
Suites dans un espace
vectoriel normé

La notation K désigne soit le corps des nombres réels, soit le corps des nombres complexes.

I Normes
1. Définitions et exemples

Définition : Soit E un K-espace vectoriel. Une norme sur E est une application N définie sur E et à valeurs dans
R+ vérifiant les trois axiomes suivants :

i. ∀x ∈ E, N(x) = 0 ⇒ x = 0 (axiome de séparation)
ii. ∀x ∈ E, ∀λ ∈ K, N(λx) = |λ| × N(x) (positive homogénéité)
iii. ∀(x, y) ∈ E2, N(x + y) ⩽ N(x) + N(y) (inégalité triangulaire)

Un espace vectoriel normé est un espace vectoriel E muni d’une norme.

Remarque(s) :�
 �	I.1 Pour montrer que N définit une norme sur E, commencer par vérifier que E est un espace vectoriel,
que N est définie sur E et que N est à valeurs dans R+.�
 �	I.2 N(0) = N(0x) = 0 × N(x) = 0 donc l’axiome de séparation peut s’énoncer avec une équivalence.�
 �	I.3 On a aussi ∀(x, y) ∈ E2, |N(x) − N(y)| ⩽ N(x − y).

Exemple(s) :�
 �	I.4 Si E est un espace préhilbertien réel alors x 7→ ∥x∥ =
»

(x|x) est une norme sur E (norme
euclidienne).�
 �	I.5 N1 : A ∈ Mn,p(K) 7→

∑
1⩽i,j⩽n

|ai,j | est une norme sur Mn(K).

�
 �	I.6 N1 : P =
n∑

k=0
akXk 7→

n∑
k=0

|ak| et N : P 7→
∫ +∞

0
|P (t)|e−t dt sont deux normes sur K[X].

�
 �	I.7 Soit F l’ensemble des fonctions continues et intégrables sur I ; l’application f 7→ ∥f∥1 =
∫

I

|f | est
une norme sur F .

Définition : Soit (E, N) un espace vectoriel normé. L’application d : (x, y) ∈ E2 7→ N(y − x) est une distance sur
E ie une application de E2 dans R+ telle que

i. ∀(x, y) ∈ E2, d(x, y) = 0 ⇔ x = y.
ii. ∀(x, y) ∈ E2, d(x, y) = d(y, x).
iii. ∀(x, y, z) ∈ E3, d(x, y) ⩽ d(x, z) + d(z, y).

Remarque(s) :�
 �	I.8 Il existe des distances non associées à une norme : c/ex d(x, y) =
ß

1 si x ̸= y
0 si x = y
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Définition [I.1] : (Normes usuelles sur Kp)
Soit x = (x1, . . . , xp) ∈ Kp. On définit trois normes sur Kp en posant

∥x∥1 =
p∑

i=1
|xi|

∥x∥2 =

Ã
p∑

i=1
|xi|2

∥x∥∞ = max
1⩽i⩽p

|xi|

Remarque(s) :�
 �	I.9 Si E est un espace vectoriel de dimension finie et B = (e1, . . . , ep) une base de E, pour x = x1e1 +
· · ·+xpep, on peut définir trois normes en posant N1(x) = ∥(x1, . . . , xp)∥1, N2(x) = ∥(x1, . . . , xp)∥2
et N∞(x) = ∥(x1, . . . , xp)∥∞.

Définition [I.2] : Soient X un ensemble non vide et B(X,K) l’ensemble des fonction bornées sur X et à valeurs
dans K. On définit une norme sur B(X,K) en posant, pour f ∈ B(X,K),

∥f∥∞ = sup
x∈X

|f(x)|

Remarque(s) :�
 �	I.10 D’après le programme officiel, on peut utliser directement le résultat suivant : si A est une partie
non vide de R et k ∈ R+ alors sup(kA) = k sup(A) (éventuellement égaux à +∞ si A n’est pas
majorée).

2. Parties bornées

Définition : Soient (E, ∥ ∥) un espace vectoriel normé et A une partie de E. On dit que A est bornée si

∃M ∈ R+, ∀a ∈ A, ∥a∥ ⩽ M

Exemple(s) :�
 �	I.11 Toute réunion de 2 parties bornées (ou d’un nombre fini de parties bornées) est bornée.

