,x]
(x− a)n

n! donc CN sur le segment [a, x] (ou [x, a]) et g(x) =
∫ x

a

f(t)
∑
n⩾1

(x− t)n−1

(n− 1)! dt =∫ x

a

f(t)ex−t dt

4. g(x) = ex

∫ x

a

f(t)e−t dt est donc C1 et solution de y′(x) − y(x) = f(x)



Exercice 68 [sujet] 1. fn est C1 par réc et f ′
n+1 = fn puis S′ =

+∞∑
n=0

f ′
n = f ′

0 +
+∞∑
n=1

fn−1 = f ′
0 + S. On en déduit

S(x) = αex + ex

∫ x

a

e−tf ′
0(t) dt et S(a) = f0(a) donne α = e−af0(a)

2. ∥f ′
n∥∞ = ∥fn−1∥∞

3. ∥fn∥∞ ⩽
1
2n

donc
∑

fn CVU sur [0, 1] et S(x) = ex

∫ x

0
e−t sin(2t) dt = ex Im

Å∫ x

0
e−(1+2i)t dt

ã
= . . .

Exercice 69 [sujet] On pose fn(t) = ne−t + t2

n+ t
; (fn) CS sur [0, 1] vers f : t 7→ e−t et |fn(t) − e−t| ⩽ 1 + e−1

n
donc (fn)

CU sur [0, 1] vers f ; par intégration lim un =
∫ 1

0
e−t dt = 1 − e−1.

Exercice 70 [sujet] 1. On a P (k)
n (0) = 0 si k < n ou k > 2n et, si k ∈ [[ n, 2n ]] , par la formule de Leibniz, P (k)

n (0) =Ç
k

n

å
n(n−1) . . . (2n−k+1)bpk−n(−a)2n−k est entier. Puis Pn(r−X) = Pn(X) donne les dérivées en r par symétrie.

2. un = q

∫ r

0
Pn(t)et dt est un entier par IPP successives avec la question précédente et le fait que qer ∈ Z. On a

∥Pn exp ∥∞ ⩽
1
n!r

n(br)ner donc (Pn exp) CU sur [0, r] vers 0 et par intégration (un) tend vers 0. Or (un) est une
suite d’entiers, elle est donc nulle à partir d’un certain rang et comme Pn exp est continue et positive sur [0, r], on
en déduit Pn exp = 0 sur [0, r] ce qui est absurde. On vient donc de prouver par l’absurde que si r ∈ Q alors er est
irrationnel donc en particulier (avec r = 1), e est irrationnel.

Exercice 71 [sujet] 1. Par récurrence : si fn est C1(R) alors t 7→
»
fn(t)2 + t2 est continue sur R donc fn+1 est

C1(R).

2. fn+1(x) − fn(x) =
∫ x

0
(fn(t) − fn−1(t)) fn(t) + fn−1(t)√

t2 + fn(t)2 +
√
t2 + fn−1(t)2

dt donne le résultat par récurrence sur n car∣∣∣∣∣ fn(t) + fn−1(t)√
t2 + fn(t)2 +

√
t2 + fn−1(t)2

∣∣∣∣∣ ⩽ 1.

On en déduit ∥fn+1 − fn∥∞,[−a,a] ⩽
an+1

(n+ 1)! donc
∑

(fn+1 − fn) CN sur tout segment de R ce qui donne la CS de

(fn) et la continuité de f =
∑
n⩾1

(fn+1 − fn) par télescopage.

3. Pour x ∈ R fixé, on vérifie la CU de (gn) sur [0, x] (ou [x, 0]) avec gn(t) =
»
t2 + fn(t)2 car |gn(t) −

»
t2 + f(t)2| =

|fn(t) − f(t)| fn(t) + f(t)√
t2 + fn(t)2 +

√
t2 + f(t)2

⩽ ∥fn − f∥∞,[0,x] donc par intégration, on obtient lim
n→+∞

fn+1(x) =∫ x

0

»
t2 + f(t)2 dt puis f(x) =

∫ x

0

»
t2 + f(t)2 dt ce qui prouve que f est C1 par continuité de f et, en dérivant,

f ′(x) =
»
x2 + f(x)2.

Exercice 72 [sujet] 1. on pose gn(x) = sinα(x) cosn(x) géométrique de raison cos(x) donc
∑

gn(x) ACV si | cosx| <
1 et si cos(x) = ±1 alors fα(x) = 0 donc Dα = R

2. fα(x) =
{ sinα x

1 − cosx si x ∈
]
0, π2

]
0 si x = 0

3. fα(x) ∼
x→0

2
x2−α

donc fα intégrable sur
]
0, π2

]
si et seulement si α > 1

4. ∥gn∥∞ = gn

Å
arctan

…
α

n+ 1

ã
=
Å…

α

n+ 1

ãα Å
1 + α

n+ 1

ãα Å
1 + α

n+ 1

ãn

∼
n→+∞

αα/2e−α

nα/2 donc CVN si et seule-
ment si α > 2. Pour α ⩽ 2 fα n’est pas continue en 0 donc pas de CVU

5. a) un(α) ⩾ 0 et, si α > 1,
N∑

n=0
un(α) =

∫ π
2

0

N∑
n=0

sinα x cosn x dx ⩽
∫ π

2

0
fα(x) dx ; SATP dont les sommes partielles

sont majorées donc
∑

un(α) CV. Pour α ⩽ 1, un(α) ⩾ un(1) =
ï
−cosn+1 x

n+ 1

òπ
2

0
= 1
n+ 1 donc

∑
un(α) DV

b) un(3) =
∫ π

2

0
sin x(1−cos2 x) cosn x dx = 1

n+ 1− 1
n+ 3 donc, par CVN sur

[
0, π2

]
,
∫ π

2

0
f3(x) dx =

+∞∑
n=0

Å 1
n+ 1 − 1

n+ 3

ã
=

1 + 1
2 = 3

2



Exercice 73 [sujet] 1. ∥un∥ ⩽ |αn| donc CVN sur [0, 1]

