DM8

(Extrait de CCINP MP 2021 maths 2)

Théorème de décomposition de Dunford

On admet le théorème suivant que l'on pourra utiliser librement :

Si A est une matrice de $\mathcal{M}_n(\mathbb{K})$ telle que son polynôme caractéristique χ_A soit scindé sur \mathbb{K} , alors il existe un unique couple (D, N) de matrices de $\mathcal{M}_n(\mathbb{K})$ vérifiant les quatre propriétés :

- 1. A = D + N;
- **2.** D est diagonalisable dans $\mathcal{M}_n(\mathbb{K})$ (pas nécessairement diagonale):
- **3.** N est nilpotente :
- 4. DN = ND.

De plus, D et N sont des polynômes en A et $\mathcal{X}_A = \mathcal{X}_D$.

Le couple (D, N) s'appelle la décomposition de Dunford de A.

I Quelques exemples

1. Donner le couple de la décomposition de Dunford d'une matrice A de $\mathcal{M}_n(\mathbb{K})$ lorsque A est diagonalisable, puis lorsque la matrice A de $\mathcal{M}_n(\mathbb{K})$ est nilpotente.

Justifier qu'une matrice trigonalisable vérifie l'hypothèse du théorème, admettant ainsi une décomposition de Dunford.

Le couple de matrices $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ est-il la décomposition de Dunford de la matrice $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$?

- **2.** Donner un exemple d'une matrice de $\mathcal{M}_2(\mathbb{R})$ n'admettant pas de décomposition de Dunford dans $\mathcal{M}_2(\mathbb{R})$.
- **3.** Soit la matrice $A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$.

Calculer son polynôme caractéristique \mathcal{X}_A , puis donner le couple (D, N) de la décomposition de Dunford de A (on utilisera le fait que $\mathcal{X}_A = \mathcal{X}_D$).

4. Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $A^2(A - I_n) = 0$.

Justifier que le polynôme X(X-1) est annulateur de la matrice A^2 .

Démontrer que le couple (D, N) de la décomposition de Dunford de la matrice A est donné par : $D = A^2$ et $N = A - A^2$.

II Un exemple par deux méthodes

Soit la matrice
$$A = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}$$
.

On note u l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice A.

On notera id l'application identité de \mathbb{R}^3 .

1. La matrice A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

Démontrer qu'on a la somme directe : $\mathbb{R}^3 = \ker(u - \mathrm{id}) \oplus \ker(u - 2\mathrm{id})^2$.

2. Déterminer une base (e_1,e_2,e_3) de \mathbb{R}^3 telle que :

$$\ker(u - \mathrm{id}) = \mathrm{Vect}(e_1), \ \ker(u - 2\mathrm{id}) = \mathrm{Vect}(e_2) \ \mathrm{et} \ \ker(u - 2\mathrm{id})^2 = \mathrm{Vect}(e_2, e_3).$$

Écrire la matrice B de u dans la base (e_1, e_2, e_3) de \mathbb{R}^3 .

- 3. Déterminer le couple de la décomposition de Dunford de la matrice B et en déduire le couple (on calculera ces matrices) de la décomposition de Dunford de la matrice A.
- 4. Décomposer en éléments simples la fraction $\frac{1}{(X-1)(X-2)^2}$ et en déduire deux polynômes U et V tels que :

$$(X-1)U(X) + (X-2)^2V(X) = 1$$
 avec $\deg(U) < 2$ et $\deg(V) < 1$

- **5.** On pose les endomorphismes : $p = V(u) \circ (u 2id)^2$ et $q = U(u) \circ (u id)$. Calculer p(x) + q(x) pour tout x vecteur de \mathbb{R}^3 .
 - Démontrer que p est le projecteur sur $\ker(u-id)$ parallèlement à $\ker(u-2id)^2$ et q est le projecteur sur $\ker(u-2id)^2$ parallèlement à $\ker(u-id)$.
- **6.** On pose d = p + 2q. Écrire la matrice de d dans la base (e_1, e_2, e_3) de \mathbb{R}^3 (de la question **II.2**). Déterminer le couple de la décomposition de Dunford de la matrice A en exprimant D et N comme polynômes de la matrice A (sous forme développée).

III Une preuve de l'unicité de la décomposition

- 1. Soit E un \mathbb{K} -espace vectoriel de dimension n. Soient u et v deux endomorphismes diagonalisables de E qui commutent. On note $\lambda_1, \lambda_2, \ldots, \lambda_p$ les valeurs propres de u et pour tout $1 \leq i \leq p$, $E_{\lambda_i}(u)$ le sous-espace propre de u associé a la valeur propre λ_i .
 - Démontrer que tout sous-espace propre de u est stable par v.
 - En déduire qu'il existe une base commune de diagonalisation pour u et v.
 - Pour tout $1 \leq i \leq p$, on pourra noter v_i l'endomorphisme induit par v sur $E_{\lambda_i}(u)$.
- 2. Soient A et B deux matrices diagonalisables de $\mathcal{M}_n(\mathbb{K})$ qui commutent. Démontrer que la matrice A-B est diagonalisable.
- 3. Soient A et B deux matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$ qui commutent, démontrer que la matrice A-B est nilpotente.
- **4.** Déterminer les matrices de $\mathcal{M}_n(\mathbb{K})$ qui sont a la fois diagonalisables et nilpotentes.
- 5. Dans cette question, on admet, pour toute matrice carrée A de $\mathcal{M}_n(\mathbb{K})$ à polynôme caractéristique scindé, l'existence d'un couple (D, N) vérifiant les conditions (1), (2), (3), (4) et tel que D et N soient des polynômes en A. Établir l'unicite du couple (D, N) dans la décomposition de Dunford.