Définition : Soient (E, ∥ ∥) un espace vectoriel normé, X un ensemble non vide quelconque et f : X → E. On dit
que f est bornée sur X si f(X) est une partie bornée de E, ie

∃M ∈ R+, ∀x ∈ X, ∥f(x)∥ ⩽ M

Remarque(s) :�
 �	I.12 L’ensemble B(X, E) des applications bornées sur X et à valeurs dans E est un espace vectoriel
sur lequel f 7−→ sup

x∈X
∥f(x)∥ est une norme.

Définition : Soient (E, ∥ ∥) un espace vectoriel normé et (un)n∈N une suite de vecteurs de E. On dit que (un)n∈N
est bornée si

∃M ∈ R+, ∀n ∈ N, ∥un∥ ⩽ M

Remarque(s) :�
 �	I.13 Cela signifie qu’une suite est bornée si et seulement si la partie {un, n ∈ N} est une partie bornée
de E.�
 �	I.14 L’ensemble des suites bornées de E est un sous-espace vectoriel de EN.
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3. Normes équivalentes

Définition : Soient N1 et N2 deux normes sur un espace vectoriel E. On dit que N1 et N2 sont équivalentes si

∃(α, β) ∈
(
R+∗)2

, ∀x ∈ E, αN1(x) ⩽ N2(x) ⩽ βN1(x)

Remarque(s) :�
 �	I.15 Dans cette définition il est indispensable de préciser que α > 0 (qui impliquera obligatoirement
β > 0).�
 �	I.16 On peut bien sûr intervertir N1 et N2 dans la définition précédente : on a, pour tout x ∈ E,
1
β

N2(x) ⩽ N1(x) ⩽ 1
α

N2(x).�
 �	I.17 La relation d’équivalence des normes est transitive : si N1 et N2 sont équivalentes et si N2 et N3
sont équivalentes alors N1 et N3 sont équivalentes.

Exemple(s) :�
 �	I.18 Vérifier que les normes usuelles sur Kn sont équivalentes.�
 �	I.19 Soit E =
{

f ∈ C1([0, 1],R), f(0) = 0
}

. Montrer que N1 : f 7→ ∥f + f ′∥∞ et N2 : f 7→ ∥f ′∥∞ sont

deux normes équivalentes sur E. On pourra vérifier f(x) = e−x

∫ x

0
et(f(t) + f ′(t)) dt si f ∈ E et

x ∈ [0, 1].�
 �	I.20 Montrer que f 7→ ∥f∥1 =
∫ 1

0
|f(t)| dt et ∥ ∥∞ ne sont pas équivalentes sur C0([0, 1],R).

Méthode : si N1 et N2 sont deux normes sur un espace vectoriel E.
⋄ Pour montrer que N1 et N2 sont équivalentes, on montre qu’il existe des constantes a et b telles

que , pour tout x ∈ E, on ait

N1(x) ⩽ aN2(x) ET N2(x) ⩽ bN1(x)

On a alors forcément a > 0 et b > 0 puis 1
a

N1(x) ⩽ N2(x) ⩽ bN1(x).

⋄ Pour montrer que N1 et N2 ne sont pas équivalentes, on cherche une suite de vecteurs non nuls
(xn)n∈N telle que

lim
n→+∞

N1(xn)
N2(xn) = +∞ OU lim

n→+∞

N2(xn)
N1(xn) = +∞

Propriété [I.3] : Soient N1 et N2 deux normes sur un espace vectoriel E. Si N1 et N2 sont équivalentes alors
1. si X est une partie de E,

X est bornée pour N1 si et seulement si X est bornée pour N2

2. si (un)n∈N ∈ EN est une suite de vecteurs de E,

(un)n∈N est bornée pour N1 si et seulement si (un)n∈N est bornée pour N2

Remarque(s) :�
 �	I.21 On peut même vérifier que N1 et N2 sont équivalentes si et seulement si toute partie X de E bornée
pour N1 et une partie bornée pour N2, ie les parties bornées pour N1 et N2 sont exactement les
mêmes.