2. Par CVN,
∫ 1

0
f(t) dt =

∑
n⩾1

∫ 1

0
un(t) dt =

∑
n⩾1

αn
sin(2πωn)

2πωn

3. f est C0 sur [0, 1] donc lim
N→+∞

1
N

N∑
k=1

f

Å
k

N

ã
=

∫ 1

0
f(t) dt (somme de Riemann).

Exercice 74 [sujet] 1. txty

= exty ln(t) −−−→
t→0

0 car y > 0.

2. ∥fn∥∞ = 1
n!

Å |x|
ey

ãn

3. Les fn sont continues sur [0, 1] donc on peut intervertir
∑

/

∫
sur le segment [0, 1] par CN :

∑
n⩾0

fn(t) = txty

par

DSE de exp et
∫ 1

0
fn(t) dt nIPP= (−1)n+1

nn

Exercice 75 [sujet] 1. Si x ∈ [−a, a] alors pour n ⩾ a, on a (x + n)2 ⩾ (a + n)2 et (x − n)2 ⩾ (n − a)2 donc
∥fn∥∞,[−a,a] ⩽

C

(n+ a)2 + C

(n− a)2 donc CVNTS de R.

2. Les deux séries CV donc, avec des changements d’indices, f(x+ 1) = φ(x+ 1) +
+∞∑
k=2

φ(x+ k) +
+∞∑
h=0

φ(x− h) = f(x)

3. g est continue sur R et 1-périodique donc bornée et |φ(x)g(x)| ⩽ C∥g∥∞

1 + x2 , intégrable sur R.

∥fng∥∞,[0,1] ⩽ ∥g∥∞∥fn∥∞,[0,1] donc la série CVN sur [0, 1] et on a
∫ 1

0
f(x)g(x) dx =

∫ 1

0
φ(x)g(x) dx+

+∞∑
n=1

∫ 1

0
φ(x+

n)g(x) dx+
∫ 1

0
φ(x−n)g(x) dx. Par changements de variables et avec la 1-périodicité de g, on a

∫ 1

0
φ(x+n)g(x) dx =∫ n+1

n

φ(u)g(u) du et
∫ 1

0
φ(x − n)g(x) dx =

∫ −n+1

−n

φ(u)g(u) du ce qui donne, avec Chasles,
∫ 1

0
f(x)g(x) dx =∫ +∞

−∞
φ(x)g(x) dx.

Exercice 76 [sujet] TCD à chaque fois

1.
∣∣∣∣∣ cos t

n

1 + t2

∣∣∣∣∣ ⩽ 1
1 + t2

donc limite
∫ +∞

0

dt
1 + t2

= π

2 .

2.
∣∣∣∣(1 + x

n

)−n

x− 1
n

∣∣∣∣ ⩽

(

1 + x

2

)−2
si x ⩾ 1

1√
x

si x ∈]0, 1[
si n ⩾ 2 donc limite

∫ +∞

0
e−x dx = 1.

3. On prolonge par 0 sur ]n,+∞[ puis |fn(x)| ⩽ e−x donc limite
∫ +∞

0
e−x dt = 1.

4.
∣∣∣∣xn ln x

(1 − x2)1/4

∣∣∣∣ ⩽ | ln x|
(1 − x2)1/4 donc limite

∫ 1

0

ln x
(1 − x2)1/4 dx

Exercice 77 [sujet]
∣∣∣∣ 1
1 + x2 + xne−x

∣∣∣∣ ⩽ 1
1 + x2 donc limite

∫ 1

0

dx
1 + x2 = π

4 .

Exercice 78 [sujet] 1. f(t) ∼
t→0

1
tα−1 et f(t) ∼

t→+∞

π

2tα donc fα est intégrable sur R+∗ si et seulement si α ∈]1, 2[.

2. |fn(t)| ⩽ f3/2 donc limite
∫ 1

0

arctan t
t3/2 dt

Exercice 79 [sujet] 1. Étude de fct

2. sin(t/n)
t(1 + t2) −−−→

t→0

1
n

et sin(t/n)
t(1 + t2) =

t→+∞
O

Å 1
t3

ã
donc In existe.

3. |In| ⩽
1
n

∫ +∞

0

dt
1 + t2

(qui existe) par Q1 donc lim In = 0. Puis par TCD, nIn −−−−−→
n→+∞

∫ +∞

0

dt
1 + t2

= π

2 car∣∣∣∣n sin(t/n)
t(1 + t2)

∣∣∣∣ ⩽ 1
1 + t2

par Q1



Exercice 80 [sujet] 1. sin(nx)
1 + n4x3 =

x→+∞
O

Å 1
x3

ã
2. Poser t = xn4/3

3. Par TCD avec |fn(t)| ⩽ t

1 + t3
(| sin(u)| ⩽ |u|)

