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Partie I :
1. cours !

2. a) p(z) =
k∑

i=1
(ei|z)ei

b) i. M(p)Z =
k∑

i=1
ET

i ZEi puisque (ei|z) = ET
i Z et comme ET

i Z est un scalaire, on a
(
ET

i Z
)

Ei = Ei

(
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i Z
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donc M(p)Z =
k∑

i=1
EiE

T
i Z

ii. L’expression précédente étant valable pour tout Z, on a (par unicité de la matrice associée à un endomor-

phisme dans la base C) M(p) =
k∑

i=1
EiE

T
i

c) Soit z ∈ F , on a z = p(z) + (z − p(z)) avec p(z) ⊥ (z − p(z)) donc d’après le théorème de Pythagore
∥p(z)∥2 = ∥z∥2 − ∥z − p(z)∥2 et ∥p(z)∥ ⩽ ∥z∥2 (inégalité de Bessel)

d) On décompose de même x et y en x = x1 + x2 et y = y1 + y2 avec x1, y1 ∈ ker(p) et x2, y2 ∈ Im(p)
et on a (p(x)|y) = (x2|y1 + y2) = (x2|y2) car x2 ⊥ y1. On trouve de même (x|p(y)) = (x2|y2) donc
(p(x)|y) = (x − p(y))

3. a) On vérifie que M2 = M donc M est une matrice d’un projecteur p. On pourrait vérifier, en déterminant
des bases de chaque espace, que ker(p) et Im(p) sont orthogonaux mais on peut le justifier autrement : on
remarque que M est symétrique donc si (x, y) ∈ ker(p) × Im(p), on a p(x) = 0 et p(y) = y puis (x|y) = XT Y =
XT (MY ) = XT MT Y = (MX)T Y = (p(x)|y) = 0 donc ker(p) ⊥ Im(p) et p est un projecteur orthogonal

b) On a (x, y, z, t) ∈ ker(p) ⇔
ß

x − z = 0
y − t = 0 donc si u1 = (1, 0, 1, 0) et u2 = (0, 1, 0, 1), on a ker(p) = Vect{u1, u2} ;

de plus ces vecteurs sont libres donc forment une base de ker(p). On peut de plus remarquer qu’ils sont

orthogonaux donc 1√
2

(1, 0, 1, 0) et 1√
2

(0, 1, 0, 1) forment une base orthonormale de ker(p)

On a aussi rg(p) = 4 − dim(ker(p)) = 2 (ce qui est conforme avec Tr(p) = rg(p) pour un projecteur), les deux
vecteurs v1 = 1

2(1, 0, −1, 0) et v2 = 1
2(0, 1, 0, −1) sont deux vecteurs libres de Im(p) donc en forment une base.

Ils sont orthogonaux donc une base orthonormale de Im(p) est formée de 1√
2

(1, 0, −1, 0) et 1√
2

(0, 1, 0, −1)

4. a) λ ̸= 0 donc u = 1
λ

p ◦ r(u) ∈ Im(p) = H et p(r(u) − λu) = λu − λp(u) = 0 car u ∈ H donc p(u) = u. On a donc
r(u) − λu ∈ ker(p) = H⊥.

b) On en déduit 0 = (u|r(u) − λu) donc λ∥u∥2 = (r(u)|u) = (r2(u)|u) = (r(u)|r(u)) d’après I.2.d appliqué à r.
On conclut λ∥u∥2 = ∥r(u)∥2

c) On a λ∥u∥2 = ∥r(u)∥2 donc, comme ∥u∥2 > 0 on a λ ⩾ 0. Avec I.2.c appliqué à r, on a λ∥u∥2 = ∥r(u)∥2 ⩽ ∥u∥2

donc (1 − λ)∥u∥2 ⩾ 0 puis λ ⩽ 1, toujours car ∥u∥2 > 0.
5. a) On a, par commutativité de p et r, (p ◦ r)2 = p2 ◦ r2 = p ◦ r donc p ◦ r est un projecteur

b) Si x ∈ ker(p) + ker(r) alors x = a + b avec p(a) = r(b) = 0 donc p ◦ r(x) = r(p(a)) + p(r(b)) = 0, ce qui donne
ker(p) + ker(r) ⊂ ker(p ◦ r). Réciproquement, si x ∈ ker(p ◦ r), alors p(r(x)) = 0 donc r(x) ∈ ker(p) ; on écrit
alors x = r(x) + (x − r(x)) et comme r(x − r(x)) = r(x) − r2(x) = 0, on a x − r(x) ∈ ker(r), on en déduit
x ∈ ker(p) + ker(r) puis ker(p ◦ r) = ker(p) + ker(r)
Si y ∈ Im(p ◦ r) alors y = p(r(a)) ∈ Im(p) et par commutativité, on a aussi y = r(p(a)) ∈ Im(r) donc
Im(p ◦ r) ⊂ Im(p) ∩ Im(r). Réciproquement, comme p et r sont des projecteurs, si y ∈ Im(p) ∩ Im(r) alors on
a y = p(y) = r(y), ce qui donne y = p ◦ r(y) ∈ Im(p ◦ r) puis Im(p ◦ r) = Im(p) ∩ Im(r)