Théorème [I.4] : (Équivalence des normes en dimension finie)
Si E est un espace vectoriel de dimension finie alors

toutes les normes sur E sont équivalentes.
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Conséquence [I.5] : Soient E un espace vectoriel normé de dimension finie p, B = (e1, . . . , ep) une base de E et

(un)n∈N une suite de EN telle que, pour tout n ∈ N, un =
p∑

i=1
ui(n)ei. Alors

la suite (un)n∈N est bornée si et seulement si les p suites (u1(n))n∈N, . . . , (up(n))n∈N sont bornées.

Remarque(s) :�
 �	I.22 Une suite de polynômes de Kp[X] est bornée si et seulement si les p + 1 suites de ses coefficients
sont bornées.�
 �	I.23 Une suite de matrices de Mp(K) est bornée si et seulement si les p2 suites de ses coefficients sont
bornées.

II Suites dans un espace vectoriel normé
1. Suites convergentes

Définition : Soient (E, ∥ ∥) un espace vectoriel normé, (un)n∈N ∈ EN une suite de vecteurs de E et ℓ ∈ E. On dit
que (un)n∈N converge vers ℓ (ou tend vers ℓ) si lim

n→∞
∥un − ℓ∥ = 0, ie

∀ε > 0, ∃n0 ∈ N, ∀n ∈ N, n ⩾ n0 ⇒ ∥un − ℓ∥ < ε

Si (un)n∈N admet une limite dans E, on dit que (un)n∈N est convergente.
Dans le cas contraire, on dit que (un)n∈N est divergente.

Remarque(s) :�
 �	II.1 La définition de limite dépend de la norme donc la nature et l’éventuelle limite d’une suite dé-

pendent de la norme de E : si on considère la suite de polynômes définie par Pn =
Å

X

2

ãn

alors

a) (Pn) tend vers 0 pour N0 : P 7→ |P (0)| +
∫ 1

0
|P ′(t)| dt.

b) (Pn) tend vers 1 pour N2 : P 7→ |P (2)| +
∫ 1

0
|P ′(t)| dt.

c) (Pn) diverge pour N4 : P 7→ |P (4)| +
∫ 1

0
|P ′(t)| dt.

Propriété [II.1] : (Unicité de la limite)
Soit (un) une suite de EN convergente. Le vecteur ℓ = lim

n→∞
un est alors unique.

Remarque(s) :�
 �	II.2 Dans cette dernière propriété, on suppose évidemment que la norme sur E est fixée : la limite est
donc unique pour une norme donnée sur E.

Exemple(s) :�
 �	II.3 Si A ∈ Mp(K) alors An = A + 1
n

Ip tend vers A (quelle que soit la norme choisie sur Mp(K))�
 �	II.4 Toute matrice de Mp(K) est limite d’une suite de matrices inversibles.

Propriété [II.2] : Soit (un)n∈N une suite de vecteurs de E, espace vectoriel muni d’une norme ∥ ∥, et ℓ ∈ E.

Si la suite (un)n∈N converge vers ℓ alors la suite réelle (∥un∥)n∈N converge vers le réel ∥ℓ∥.
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Remarque(s) :�
 �	II.5 La réciproque de cette propriété est bien sûr fausse.�
 �	II.6 On peut utiliser cette propriété par contraposée : si la suite réelle (∥un∥) diverge alors la suite de
vecteurs (un) diverge aussi.

Conséquence [II.3] : Soit (un) une suite de EN. Si (un) est convergente alors (un) est bornée.

Remarque(s) :�
 �	II.7 Dans cette propriété, la norme est toujours la même : si (un) converge pour une norme N sur E
alors la suite (un) est bornée pour cette même norme N .

Propriété [II.4] : Soit (un)n∈N une suite de EN qui converge vers ℓ ∈ E. Toute suite extraite de (un) converge
aussi vers ℓ.

Exemple(s) :�
 �	II.8 Soit A ∈ Mp(K). On suppose que la suite (An) converge vers B ∈ Mp(K). Alors B est une matrice
de projecteur.

Propriété [II.5] : Soient N1 et N2 deux normes sur un espace vectoriel E et (un)n∈N une suite de vecteurs de E.
Si N1 et N2 sont équivalentes alors

(un)n∈N converge vers ℓ pour N1 si et seulement si (un)n∈N converge vers ℓ pour N2.