4. Ajouter les 2 valeurs de K puis 2K =
∫ +∞

0

dt
1 − t+ t2

= 4
3

∫ +∞

0

dt

1 +
Ä

2t−1√
3

ä2 = 2√
3

ï
arctan 2t− 1√

3

ò+∞

0

5. facile

Exercice 81 [sujet] 1. fn(x) ∼
x→+∞

π

2x3/2

2. 0 ⩽ In ⩽
π

2

∫ +∞

0

dx√
x(n+ x)

x=u2

= π

∫ +∞

0

du
n+ u2 = π2

2
√
n

3. fait au dessus

4. arctan(n)
∫ +∞

0

dx√
x(n+ x)

⩽ In ⩽
π

2

∫ +∞

0

dx√
x(n+ x)

donne In ∼ π2

2
√
n

Exercice 82 [sujet] 1. fn est continue sur le segment [0, 1]

2. 0 ⩽ In ⩽
∫ 1

0
tn dt = 1

n+ 1 donc lim In = 0 (ou TCD)

3. On pose u = tn ⇔ t = u1/n qui donne In = 1
n

∫ 1

0

ln(1 + u)
u

u1/n du puis TCD avec gn(u) −−−−−→
n→+∞

ln(1 + u)
u

et

|gn(u)| ⩽ ln(1 + u)
u

intégrable sur ]0, 1] car lim
u→0

ln(1 + u)
u

= 1 ; on finit avec
∫ 1

0

ln(1 + u)
u

du ̸= 0

4. si u ∈]0, 1[, ln(1 + u)
u

=
+∞∑
n=1

(−1)n+1u
n−1

n
puis TITT avec

∫ 1

0

∣∣∣∣(−1)n+1u
n−1

n

∣∣∣∣ du = 1
n2 ; on en déduit

∫ 1

0

ln(1 + u)
u

du =

+∞∑
n=1

(−1)n+1

n2 puis en séparant les termes pairs/impairs (sur la somme partielle !),
+∞∑
n=1

(−1)n+1

n2 = π2

12

Exercice 83 [sujet] 1. arctan(nt)
(1 + n4t2)2 ∼

t→+∞

π

2n8t4

2. lim In = 0 par TCD avec
∣∣∣∣ arctan(nt)
(1 + n4t2)2

∣∣∣∣ ⩽
π/2

(1 + t2)2 puis In
u=n2t= 1

n2

∫ +∞

0

arctan(u/n)
(1 + u2)2 du donc limn3In =∫ +∞

0

u

(1 + u2)2 du = 1 par TCD avec
∣∣∣∣arctan(u/n)

(1 + u2)2

∣∣∣∣ ⩽ π/2
(1 + u2)2

Exercice 84 [sujet] 1. fct continue sur [0, 1]

2. 0 ⩽ In ⩽
∫ 1

0
xn dx = 1

n+ 1 donc lim In = 0 (ou par TCD en dominant par 1) ; on pose u = xn : nIn =∫ 1

0

u1/n

1 + u1/n + u2/n
du −−−−−→

n→+∞

∫ 1

0

du
3 = 1

3 par TCD avec
∣∣∣∣∣ u1/n

1 + u1/n + u2/n

∣∣∣∣∣ ⩽ 1.

Exercice 85 [sujet] 1. ln(x) ln(1 − xn) =
x→0

o(ln x) et ln(x) ln(1 − xn) ∼
x→1

(x− 1) ln(1 − xn) −−−→
x→1

0.

2. | ln(x) ln(1 − xn)| = | ln x| × (− ln(1 − xn)) ⩽ | ln x| × (− ln(1 − x)) donc lim In = 0.

3. In
u=xn

= 1
n2

∫ 1

0

ln u ln(1 − u)
u

u1/n du puis
∣∣∣∣ ln u ln(1 − u)

u
u1/n

∣∣∣∣ ⩽
ln u ln(1 − u)

u
qui est intégrable sur ]0, 1[ (car

∼
u→0

ln u et −−−→
u→1

0) donc In ∼ C

n2 avec C =
∫ 1

0

ln u ln(1 − u)
u

du > 0.

Exercice 86 [sujet] 1. sh x = 1 X=ex

⇔ X2 − 2X − 1 = 0 ⇔ X = 1 +
√

2 car X = ex > 0
2. lim In = 0 par TCD car | shn t| ⩽ 1 sur [0, α]
3. IPP

4. (In) est décroissante donc (2n− 1)In ⩽ nIn + (n− 1)In−2 ⩽ (2n− 1)In−2 puis In ∼ 1
n

√
2

Exercice 87 [sujet] 1. 1
chn est CM0 sur [0, x] (ou [x, 0])



2. Par TCD (sur [0, x]), lim
n→+∞

In(x) = 0 car
∣∣∣∣ 1
chn t

∣∣∣∣ ⩽ 1 ; la CV est uniforme car ∥In∥∞ =
∫ +∞

0

dt
chn t

−−−−−→
n→+∞

0 par

TCD avec
∣∣∣∣ 1
chn t

∣∣∣∣ ⩽ 1
ch t pour n ⩾ 1

3. In+2(x) =
∫ x

0

ch2 t− sh2 t

chn+2 t
dt IPP= In(x) −

ñ
sh t −1

(n+ 1) chn+1 t

ôx

0
− 1
n+ 1In(x)

4. I = I1(ln 2) − I3(ln 2) puis I1 se calcule en posant u = ex

Exercice 88 [sujet] 1. lim
x→0

fn(x) = 1 et fn(x) =
x→+∞

O

Å 1
x2

ã
2. |fn(x)| ⩽

{ 1
x2 si x ⩾ 1
1 si x ∈]0, 1[

car | sin(nx)| ⩽ nx donc lim un =
∫ +∞

0
0 dt = 0.