c) Soit x ∈ ker(p◦r) et y ∈ Im(p◦r) = Im(p)∩Im(r), on peut écrire x = a+b avec p(a) = 0 et r(b) = 0 ; on a alors
(x|y) = (a|y)+(b|y) = 0 car p et r sont des projecteurs orthogonaux donc ker(p)⊥ = Im(p) et ker(r)⊥ = Im(r).
On en déduit bien que p ◦ r est un projecteur orthogonal

6. a) Les trois premières égalités découlent de Q2 = Q. Comme la base choisie est orthonormale, on a qi,j =
(ei|q(ej)) = (q(ei)|ej) d’après I.2.d donc Q est symétrique, ce qui donne les trois autres relations.



b) On raisonne par implications « circulaires » :

i) ⇒ ii) PQ =
Å

A B
0 0

ã
donc Xp◦r = Xm−kXA. Ainsi, si Sp(p ◦ q) ⊂ {0, 1} alors Sp(A) ⊂ {0, 1}. Comme A est

symétrique réelle d’après la question précédente, A est diagonalisable et X(X − 1) annule donc A. Mais
0 = A2 − A = −BC = −CT C donne donc CT C = 0

ii) ⇒ iii) On a Tr(CT C) = 0 donc (produit scalaire canonique sur Mm−k,k(R)), C = 0
iii) ⇒ iv) Vérifier PQ = QP en utilisant C = 0 donc B = CT = 0.

iv) ⇒ i) D’après I.5, p ◦ r est un projecteur (orthogonal) donc X2 − X annule p ◦ r et Sp(p ◦ r) ⊂ {0, 1}

Partie II :
1. min

x∈E
∥f(x) − v∥ = min

y∈Im(f)
∥y − v∥ = d(v, Im(f)) = ∥πIm(f)(v) − v∥ si πIm(f)(v) est le projeté orthogonal de v sur

Im(f). Comme πIm(f)(v) ∈ Im(f), il existe x0 ∈ E tel que πIm(f)(v) = f(x0) donc min
x∈E

∥f(x) − v∥ = ∥f(x0) − v∥

2. d(v, Im(f)) est atteinte en un unique vecteur de Im(f) qui est πIm(f)(v) et si f est injective, πIm(f)(v) admet un
unique antécédent x0 par f donc x0 est l’unique pseudo-solution de (1)

3. x0 est une pseudo-solution de (1) si et seulement si f(x0) = πIm(f)(v) donc si et seulement si f(x0) ∈ Im(f) (ce qui
est évident) et v − f(x0) ∈ Im(f)⊥, ce qui équivaut à (v − f(x0)|f(x)) = 0 pour tout x de E

4. (f(x)|f(x0) − v) = (XA)T (AX0 − V ) donc x0 est une pseudo-solution de (1) si et seulement si pour tout X, on a
XT (AT AX0 − AT V ) = 0, ce qui signifie que le vecteur AT AX0 −T AV est orthogonal à tout vecteur X donc est
nul. On en déduit que x est pseudo-solution de (1) si et seulement si AT AX0 = AT V

5. AT A =

Ñ
3 0 −3
0 6 0

−3 0 3

é
donc AT AX0 = AT V ⇔

ß
x − y = 0
6y = 3 , si X0 =

Ñ
x
y
z

é
; donc l’ensemble des pseudo-

solutions est
ßÅ

x,
1
2 , x

ã
, x ∈ R

™
= 1

2(0, 1, 0) + Vect{(1, 0, 1)}

6. a) Si f est l’endomorphisme canoniquement associé à A =

Ö
a1 b1
...

...
an bn

è
∈ Mn,2(R) et v le vecteur de Rn dont la

matrice dans la base canonique est V =
(
c1 . . . cn

)T ∈ Mn,1(R) alors la question est équivalente à la re-
cherche de (λ, µ) ∈ R2 tel que ∥f(λ, µ)−v∥2 soit minimale donc à la recherche des pseudo-solution de f(λ, µ) = v

b) f est injective si et seulement si ker(f) = {0}, si et seulement si rg(f) = 2 donc si et seulement si a et b sont libres

c) On vérifie que AT A =
Å

∥a∥2 (a|b)
(a|b) ∥b∥2

ã
et AT V =

Å
(a|c)
(b|c)

ã
donc AT A

Å
λ
µ

ã
= AT V ⇔


λ = (a|c)∥b∥2 − (a|b)(a|c)

∥a∥2∥b∥2 − (a|b)2

µ = ∥a∥2(b|c) − (a|b)(a|c)
∥a∥2∥b∥2 − (a|b)2

le dénominateur étant non nul (strictement positif) par caractérisation de l’égalité dans l’inégalité de Cauchy-
Schwarz.

