Suites dans un espace
vectoriel normé

La notation K désigne soit le corps des nombres réels, soit le corps des nombres complexes.

I Normes

1. Définitions et exemples

Définition : Soit E' un K-espace vectoriel. Une norme sur E est une application N définie sur E et a valeurs dans
R vérifiant les trois axiomes suivants :

i. Vo € E,N(z) =0 = 2z =0 (axiome de séparation)
ii. Vo € E,VA € K, N(Az) = |\| x N(x) (positive homogénéité)
iii. V(z,y) € E*, N(x +y) < N(z) + N(y) (inégalité triangulaire)

Un espace vectoriel normé est un espace vectoriel £ muni d’une norme.

Remarque(s) :
Pour montrer que N définit une norme sur F, commencer par vérifier que E est un espace vectoriel,

que N est définie sur E et que N est & valeurs dans R*.

N(0) = N(0z) = 0 x N(z) = 0 donc 'axiome de séparation peut s’énoncer avec une équivalence.

On a aussi V(z,y) € E?,|N(z) — N(y)| < N(z — y).
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Exemple(s) :
Si E est un espace préhilbertien réel alors x — ||z|| = 4/(x|z) est une norme sur E (norme
euclidienne).
Ny:Ae M, ,(K)— Z |a;,;| est une norme sur M,, (K).
1<i,g<n

n n +oo
Ny :P= Zaka — Z lak| et N : P / |P(t)|e”" dt sont deux normes sur K[X].
k=0 k=0 0
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Soit F' ensemble des fonctions continues et intégrables sur I'; I'application f — || f|l1 = / |f| est
I

une norme sur F.

Définition : Soit (F, N) un espace vectoriel normé. I’application d : (z,y) € E* — N(y — ) est une distance sur
E ie une application de E? dans R telle que

i. V(z,y) € E* d(z,y) =02 =1y.
ii. ¥(z,y) € B d(z,y) = d(y, z).
iii. Y(z,y,2) € B3 d(x,y) < d(z,2) +d(z,v).

Remarque(s) :

lsix#y

1l existe des distances non associées & une norme : c/ex d(x,y) = { 0siz=y
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Définition [I.1] : (Normes usuelles sur K?)
Soit & = (z1,...,xp) € KP. On définit trois normes sur K en posant

P
Izl =) il
i=1

2l =

[2]loo = max ||

1<i<p
Remarque(s) :
Si E est un espace vectoriel de dimension finie et B = (e1,...,ep,) une base de E, pour & = z1e1 +
-+ xpep, on peut définir trois normes en posant Ny (x) = |[(21,...,2p)|l1, Na(z) = || (z1, ..., 2p)|l2

et Noo(2) = ||(z1,- -+, Zp) || co-

Définition [I.2] : Soient X un ensemble non vide et B(X,K) l'ensemble des fonction bornées sur X et a valeurs
dans K. On définit une norme sur B(X,K) en posant, pour f € B(X,K),

[flloc = sup | f(2)]
zeX

Remarque(s) :

D’aprés le programme officiel, on peut utliser directement le résultat suivant : si A est une partie
non vide de R et k € R' alors sup(kA) = ksup(A) (éventuellement égaux & +oc si A n’est pas

majorée).

2. Parties bornées

Définition : Soient (E,||||) un espace vectoriel normé et A une partie de E. On dit que A est bornée si

M e RT,Va € A, |a| < M

Exemple(s) :
Toute réunion de 2 parties bornées (ou d’un nombre fini de parties bornées) est bornée.