Exercice 89 [sujet] 1. (fn) CVS vers 0

2. ∥fn∥∞,[a,1] ⩽
1

1 + n2a2

3. Non car fn

Å 1
n

ã
= 1

2e
−1/n −−−−−→

n→+∞

1
2 > 0

4. lim un = 0 par TCD avec |fn(x)| ⩽ 1

Exercice 90 [sujet] 1. (fn) CS vers e−t ln(t) (forme exponentielle et DL)
2. |fn(t)| ⩽ | ln(t)|e−(n−1) t

n ⩽ | ln(t)|e−t/2 si n ⩾ 2

3.
∫ n

0
fn(t) dt = n ln(n)

∫ 1

0
(1 −u)n−1 du+n

∫ 1

0
(1 −u)n−1 ln(u) du puis n ln(n)

∫ 1

0
(1 −u)n−1 du = ln(n) et n

∫ 1

0
(1 −

u)n−1 ln(u) du IPP= −
∫ 1

0

(1 − u)n − 1
u

du = −
n−1∑
k=0

∫ 1

0
(1 − u)k du = −Hn.

Exercice 91 [sujet] 1. (fn) CS sur R+ vers x 7→ e−x sin(x)

2. lim vn =
∫ +∞

0
e−x sin(x) dx = 1

2 par TCD avec |fn(x)| ⩽ e−x| sin x| ⩽ e−x

3. a) x 7→ ln(1 + x) − x croît sur ] − 1, 0] et décroît sur R+

b) Si x ∈ [0, n], |fn(x)−f(x)| ⩽ e−x −en ln(1−x/n) ⩽ 1−ex+n ln(1−x/n) donc |fn(x)−f(x)| ⩽ 1−en1/4+n ln(1−n−3/4)

sur [0, n1/4]. Si x ⩾ n1/4 alors |fn(x) − f(x)| ⩽ 2e−x ⩽ 2e−n1/4
. En regroupant les deux, on a ∥fn − f∥∞ ⩽

2e−n1/4
+
Ä
1 − en1/4+n ln(1−n−3/4)

ä
−−−−−→
n→+∞

0

Exercice 92 [sujet] On pose fn(x) =
{ (

1 − x

n

)n

cos(x) si x ∈ [0, n]
0 si x > n

et on applique le TCD : si n est grand, fn(x) =(
1 − x

n

)n

cos(x) −−−−−→
n→+∞

e−x cos(x) et |fn(x)| ⩽ e−x| cos(x)| ⩽ e−x par concavité de ln. On en déduit lim
n→+∞

un =∫ +∞

0
e−x cos(x) dx = Re

Ç∫ +∞

0
e−(1−i)x dx

å
= Re

Å 1
1 − i

ã
= 1

2

Exercice 93 [sujet] 1. cours
2. lim

x→0
fn(x) = 1

3. lim In =
∫ 1

0

ex − 1
x

dx par TCD avec |fn(x)| ⩽ ex − 1
x

et e
x − 1
x

−−−→
x→0

1. Puis, pour x ∈]0, 1], e
x − 1
x

=
+∞∑
k=1

xk−1

k!

et on intègre terme à terme avec le TITT ou CVN sur [0, 1] car
∣∣∣∣xk−1

k!

∣∣∣∣ ⩽ 1
k!

Exercice 94 [sujet] 1. f0 n’est pas CM0 sur R+∗ car lim
t→ 3π

2
−
f0(t) = +∞ ; fn(t) ∼

t→+∞

1
tn−1 n’est intégrable sur

[1,+∞[ que pour n ⩾ 3 (et l’intégrale DV si fn n’est pas intégrable car fn ⩾ 0 au voisinage de +∞). Enfin
lim

0
fn = 1 si n ⩾ 3.

2. I =
∫ 1

0

t

sin(t) dt par |fn(t)| ⩽


t

t3 − 1 si t ⩾ 1
t

sin(t) si t ∈]0, 1[



3. n(In − I) u=tn

=
∫ +∞

1

u2/n−1

u+ sin(u1/n)
du −

∫ 1

0

u1/n

sin(u1/n)(u+ sin(u1/n))
du puis par

∣∣∣∣∣ u2/n−1

u+ sin(u1/n)

∣∣∣∣∣ ⩽ u2/3−1

u− 1) , on a

lim
n→+∞

∫ +∞

1

u2/n−1

u+ sin(u1/n)
du =

∫ +∞

1

du
u(u+ sin(1)) et lim

n→+∞

∫ 1

0

u1/n

sin(u1/n)(u+ sin(u1/n))
du =

∫ 1

0

du
sin(1)(u+ sin(1))

par
∣∣∣∣∣ u1/n

sin(u1/n)(u+ sin(u1/n))

∣∣∣∣∣ ⩽ 1
sin(u1/3)(u+ sin(u1/3))

puisque sin est croissante sur [0, 1].

Exercice 95 [sujet] On pose u = tn : nun =
∫ 1

0
u1/nf(u1/n) du −−−−−→

n→+∞

∫ 1

0
1f(1) du = f(1) par TCD et continuité de

f en 1 avec
∣∣∣u1/nf(u1/n)

∣∣∣ ⩽ ∥f∥∞ car f est continue sur le segment [0, 1] donc bornée.

Exercice 96 [sujet] n

∫ 1

0
tnf(t) dt u=tn

=
∫ 1

0
u1/nf(u1/n) du −−−−−→

n→+∞

∫ 1

0
f(1 =) du = f(1) car |u1/nf(u1/n)| ⩽ ∥f∥∞.