Partie II :

1. a) On commence par décomposer F = Im(f)
⊥
⊕ (Im f)⊥ donc on peut écrire y = z + y′ avec y′ ∈ (Im f)⊥ et

z ∈ Im(f). Il existe donc u ∈ E tel que z = f(u). Cette fois, on décompose E = ker(f)
⊥
⊕ (ker f)⊥ donc

on peut écrire u = x + x′ avec x ∈ (ker f)⊥ et x′ ∈ ker(f). On a donc z = f(u) = f(x). Finalement, on a
y = f(x) + y′ avec x ∈ (ker f)⊥ et y′ ∈ (Im f)⊥

b) Supposons avoir deux décompositions de y = f(x) + y′ = f(x′) + y′′ avec (x, x′) ∈
(
(ker f)⊥)2 et (y′, y′′) ∈(

(Im f)⊥)2 ; on a alors f(x − x′) = y′′ − y′ ∈ (Im f) ∩ (Im f)⊥ = {0} donc y′ = y′′ et f(x − x′)0. On en déduit
x − x′ ∈ (ker f) ∩ (ker f)⊥ et x = x′. Ainsi x et y′ sont uniques

c) Si y1 = f(x1) + y′
1 et y2 = f(x2) + y′

2 avec (x1, x2) ∈
(
(ker f)⊥)2 et (y′

1, y′
2) ∈

(
(Im f)⊥)2 et si (α, β) ∈ R2

alors αy1 + β2 = f(αx1 + βx2) + (αy′
1 + βy′

2) avec αx1 + βx2 ∈ (ker f)⊥ et αy′
1 + βy′

2 ∈ (Im f)⊥. On en déduit
g(αy1 + βy2) = αx1 + βx2 = αg(y1) + βg(y2) donc g ∈ L(F, E)



2. Si y ∈ ker(g) alors y = f(g(y)) + y′ = y′ donc y ∈ (Im f)⊥ et si réciproquement, on a y ∈ (Im f)⊥, on peut écrire
y = f(0) + y avec 0 ∈ (ker f)⊥ donc g(y) = 0. On a donc ker(g) = (Im f)⊥

D’autre part, par définition de g, on a g(y) = x ∈ (ker f)⊥ donc Im(g) ⊂ (ker f)⊥. De plus, comme g ∈ L(F, E), le
théorème du rang donne rg(g) = dim(F ) − dim(ker g) = dim(F ) − dim(Im f)⊥ = dim(F ) − dim(F ) + rg(f) = rg(f)
et dim(ker f)⊥ = dim(E) − dim(ker f) = rg(f) donc rg(g) = dim(ker f)⊥ et Im(g) = (ker f)⊥

3. a) Tout d’abord, g ◦ f est bien un endomorphisme de E. Si x = x0 + x1 avec x0 ∈ ker(f) et x1 ∈ (ker f)⊥ alors
f(x) = f(x1) + 0 et 0 ∈ (Im f)⊥ donc g ◦ f(x) = x, ie g ◦ f est le projecteur orthogonal sur (ker f)⊥

b) De même, on a f ◦ g ∈ L(F ) et si y ∈ F , on peut écrire y = f(x) + y′ avec x = g(y) ∈ (ker f)⊥ et y′ ∈ (Im f)⊥ ;
on en déduit que la décomposition de y selon F = Im(f)

⊥
⊕ (Im f)⊥ est y = f(g(y)) + y′, ce qui signifie que

f ◦ g est le projecteur orthogonal sur Im(f)

4. On a Im(f) = Vect{(1, 0), (1, 1), (0, 1)} = R2 donc (Im f)⊥ = {0} et ker(f) = Vect{((1, −1, 1)} ce qui donne
(ker f)⊥ = {(x, y, z) ∈ R3, x − y + z = 0}. Si u = (x, y) ∈ R2, on doit écrire u = f(α, β, γ) + 0 avec la condition

α − β + γ = 0, ie

 x = α + β
y = β + γ
0 = α − β + γ

⇔

 α = (2x − y)/3
β = (x + y)/3
γ = (−x + 2y)/3

On en déduit g(x, y) = 1
3(2x − y, x + y, −x + 2y) et

B = MatBc
(g) = 1

3

Ñ
2 −1
1 1

−1 2

é
On peut alors vérifier AB = I2 qui est la matrice du projecteur orthogonal sur Im(f) = R2 et BA = 1

3

Ñ
2 1 −1
1 2 1

−1 1 2

é
est la matrice du projecteur orthogonal sur (ker f)⊥.


