
Correction DM11
(Extrait de Centrale PC 2023 maths 2)

Partie I.A

1. si 0 < |x| < 1 alors
∣∣∣∣∣
(

n+1
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)
xn+1(

n
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)
xn

∣∣∣∣∣ = n + 1
n + 1 − k

|x| −−−−−→
n→+∞

|x| < 1 donc, d’après la règle de d’Alembert, (SATP) la

série
∑Ç

n

k

å
xn est ACV (elle est ACV aussi pour x = 0 bien sûr).

2. Pour k = 0 et |x| < 1, on a 1
1 − x

=
+∞∑
n=0

xn et
Ç

n

0

å
= 1 donc le résultat est vrai.

Si on suppose, pour |x| < 1, xk

(1 − x)k+1 =
+∞∑
n=0

Ç
n

k

å
xn alors xk+1

(1 − x)k+2 = xk

(1 − x)k+1 × x

1 − x
. On pose alors

an =
Ç

n

k

å
xn et bn =

ß
0 si n = 0

xn si n ⩾ 1 de sorte que x

1 − x
=

+∞∑
n=0

bn. On a donc xk+1

(1 − x)k+2 =
(+∞∑

n=0
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)
×
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)
.

Les deux séries étant ACV pour |x| < 1, par produit de Cauchy, on a xk+1

(1 − x)k+2 =
+∞∑
n=0

cn avec cn =
n∑

h=0
ahbn−h.

On a donc c0 = 0 =
Ç

0
k + 1

å
et, pour n ⩾ 1, cn =
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Ç
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, par

télescopage, car
Ç

0
k + 1

å
= 0. On a donc bien xk+1

(1 − x)k+2 =
+∞∑
n=0

Ç
n

k + 1

å
xn si |x| < 1.

Partie I.B
1. On pose un(x) = nkxn et on applique le théorème de dérivation :

H1 : les fonctions un sont C1 sur ] − 1, 1[.

H2 : si |x| < 1 alors nkxn =
n→+∞

o

Å 1
n2

ã
donc

∑
nkxn est ACV et

∑
un CVS sur ] − 1, 1[.

H3 : si x ∈ [−a, a] ⊂] − 1, 1[ alors |u′
n(x)| = nk+1|x|n−1 ⩽ nk+1an−1 (indépendant de x) et nk+1an−1 =

n→+∞
o

Å 1
n2

ã
car |a| < 1. La série

∑
u′

n CVNTS de ] − 1, 1[.

On en déduit fk ∈ C1(] − 1, 1[) et, pour |x| < 1, f ′
k(x) =

+∞∑
n=0

nk+1xn−1

2. (H0, . . . , Hk) est une famille de k + 1 polynômes de Rk[X], de degrés échelonnés, donc est une base de Rk[X] ; ce
qui donne l’existence et l’unicité des αk,i (les coordonnées de de Xk dans la base (H0, . . . , Hk)).

3. On a Hi(0) = 0 pour i ⩾ 1 et H0(0) = 1 donc αk,0 = 0k = 0 Comme Hk est le seul polynôme de degré k, en
identifiant le coefficient dominant de Xk, on trouve αk,k = k!

4. On a Hi(j) =


0 si j ⩽ i − 1Ç
j

i

å
si j ⩾ i

donc en évaluant Xk en X = j, on trouve jk =
k∑

i=0
αk,iHi(j) =

j∑
i=0

αk,iHi(j) =

αk,jHj(j) +
j−1∑
i=0

αk,iHi(j) = αk,j +
j−1∑
i=0

αk,i

Ç
j

i

å
5. Rien n’interdit une fonction récursive assez inefficace :

def alpha (k , j ) :
i f k == 0 :

return 1
e l i f j == 0 :

return 0
else :

r = j ∗∗k
for i in range ( j ) :

r = r − binome ( j , i ) ∗ alpha (k , i )
return r



6. On a nk =
k∑

j=0
αk,jHj(n) donc fk(x) =

+∞∑
n=0

k∑
j=0

αk,jHj(n)xn

∑
finie
=

k∑
j=0

αk,j

+∞∑
n=0

Hj(n)xn puis Hj(n) =
Ç

n

j

å
donc

+∞∑
n=0

Hj(n)xn = xj

(1 − x)j+1 d’après I.A.2. On a donc fk(x) =
k∑

j=0
αk,j

xj

(1 − x)j+1 = 1
(1 − x)k+1

k∑
j=0

αk,jxj(1−x)k−j ,

ce qui donne l’existence des polynômes Pk et la relation souhaitée.

Reste l’unicité : si Qk est un autre polynôme tel que fk(x) = Qk(x)
(1 − x)k+1 sur ] − 1, 1[ alors Pk = Qk sur ] − 1, 1[

donc Pk = Qk car Pk − Qk s’annule sur ] − 1, 1[ donc possède une infinité de racines.
7. On peut commencer par calculer les coefficients de Xj(1 − X)k−j avant de faire une combinaison linéaire

def P( k ) :
L = [ 0 ] ∗ ( k+1)
for h in range ( k+1) :

M = [( −1) ∗∗ i ∗binome (k−j , i ) for i in range (k−j +1) ] # (1 − X)k−j

M = [ 0 ] ∗ j + M # Xj(1 − X)k−j

for i in range ( k+1) :
L [ i ] += alpha (k , j ) ∗M[ i ]

return L

8. On a f ′
k(x) =

+∞∑
n=0

nk+1xn−1 donc xf ′
k(x) = fk+1(x) donc x

Å
P ′

k(x)
(1 − x)k+1 + (k + 1)Pk(x)