Définition : Soient (E, || ||) un espace vectoriel normé, X un ensemble non vide quelconque et f : X — E. On dit
que f est bornée sur X si f(X) est une partie bornée de FE, ie

IM e RT,Va € X, ||f(z)]| < M

Remarque(s) :

L’ensemble B(X, E) des applications bornées sur X et & valeurs dans E est un espace vectoriel
sur lequel f — sup || f(x)|| est une norme.
zeX

Définition : Soient (E, ||||) un espace vectoriel normé et (u,)nen une suite de vecteurs de E. On dit que (uy)nen

est bornée si
IM € RY ) Vn €N, |ju,|| < M

Remarque(s) :

Cela signifie qu’une suite est bornée si et seulement si la partie {u,,n € N} est une partie bornée
de FE.
L’ensemble des suites bornées de E est un sous-espace vectoriel de E™.
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3. Normes équivalentes

Définition : Soient Ni et Ny deux normes sur un espace vectoriel F/. On dit que N; et Ny sont équivalentes si

3o, B) € (R**)? Yz € E,aNy(z) < No(z) < BNy (z)

Remarque(s) :
Dans cette définition il est indispensable de préciser que a > 0 (qui impliquera obligatoirement
B> 0).
On peut bien siir intervertir N; et Ny dans la définition précédente : on a, pour tout =z € F,

LNala) € Malo) < 2N (o).

La relation d’équivalence des normes est transitive : si N1 et Ny sont équivalentes et si Ny et N3
sont, équivalentes alors N1 et N3 sont équivalentes.

Exemple(s) :
Vérifier que les normes usuelles sur K" sont équivalentes.
Soit E = {f € C([0,1],R), f(0) = 0}. Montrer que Ny : f  ||f + f'[loc et No : f = || f/[|oc sont
deux normes équivalentes sur E. On pourra vérifier f(z) = e /I e'(f(t)+ f/(t))dtsi f € Eet
x € [0,1]. ’

1
Montrer que f — ||f]1 = / |f(t)|dt et || |0 ne sont pas équivalentes sur C°([0, 1], R).
0

Méthode : si N7 et Ny sont deux normes sur un espace vectoriel F.

¢ Pour montrer que N et Ny sont équivalentes, on montre qu’il existe des constantes a et b telles
que , pour tout z € E, on ait

Ni(z) < aNz(x) ET Ny(z) < bNi(x)

1
On a alors forcément a > 0 et b > 0 puis ENl(x) < Na(z) < bNy(x).

¢ Pour montrer que N; et Ny ne sont pas équivalentes, on cherche une suite de vecteurs non nuls
(zn)nen telle que

1 - ou 1
oo No(@n) — T°° e N (2)

Propriété [I.3] : Soient N; et Ny deux normes sur un espace vectoriel E. Si Ny et N2 sont équivalentes alors

1. si X est une partie de F,

X est bornée pour N si et seulement si X est bornée pour N,

2. si (Up)nen € EN est une suite de vecteurs de E,

(un)nen est bornée pour Nj si et seulement si (uy, )nen est bornée pour Ny

Remarque(s) :

On peut méme vérifier que Ny et Ny sont équivalentes si et seulement si toute partie X de E bornée
pour N; et une partie bornée pour Ns, ie les parties bornées pour N et Ny sont exactement les
meémes.

Théoréme [1.4] : (Equivalence des normes en dimension finie)
Si E est un espace vectoriel de dimension finie alors

toutes les normes sur E sont équivalentes.
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Conséquence [I.5] : Soient E un espace vectoriel normé de dimension finie p, B = (e1, ..., €,) une base de E et
P

(tn ) nen une suite de EN telle que, pour tout n € N, u,, = Z u;(n)e;. Alors
i=1
la suite (u,),cn est bornée si et seulement si les p suites (u1(n))nen;, .- -, (Up(n))nen sont bornées.

Remarque(s) :

Une suite de polynémes de K,[X] est bornée si et seulement si les p + 1 suites de ses coefficients
sont bornées.

Une suite de matrices de M,,(K) est bornée si et seulement si les p? suites de ses coefficients sont
bornées.

