Correction du DM8

(Extrait de CCINP MP 2021 maths 2)

Partie I:

- 1. Si A est diagonalisable, le couple est D = A et N = 0 alors que si A est nilpotente, le couple est D = 0 et N = A Si A est trigonalisable dans $\mathcal{M}_n(\mathbb{K})$ alors \mathcal{X}_A est scindé dans \mathbb{K} donc A admet une décomposition de Dunford On vérifie que $DN = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ alors que $ND = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$ donc ce n'est pas la décomposition de Dunford de A. En fait, $\mathcal{X}_A = (X 1)(X 2)$ est SARS donc la décomposition de Dunford de A est D = A, N = 0.
- 2. Il suffit de trouver une matrice dont le polynôme caractéristique n'est pas scindé dans \mathbb{R} : par exemple $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ pour laquelle $\mathcal{X}_A = X^2 + 1$. Comme $\mathcal{X}_A = \mathcal{X}_D$ si la décomposition existait, on aurait $\mathcal{X}_D = X^2 + 1$ qui n'est pas scindé dans \mathbb{R} donc D ne serait pas diagonalisable dans $\mathcal{M}_2(\mathbb{R})$.
- 3. On trouve $A = (X+1)^3$ qui est bien scindé sur \mathbb{R} . Comme A = A et que A = A et que
- 4. $A^2(A^2 I_3) = A^2(A I_3)(A + I_3) = 0$. Comme X(X 1) est SARS, A^2 est diagonalisable; on vérifie aussi $N^2 = 0$, A = N + D et ND = DN car N et D sont des polynômes en A. Le couple $(A^2, A A^2)$ est donc bien la décomposition de Dunford de A.

Partie II:

- 1. On vérifie $\mathcal{X}_A = (X-1)(X-2)^2$ et $\operatorname{rg}(A-2I_3) \neq 1$ donc $\dim(E_2(A)) \neq m_2(A)$ et A n'est pas diagonalisable On vérifie $E_1(A) = \operatorname{Vect}\{(0,1,1)\}$, puis $(A-2I_3)^2 = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix}$ donc $\ker(A-2I_3)^2 = \operatorname{Vect}\{(1,1,0),(0,0,1)\}$ puis, si $P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, on a $\det(P) = -1 \neq 0$ donc ((0,1,1),(1,1,0),(0,0,1)) est une base de \mathbb{R}^3 et on en déduit la décomposition $\mathbb{R}^3 = \ker(A-I_3) \oplus \ker(A-2I_3)^2$
- **2.** On prend $e_1 = (0, 1, 1)$, $e_2 = (1, 1, 0)$ et $e_3 = (0, 0, 1)$ par exemple et on obtient $\begin{bmatrix} B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ car on vérifie $u(e_3) = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = e_2 + 2e_3$.
- 3. La décomposition de Dunford de B est $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ (qui commutent bien); on en déduit celle de $A: A = P\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ $P^{-1} + P\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ Pour expliciter ces 2 matrices, on peut calculer P^{-1} ou utiliser que D et N deixent être des T de T

ou utiliser que D et N doivent être des polynômes en A (et raisonner un peu comme à la question $\mathbf{I.4}$): on a $\mathcal{X}_A = (X-1)(X-2)^2$ donc si on pose $N = (A-I_3)(A-2I_3)$, le théorème de Cayley-Hamilton donne N^2 ; on pose alors $D = A - N = -(A^2 - 4A + 2I_3)$ qui commute bien avec N. Reste à vérifier que D est diagonalisable: comme $\mathcal{X}_A = \mathcal{X}_D$, un polynôme annulateur de D SARS doit être (X-1)(X-2): on calcule donc $(D-I_3)(D-2I_3) = (A-3I_3)(A-I_3)(A-2I_3)^2 = 0$ donc D est bien diagonalisable.

- 4. $\frac{1}{(X-1)(X-2)^2} = \frac{1}{X-1} + \frac{-1}{X-2} + \frac{1}{(x-2)^2}$ et en réduisant au même dénominateur (et en identifiant les numérateurs), on trouve $1 = (X-2)^2 + (X-1)(3-X)$
- 5. Comme $(X-1)U(X)+(X-2)^2V(X)=1$, on a $\boxed{p(x)+q(x)=x \text{ pour tout } x\in\mathbb{R}^3}$ Si $x\in \ker(u-2id)^2$ alors $p(x)=V(u)\circ(u-2id)^2(x)=0$ et si $x\in \ker(u-id)$ alors $p(x)-x=q(x)=U(u)\circ(u-id)(x)=0$ donc $\boxed{p\text{ est le projecteur sur } \ker(u-id)\text{ parallèlement à } \ker(u-2id)^2}$ On fait de même pour q.
- 6. On a, par définition d'un projecteur et construction de \mathcal{B} qui est une base adaptée à $\mathbb{R}^3 = \operatorname{Im}(p) \oplus \ker(p) = \ker(q) \oplus \operatorname{Im}(q)$, $\operatorname{Mat}_{\mathcal{B}}(p) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $\operatorname{Mat}_{\mathcal{B}}(q) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ donc $\operatorname{Mat}_{\mathcal{B}}(d) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. On en déduit

que la décomposition de Dunford de u est u=d+n avec n=u-(p+2q). On retrouve alors $D=V(A)(A-2I_3)^2+2U(A)(A-I_3)=(A-2I_3)^2+2(3I_3-A)(A-I_3)=-A^2+4A-2I_3$ et $N=A-D=(A-I_3)(A-2I_3)$.

Partie III:

- 1. Fait en cours (ex II.15)
- 2. D'après la question précédente, il existe P inversible telle que $A = PD_1P^{-1}$ et $B = PD_2P^{-1}$ avec D_i diagonales. On a alors $A B = P(D_1 D_2)P^{-1}$ et comme $D_1 D_2$ reste diagonale, A B = A est diagonalisable
- 3. On a $A^k = B^h = 0$ donc, comme AB = BA, on a $(A B)^{k+h} = \sum_{i=0}^{k+h} (-1)^{k+h-i} \binom{k+h}{i} A^i B^{k+h-i}$. Si $i \ge k$ alors $A^i = 0$ donc $A^i B^{k+h-i} = 0$ et si $i \le k-1$, alors $k+h-i \ge h+1$ donc $B^{k+h-i} = 0$ donc $A^i B^{k+h-i} = 0$. Tous les termes de la somme sont nuls donc $(A B)^{k+h} = 0$ donc $A^i B^{k+h-i} = 0$.
- 4. Elles sont nulles : fait en cours (ex II.11)
- 5. Si on suppose que A possède deux décompositions de Dunford A = D + N = D' + N', on a D D' = N' N. Comme D et D' sont des polynômes en A, D et D' commutent donc D D' est diagonalisable. De même, N et N' sont des polynômes en A donc commutent et N' N est nilpotente. La matrice D D' = N' N est donc à la fois diagonalisable et nilpotente donc est nulle. On a donc D = D' et N = N' donc a décomposition de Dunford est unique si elle existe