Remarque(s) :�
 �	II.9 On peut aussi prouver que N1 et N2 sont équivalentes si et seulement si toute suite convergente
pour N1 est aussi une suite convergente pour N2.�
 �	II.10 Cette propriété peut aussi servir à prouver que deux normes ne sont pas équivalentes : si on trouve
une suite (un) qui converge pour N1 et pas pour N2 (ou qui convergent pour les deux normes mais
pas vers la même limite) alors les normes N1 et N2 ne sont pas équivalentes.
En étudiant (fn)n∈N où fn(t) = tn, montrer que ∥ ∥1 et ∥ ∥∞ ne sont pas équivalentes sur C0([0, 1],R).

Théorème [II.6] : Soient E un espace vectoriel de dimension finie, N1 et N2 deux normes sur E, (un)n∈N une
suite de EN et ℓ ∈ E.

(un)n∈N converge vers ℓ pour N1 si et seulement si (un)n∈N converge vers ℓ pour N2

Remarque(s) :�
 �	II.11 Cela signifie que, si E est de dimension finie, la nature de la suite (un)n∈N et la valeur de sa
limite (si elle existe) ne dépendent pas de la norme sur E que l’on choisit.

Conséquence [II.7] : Soient E un espace vectoriel normé de dimension finie p, B = (e1, . . . , ep) une base de E et

(un)n∈N une suite de EN telle que, pour tout n ∈ N, un =
p∑

i=1
ui(n)ei. Alors

la suite (un)n∈N converge si et seulement si les p suites (u1(n))n∈N, . . . , (up(n))n∈N convergent.

Dans ce cas, on a

lim
n→∞

un =
p∑

i=1

(
lim

n→∞
ui(n)

)
ei
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Remarque(s) :�
 �	II.12 Une suite de polynômes de Kp[X] converge si et seulement si les p + 1 suites de ses coefficients
convergent.�
 �	II.13 Une suite de matrices de Mp(K) converge si et seulement si les p2 suites de ses coefficients
convergent.�
 �	II.14 Pour étudier une suite de vecteurs dans un espace vectoriel de dimension finie, il n’est pas néces-
saire de préciser la norme à utiliser.

Exemple(s) :�
 �	II.15 Soit A =
Å

1 1
0 1/2

ã
; étudier la nature des suites (An) et (Sn), où Sn =

n∑
k=0

Ak

k! .

�
 �	II.16 Pour A ∈ Mp(K), on définit Sn =
n∑

k=0

1
k!A

k. Montrer que (Sn)n∈N converge pour toute matrice A.

2. Propriétés des suites convergentes

Propriété [II.8] : (Linéarité de la limite)
Soit (E, ∥ ∥) un espace vectoriel normé.

1. Si (un) et (vn) sont deux suites de EN convergentes et (α, β) ∈ K2, alors la suite (αun + βvn) converge et

lim
n→∞

(αun + βvn) = α lim
n→∞

un + β lim
n→∞

vn

2. L’ensemble des suites de EN convergentes est un sous-espace vectoriel de EN sur lequel l’application définie
par (un) 7→ lim

n→∞
un est linéaire.

Attention : Ne pas écrire lim(αun + βvn) = α lim un + β lim vn sans avoir vérifié (avant) que (un) et
(vn) sont convergentes.

Propriété [II.9] : (Produit par une suite scalaire)
Soient (E, ∥ ∥) un K-espace vectoriel normé, (un) une suite de EN et (λn) une suite de KN. Si (un) et (λn) convergent
alors (λnun) converge et

lim
n→∞

λnun = lim
n→∞

λn × lim
n→∞

un

Attention : Les produits et quotients de suites n’ont pas de sens pour deux suites à valeurs vectorielles,
les limites infinies n’ont de sens que pour les suites à valeurs réelles.

Exemple(s) :�
 �	II.17 Soient (Ak)k∈N et (Bk)k∈N deux suites de Mn(K) qui convergent respectivement vers LA et LB .
Montrer que la suite (AkBk)k∈N converge vers LALB .
En déduire que si, pour tout k ∈ N, Ak est inversible et si la suite (A−1

k )k∈N converge alors LA est
inversible et lim

k→+∞

(
A−1

k

)
= L−1

A .�
 �	II.18 Soit A ∈ Mn(R) telle que 2A3 + A2 − 2A − In = 0. Justifier que la suite (Uk)k∈N définie par

Uk = 1
k + 1

k∑
j=0

Aj converge.

La suite (Ak)k∈N est elle convergente ?
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