Exercice 97 [sujet] On complète par 0 sur ]n,+∞[ puis lim
n→+∞

∫ n

0

x+ 1
xnex + x2 + x+ 1 dx =

∫ 1

0

x+ 1
x2 + x+ 1 dx car

|fn(x)| ⩽


x+ 1

x2 + x+ 1 si x ⩽ 1
x+ 1

ex + x2 + x+ 1 si x > 1

Exercice 98 [sujet] On a lim
n→+∞

∫ +∞

0

xn

xn+2 + 1 dx =
∫ 1

0
dx+

∫ +∞

1

dx
x2 car

∣∣∣∣ xn

xn+2 + 1

∣∣∣∣ ⩽
{

1 si x ∈ [0, 1]
1
x2 si x > 1

Exercice 99 [sujet] lim un = 0 car |exp(−xn)| ⩽ e−x puis un
u=xn

= 1
n

∫ +∞

1
e−uu1/n−1 du donc nun −−−−−→

n→+∞

∫ +∞

1

e−u

u
du =

C > 0 car
∣∣∣e−uu1/n−1

∣∣∣ ⩽ e−u donc un ∼ C

n
(positif) et

∑
un DV.

Exercice 100 [sujet] 1. 1 − cosn x

x2 −−−→
x→0

n

2 et 1 − cosn x

x2 =
+∞

O

Å 1
x2

ã
.

2. on pose x =
…

2t
n

3. lim
0

ln(cos t)
t2

= −1
2

4. on trouve la limite de (vn) par TCD : si fn(t) =
1 − cosn

(»
2t
n

)
t
√
t

, on a lim
n→+∞

fn(t) = 1 − e−t

t
√
t

. Reste la domination :

si t ⩾ 1 alors |fn(t)| ⩽
2
t
√
t

; si t < 1 alors
…

2t
n

∈
ñ
0,
…

2
n

ô
⊂ [0, α] si n ⩾ n0 (n0 ne dépend pas de t) et

cosn

Ç…
2t
n

å
= exp

ñ
n ln cos

Ç…
2t
n

åô
⩾ exp

ï
−2n2t

n

ò
= e−4t. On a donc |fn(t)| = fn(t) ⩽

1 − e−4t

t
√
t

sur ]0, 1] si

n ⩾ n0.

On a donc lim
n→+∞

vn =
∫ +∞

0

1 − e−x

x
√
x

dx IPP= 2
3

∫ +∞

0

e−x

√
x

dx x=t2

= 2
3

√
π. Au final, un ∼

√
πn

3
√

2

Exercice 101 [sujet] 1. cours

2. il suffit que cos(φn) = an√
a2

n + b2
n

et sin(φn) = − bn√
a2

n + b2
n

donc φn est un argument du complexe an − ibn (qui est

non nul)

3. On a In = (a2
n + b2

n)
Ç
d− c

2 +
ï sin(2nx+ 2φn)

4n

òd

c

å
donc lim In = (d− c)(a2

n + b2
n)

2 ce qui donnera la minoration à

partir d’un certain rang (1/2 > 1/4 !)
4. Si (an) ou (bn) ne tend pas vers 0, la minoration précédente prouve que (In) ne tend pas vers 0, ce qui est absurde

car |an cos(nx) + bn sin(nx)| ⩽ K (car (an) et (bn) sont bornée) donc le TCD donne lim In = 0.

Exercice 102 [sujet] Proche des intégrales de Wallis

1. CSSA avec 0 ⩽ an ⩽
∫ 1

0
tn dt = 1

n



2. an+2
IPP= 2

3(n+ 1)
∫ 1

0
tn(1 − t2)3/2 dt = 2

3(n+ 1)(an − an+2)

3. On prouve
∑
n⩾0

an =
∫ 1

0

√
1 − t2

1 + t
dt en utilisant le TCD appliqué à Sn(t) =

n∑
k=0

(−1)k
√

1 − t2tk car le TITT est plus

difficile à appliquer (la CVA de
∑

an n’est pas évidente) : on a |Sn(t)| =
√

1 − t2
∣∣∣∣1 − (−1)n+1tn+1

1 + t

∣∣∣∣ ⩽ 2
√

1 − t2

1 + t
ce qui permettra de conclure

Exercice 103 [sujet] Si x > 0, on a x

ch(x) = 2
+∞∑
n=0

(−1)nxe−(2n+1)x puis TITT avec
∫ +∞

0

∣∣∣xe−(2n+1)x
∣∣∣ dx = 1

(2n+ 1)2

Exercice 104 [sujet] 1. n−n ⩽
1
n2 si n ⩾ 2 et lim

0
ex ln(x) = 1

2. IPP successives ∈1
0 fn,p(t) dt = (−1)n n!

(p+ 1)n

3. TITT avec ex ln(x) =
∑
n⩾0

xn(ln x)n

n!

Exercice 105 [sujet] tt
x

=
∑
n⩾0

(tx ln t)n

n! et on applique le TITT avec
∫ 1

0

|tx ln t|n

n! dt = (−1)n

∫ 1

0

(tx ln t)n

n! dt IPP=

(−1)n+1 1
(n− 1)!(xn+ 1)

∫ 1

0
txn(ln t)n−1 dt = · · · = 1

(xn+ 1)n+1

Exercice 106 [sujet] 1. cours

2. Pour n fixé, ln(1+tn) =
+∞∑
k=1

gk(t) avec gk(t) = (−1)k+1 t
nk

k
et TITT avec

∫ 1

0
|gk(t)| dt = 1

(k + 1)(nk + 1) ∼
k→+∞

1
nk2

3. Par CVNTS de ]−, 1, 1[ : ∥f ′
k∥∞,[−a,a] ⩽

1
k(k − a)2 pour k ⩾ a.