(1 − x)k+2

ã
= Pk+1(x)

(1 − x)k+2 ce qui

donne, par unicité de Pk+1, Pk+1 = X(1 − X)P ′
k + (k + 1)XPk

9. P0 = 1 puis P1 = X donc P2 = X2 + X et P3 = X3 + 4X2 + X

10. On montre par récurrence sur k que Pk = Xk +Qk avec deg(Qk) ⩽ k−1 : évident pour k = 0 (ou 1). Si on suppose le
résultat vrai pour Pk alors Pk+1 = X(1−X)(kXk−1+Q′

k)+(k+1)(Xk+1+XQk) = Xk+1+X(1−X)Q′
k+(k+1)XQk

et deg(X(1 − X)Q′
k + (k + 1)XQk) ⩽ k. On en déduit que Pk est unitaire de degré k

11. On procède à nouveau par récurrence sur k : le résultat est évident pour k = 0 ; s’il est vrai pour Pk alors on
a (k + 1)xkPk

Å 1
x

ã
− xk−1P ′

k

Å 1
x

ã
= P ′

k(x) donc xk+2Pk+1

Å 1
x

ã
= (x − 1)xkP ′

k

Å 1
x

ã
+ (k + 1)xk+1Pk

Å 1
x

ã
=

(x − 1)
ï
(k + 1)xk+1Pk

Å 1
x

ã
− xP ′

k(x)
ò

+ (k + 1)Pk(x) = (x − 1) [(k + 1)Pk(x) − xP ′
k(x)] + (k + 1)Pk(x) = x(1 −

x)P ′
k(x) + (k + 1)xPk(x) = Pk+1(x)

12. Si Pk =
k∑

i=1
aiX

i (car Pk(0) = 0 si k ⩾ 1) alors xk+1Pk

Å 1
x

ã
=

k∑
i=1

aix
k+1−i j=k+1−i=

k∑
j=1

ak+1−jXj donc

aj = ak+1−j

Partie II.A.1

1. Comme |x| < 1, on a nxn

1 − xn
= o

Å 1
n2

ã
donc

∑ nxn

1 − xn
est ACV. Toujours avec |x| < 1, donc |xn| < 1, on a

nxn

1 − xn
= nxn

+∞∑
k=0

(xn)k =
+∞∑
k=0

nxn(k+1)

2. On utilise le deuxième résultat donné avec an,k = ixn(k+1) (la sommabilité a déjà été prouvée au dessus) :
+∞∑
n=0

nxn

1 − xn
=

+∞∑
k=0

+∞∑
n=0

nxn(1+k) et
+∞∑
n=0

nxn(1+k) =
+∞∑
n=0

n(xk+1)n = f1(xk+1) = xk+1

(1 − xk+1)2 . Reste à poser p = k + 1.

Partie II.A.2

1. 1
k3(k + 1) ∼ 1

k4 (SATP) donc un existe

2. On pose an,k =
{ n

k3(k + 1) si k ⩾ n

0 si k < n
et on applique le théorème de Fubini (le premier résultat rappelé puisque

an,k ⩾ 0) : an,k = 0 pour n > k donc
+∞∑
n=0

an,k =
k∑

n=0

n

k3(k + 1) = k(k + 1)
2k3(k + 1) = 1

2k2 donc (an,k)n,k⩾1 est sommable

et
+∞∑
n=0

un = π2
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Partie II.B.1

1.
∣∣∣∣12
∣∣∣∣ < 1 donc

+∞∑
j=0

bi,j = −1 +
+∞∑

j=i+1

1
2j−i

= −1 + 1/2
1 − 1/2 = 0 et

+∞∑
i=0

+∞∑
j=0

bi,j = 0

2.
+∞∑
i=0

bi,j = −1 +
j−1∑
i=0

1
2j−i

k=j−i= −1 +
j∑

k=1

1
2k

= −1 + 1
2 × 1 − (1/2)j

1 − 1/2 = 1
2j

et
+∞∑
j=0

+∞∑
i=0

bi,j = 1
1 − 1/2 = 2

3. Bien sûr que non
Partie II.B.2

1.
∣∣∣∣13
∣∣∣∣ < 1 donc

+∞∑
j=0

ci,j = i − 2i

+∞∑
j=i+1

3i−j k=j−i= i − 2i

+∞∑
k=1

3−k = i − 2i
1/3

1 − 1/3 = 0. On a donc
+∞∑
i=0

+∞∑
j=0

ci,j = 0

2. ci,j = 0 pour i > j donc la somme est finie et
+∞∑
i=0

ci,j = j − 2
j−1∑
i=0

i3i−j . On pose alors f(x) =
j−1∑
i=0

xi = 1 − xj

1 − x
pour

x ∈]1, +∞[ et on remarque que
+∞∑
i=0

ci,j = j − 2
3j−1 f ′(3) = j − 2

3j−1
−j3j−1(1 − 3) + (1 − 3j)

(1 − 3)2 = 3j − 1
2 × 3j−1

3. 3j − 1
2 × 3j−1 −−−−→

j→+∞

3
2 donc la série

∑
j⩾0

(+∞∑
i=0

ci,j

)
est grossièrement divergente.