4. un = 1
n
f

Å 1
n

ã
et f
Å 1
n

ã
−−−−−→
n→+∞

f(0) = π2

12 ̸= 0.

5. Par DL1(0) de f (Taylor-Young) : f
Å 1
n

ã
= f(0) + 1

n
f ′(0) + o

Å 1
n

ã
et c = f ′(0) =

+∞∑
k=1

(−1)k

k3

Exercice 107 [sujet] Par TCD avec Sn(t) =
n∑

k=0
tb−1(−1)ktka et |Sn(t)| = tb−1 1 − (−1)n+1t(n+1)a

1 + ta
⩽

2tb−1

1 + ta

Exercice 108 [sujet]
∫ 1

0
x2n(1 − x) dx = 1

2n+ 1 − 1
2n+ 2 = 1

(2n+ 1)(2n+ 2) et par TITT la somme de la série vaut

aussi
∫ 1

0

1 − x

1 + x2 dx = π

4 − 1
2 ln(2).

Exercice 109 [sujet] 1. (sin(px)) est bornée doncR ⩾ 1 puis, si |t| < 1, Sx(t) = Im
(+∞∑

p=1
tp−1eipx

)
= Im

Å
eix

1 − teix

ã
=

sin x
1 − 2t cosx+ t2

2. | cosx| < 1 donc Sx est continue sur [0, π] et
∫ 1

0
Sx(t) dt = 1

sin x

∫ 1

0

dt
1 +

(
t−cos x

sin x

)2 =
ï
arctan

Å
t− cosx

sin x

ãòt=1

t=0
=

arctan 2 sin2 x/2
2 sin x/2 cosx/2 + arctan cosx

sin x = x

2 + arctan sin(π/2 − x)
cos(π/2 − x) = π − x

2

3. On remarque sin(px)
p

=
∫ 1

0
tp−1 sin(px) dt mais le TITT ne s’applique pas (car la série à trouver n’est en fait

pas ACV) donc on applique le TCD à la suite des sommes partielles de Sx : on pose Tn(t) =
n∑

p=1
tp−1 sin(px),

on a
∫ 1

0
Tn(t) dt =

n∑
p=1

sin(px)
p

, puis lim
n→+∞

Tn(t) = Sx(t) si t ∈ [0, 1[ et |Tn(t)| =

∣∣∣∣∣∣Im
(

n∑
p=1

tp−1eipx

)∣∣∣∣∣∣ =



∣∣∣∣ImÅeix(1 − tpeipx)
1 − teix

ã∣∣∣∣ ⩽ 1 + t√
1 − 2t cosx+ t2

qui est intégrable sur [0, 1] car continue sur ce segment. On déduit

de tout cela
+∞∑
p=1

sin(px)
p

=
∫ 1

0
Sx(t) dt = π − x

2

Exercice 110 [sujet] tα−1

1 + t
∼

t→0

1
t1−α

puis tα−1

1 + t
=

+∞∑
n=0

(−1)ntα+n−1 si t ∈]0, x] et on applique le TITT (x < 1 fixé)

avec
∫ x

0

∣∣(−1)ntα+n−1∣∣ dt = xα+n

α+ n
. La dernière somme s’obtient avec α = 1

3 et x = 1
2 (poser u = t1/3 pour calculer

l’intégrale)

Exercice 111 [sujet] 1. f(t) =
√
t

et − 1 ∼
0

1√
t

et f(t) =
+∞

o

Å 1
t2

ã
2. f(t) =

+∞∑
n=1

√
te−nt puis TITT (chgt de variable pour le calcul des intégrales)

Exercice 112 [sujet] lim
x→0

x2

ex − 1 = 0 et x2

ex − 1 =
x→+∞

o

Å 1
x2

ã
donc J existe. Pour x > 0, x2

ex − 1 =
∑
n⩾1

x2e−nx puis on

applique le TITT avec fn(x) = x2e−nx ⩾ 0 et
∫ +∞

0
fn(x) dx = 2

n3 par deux IPP.

Exercice 113 [sujet] 1. x

sh x −−−→
x→0

1 et x

sh x ∼
+∞

2xe−x = o

Å 1
x2

ã
2. x

sh x = 2xe−x

1 − e−2x

x>0= 2
+∞∑
n=0

xe−(2n+1)x dx puis TITT (H4)
∫ +∞

0
|fn(x)| dx IPP= 2

(2n+ 1)2

Exercice 114 [sujet] 1. Fait en cours : DΓ = R+∗

2. cours

3. pour x > 0 fixé et t > 0, on a |e−t| < 1 donc txe−t

1 − e−t
=

+∞∑
n=0

txe−(n+1)t puis TITT avec
∫ +∞

0
|txe−(n+1)t| dt u=(n+1)t=

Γ(x+ 1)
(n+ 1)x+1 et x+ 1 > 1 donc

∑ 1
(n+ 1)x+1 CV

Exercice 115 [sujet] 1. sin t
sh t −−−→

t→0
1 et sin t

sh t =
t→+∞

O(e−t)

2. Si t > 0, |e−2t| < 1 donc sin t
sh t = 2 sin t

et − e−t
= 2 sin(t)e−t 1

1 − e−2t
=

∑
n⩾0

2 sin(t)e−(2n+1)t

3. TITT avec
∫ +∞

0
| sin(t)e−(2n+1)t| dt ⩽

∫ +∞

0
te−(2n+1)t dt IPP= 1

(2n+ 1)2 et, pour la conclusion,
∫ +∞

0
sin(t)e−(2n+1)t dt =

Im
Ç∫ +∞

0
e−(2n+1−i)t dt

å
= Im 1

2n+ 1 − i

4. si n ∈ N, 1
(2n+ 1)2 + 1 ⩽

∫ n+1

n

2 dt
(2t+ 1)2 + 1 ⩽

1
(2n+ 3)2 + 1 et t 7→ 1

(2t+ 1)2 + 1 est intégrable sur R+ donc en

sommant, pour n ∈ N, on trouve I ⩽
∫ +∞

0

2 dt
(2t+ 1)2 + 1 ⩽ I − 1 et

∫ +∞

0

2 dt
(2t+ 1)2 + 1 =

[
arctan(2t+ 1)

]+∞

0
= π

4

Exercice 116 [sujet] Pour l’intégrabilité, sin t
et − 1 −−−→

t→0
1 et sin t

et − 1 =
+∞

o

Å 1
t2

ã
.

Puis S(t) =
+∞∑
n=1

sin(t)e−nt donc
∫ +∞

0
|fn(t)| dt ⩽

∫ +∞

0
te−nt dt = 1

n2 donc on a le résultat par TITT avec
∫ +∞

0
fn(t) dt =

Im
Ç∫ +∞

0
e−(n−i)t dt

å
= 1
n2 + 1

Exercice 117 [sujet] 1. ln(1 − t2) ln(t)
t2

∼
t→0

− ln(t) et ln(1 − t2) ln(t)
t2

−−−→
t→1

0 donc I existe.



2. On applique le TITT avec ln(1 − t2) ln(t)
t2

= −
+∞∑
n=1

t2n−2 ln(t)
n

pour t ∈]0, 1[ et
∫ 1

0
t2n−2 ln(t) dt IPP= 1

(2n− 1)2 .

Pour le calcul, comme 1
n(2n− 1)2 = 1

n
− 2

2n− 1+ 2
(2n− 1)2 , on trouve

n∑
k=1

1
k(2k − 1)2 = 2Hn−2H2n+2

( 2n∑
k=1

1
k2 −

n∑
k=1

1
(2k)2

)
−−−−−→
n→+∞

π2

4 − 2 ln(2) en utilisant Hn = ln(n) + γ + 0(1) et
+∞∑
k=1

1
k2 = π2

6 .

Exercice 118 [sujet] 1. On vérifie an = O

Å 1
n2

ã
donc

∑
an CV, (bn) CV vers l donc nα −−−−−→

n→+∞
λ = el > 0.

2. a) lim
t→0

1 − (1 − t)x

t
= x et 1 − (1 − t)x

t
∼

t→1

−1
(1 − t)−x

b) Pour t ∈]0, 1[, (1−t)x =
+∞∑
n=0

(−1)nx(x− 1) . . . (x− n+ 1)
n! tn donc 1 − (1 − t)x

t
=

+∞∑
n=1

(−1)n+1x(x− 1) . . . (x− n+ 1)
n! tn−1

puis on applique le TITT avec un =
∫ 1

0
|fn(t)| dt = (−x)(1 − x) . . . (n− x− 1)

n× n! donc un+1

un
= 1 − x+ 2

n
+

O

Å 1
n2

ã
donc un ∼ λ

nx+2 et x+ 2 > 1.

Exercice 119 [sujet] 1. sinαx
ex − 1 =

x→+∞
o

Å 1
x2

ã
et lim

x→0

sinαx
ex − 1 = α

2. sinαx
ex − 1 =

+∞∑
n=1

sinαxe−nx si x > 0 puis TITT avec
∫ +∞

0

∣∣sinαxe−nx
∣∣ dx ⩽

∫ +∞

0
|α|xe−nx dx = |α|

n2 et enfin on

calcule
∫ +∞

0
sinαxe−nx dx = Im

Ç∫ +∞

0
e−(n−iα)x dx

å
= α

n2 + α2

3. Par comparaison à une intégrale I équivaut à
∫ +∞

0

α dt
α2 + t2

quand α tend vers +∞ puis lim
α→+∞

I(α) = π

2

Exercice 120 [sujet] On commence par montrer que S(t) =
+∞∑
n=1

e−nt

√
n

est continue sur R+∗ (TITT H2) par CVNTS de

R+∗ avec ∥fn∥∞,[a,b] ⩽ fn(a) =
n→+∞

o

Å 1
n2

ã
.

On applique ensuite le TITT avec
∫ +∞

0
fn(t) dt = 1

n3/2

Exercice 121 [sujet] 1. |fn(x)| ⩽ |an|b
n

n! e
−a =

n→+∞
o(|an|) donc CN sur tout segment de R+

2. Par TITT avec
∫ +∞

0
|fn(t)| dt IPP= |an|, on trouve

∫ +∞

0
f(t) dt =

+∞∑
n=0

an

Exercice 122 [sujet] 1. CM0 sur R+ et o
Å 1
t2

ã
en +∞

2. Le TITT ne s’applique pas car la série à trouver n’est pas ACV. f(t) = lim
n→+∞

n∑
k=0

(−1)k cos(t)e−(k+1)t puis∫ +∞

0
cos(t)e−(k+1)t dt = (k + 1)

1 + (k + 1)2 et on termine avec le TCD : |Sn(t)| =
∣∣∣∣∣cos(t)(1 − (−1)n+1e−(n+1)t

1 + et

∣∣∣∣∣ ⩽

2| cos(t)|
1 + et

Exercice 123 [sujet] 1. CV par CSSA mais pas ACV car 2n+ 1
(2n+ 1)2 + x2 ∼

n→+∞

1
2n

2. On applique le TCD à Sn(t) =
n∑

k=0
(−1)ke−(2k+1)t cos(xt) = e−t 1 − (−1)n+1e−(2n+2)t

1 + e−2t
cos(xt) donc |Sn(t)| ⩽

2e−t

1 + e−2t
intégrable sur R+. On termine avec

∫ +∞

0
e−(2k+1)t cos(xt) dt = 2k + 1

(2k + 1)2 + x2 .



Exercice 124 [sujet]
n∑

k=0
uk =

∫ π/2

0

n∑
k=0

(−1)k cosk(t) dt −−−−−→
n→+∞

∫ π/2

0

dt
1 + cos t par TCD en utilisant la majoration

|Sn(t)| =
∣∣∣∣1 − (−1)n+1 cos(n+ 1)t

1 + cos t

∣∣∣∣ ⩽ 2
1 + cos t . On trouve S =

∫ π/2

0

dt
2 cos2 t/2 =

ï
tan t

2

òπ/2

0
= 1

Exercice 125 [sujet] 1. (ln t)2

1 + t2
=

t→0
o

Å 1√
t

ã
donc l’intégrale de gauche CV et vaut celle de droite par u = 1

t
.

2. Si t ∈]0, 1[ alors (ln t)2

1 + t2
=

+∞∑
n=0

(−1)n(ln t)2t2n puis TITT avec
∫ 1

0

∣∣(−1)n(ln t)2t2n
∣∣ dt IPP= 2

(2n+ 1)3

Exercice 126 [sujet] 1. lim
0
f = 0 et lim

1
f = 1

2. si t ∈]0, 1[, f(t) =
+∞∑
n=0

ntn(ln t)2 puis TITT avec
∫ 1

0
|fn(t)| dt = n

∫ 1

0
tn(ln t)2 dt 2 IPP= 2n

(n+ 1)3 . On a donc I =

2
+∞∑
n=0

n

(n+ 1)3 = 2
(+∞∑

n=0

1
(n+ 1)2 −

+∞∑
n=0

1
(n+ 1)3

)

Exercice 127 [sujet] 1. ∥fn∥∞ ⩽
1
n2 donc CN sur R donc f est continue sur R

2. Par CSSA |f(x)| ⩽ 1
1 + x2 donc (avec la continuité précédente), f est intégrable sur R. On applique le TCD àRn(t) =

+∞∑
k=n+1

(−1)k

k2 + t2
: par CSSA, on a |Rn(t)| ⩽ 1

(n+ 1)2 + x2 ⩽
1

1 + x2 donc lim
n→+∞

∫
R
Rn(t) dt = 0 ce qui donne par

linéarité de l’intégrale sur la somme partielle de la série (donc une somme finie)
∫
R
f(t) dt =

+∞∑
n=1

(−1)n

∫
R

dx
n2 + x2 =

+∞∑
n=1

(−1)n

n
= − ln(2)

Exercice 128 [sujet] 1. F (t) = sin(πt)
1 − t

; pas de CU car Rn(t) = tn+1 sin(πt)
1 − t

donc Rn(1 − 1/n) −−−−−→
n→+∞

πe−1 donc
(∥Rn∥∞) ne tend pas vers 0

2. TITT avec
∫ 1

0
|fn(t)| dt =

∫ 1

0
tn sin(πt) dt

2 IPP
⩽

1
(n+ 1)(n+ 2)

Ç
2 +

∫ 1

0
tn+2 sin(πt) dt

å
⩽

3
(n+ 1)(n+ 2) ; on en

déduit
∑
n⩾0

∫ 1

0
fn(t) dt =

∫ 1

0

sin(πt)
1 − t

x=π(1−t)
d t =

∫ π

0

sin(x)
x

dx.

Exercice 129 [sujet] 1. 0 ⩽ un ⩽ π

∫ π

0
xn(1 − x) dx = π

Å 1
n+ 1 − 1

n+ 2

ã
2. Par TITT avec

∫ π

0
|xn sin(πx)| dx ⩽ π

1
(n+ 1)(n+ 2) puis changement de variable u = πx.

Exercice 130 [sujet]
∫ 1

0

ln t
t− 1 dt TITT=

∑
n⩾0

∫ 1

0
−tn ln(t) dt =

∑
n⩾0

1
(n+ 1)2 = π2

6

Exercice 131 [sujet] — Si I CV alors
n∑

k=0
uk

somme finie=
∫ 1

0
f(t)1 − tn+1

1 − t
dt et comme f ⩾ 0, f(t)1 − tn+1

1 − t
⩽

f(t)
1 − t

donc
n∑

k=0
uk ⩽ I donc la série CV (SATP dont les somme partielles sont majorées)

— Si
∑

un CV alors
∫ x

0

f(t)
1 − t

dt =
∫ x

0

+∞∑
n=0

f(t)tn dt que l’on peut intégrer terme à terme sur le segment [0, x] si

|x| < 1 par CVN car |f(t)tn| ⩽ ∥f∥∞x
n. On a donc

∫ x

0

f(t)
1 − t

dt =
+∞∑
n=0

∫ x

0
f(t)tn dt ⩽

+∞∑
n=0

un (car f ⩾ 0) donc I

CV (intégrale d’une fonction positive dont une primitive est majorée)

En cas de CV, on a I =
+∞∑
n=0

un par TITT (et H4 est la CV de
∑

un car f ⩾ 0).
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