II Suites dans un espace vectoriel normé

1. Suites convergentes

Définition : Soient (E, || ||) un espace vectoriel normé, (u,)nen € EN une suite de vecteurs de F et £ € E. On dit
que (un)nen converge vers ¢ (ou tend vers £) si lim |ju, — || =0, ie
n—oo

Ve > 0,3ng e N,Vn e Nyn = ng = |ju, — ]| <e

Si (4n)nen admet une limite dans E, on dit que (uy)nen est convergente.
Dans le cas contraire, on dit que (u,)nen est divergente.

Remarque(s) :
La définition de limite dépend de la norme donc la nature et 1’éventuelle limite d’une suite dé-

pendent de la norme de E : si on considere la suite de polynémes définie par P, = (5) alors
1
a) (P,) tend vers 0 pour Ny : P~ |P(0)] —|—/ |P'(t)] dt.
0
1
b) (P,) tend vers 1 pour Ny : P +— |P(2)] —|—/ |P'(t)] dt.
0

1
c) (P,) diverge pour Ny : P+ |P(4)] +/ |P'(t)] dt.
0

Propriété [II.1] : (Unicité de la limite)

Soit (u,) une suite de EN convergente. Le vecteur £ = lim wu,, est alors unique.
n—oo

Remarque(s) :

(I1.2) Dans cette derniére propriété, on suppose évidemment que la norme sur F est fixée : la limite est
donc unique pour une norme donnée sur E.

Exemple(s) :

1
(II.BD Si A e M,(K) alors A,, = A+ —1I, tend vers A (quelle que soit la norme choisie sur M, (K))
n

I1.4) Toute matrice de M, (K) est limite d’une suite de matrices inversibles.

Propriété [I1.2] : Soit (u,)nen une suite de vecteurs de E, espace vectoriel muni d’une norme || ||, et £ € E.

Si la suite (uy)nen converge vers £ alors la suite réelle (||uy,||)nen converge vers le réel ||£]|.
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Remarque(s) :

La réciproque de cette propriété est bien stir fausse.

(I1.6) On peut utiliser cette propriété par contraposée : si la suite réelle (||lu,||) diverge alors la suite de
vecteurs (u,,) diverge aussi.

Conséquence [I1.3] : Soit (u,) une suite de E". Si (u,,) est convergente alors (u,) est bornée.

Remarque(s) :

(I1.7) Dans cette propriété, la norme est toujours la méme : si (u,) converge pour une norme N sur E
alors la suite (u,) est bornée pour cette méme norme N.

Propriété [I1.4] : Soit (u,)nen une suite de EN qui converge vers £ € E. Toute suite extraite de (u,) converge
aussi vers £.

Exemple(s) :

I1.8) Soit A € M,(K). On suppose que la suite (A™) converge vers B € M, (K). Alors B est une matrice
de projecteur.

Propriété [I1.5] : Soient N; et Ny deux normes sur un espace vectoriel F et (uy,)nen une suite de vecteurs de E.
Si Ny et Ny sont équivalentes alors

(un)nen converge vers £ pour N si et seulement si (uy,)nen converge vers £ pour No.

Remarque(s) :

(I1.9) On peut aussi prouver que Ny et Ny sont équivalentes si et seulement si toute suite convergente
pour N est aussi une suite convergente pour Ns.

Cette propriété peut aussi servir a prouver que deux normes ne sont pas équivalentes : si on trouve
une suite (u,) qui converge pour Nj et pas pour Ny (ou qui convergent pour les deux normes mais
pas vers la méme limite) alors les normes N; et Ny ne sont pas équivalentes.

En étudiant (f,)nen olt f,,(t) = t", montrer que || ||1 et || ||oo ne sont pas équivalentes sur C°([0, 1], R).

Théoréme [I1.6] : Soient E un espace vectoriel de dimension finie, Ny et Ny deux normes sur E, (u,)nen une
suite de EN et ¢ € F.

(un)nen converge vers ¢ pour N si et seulement si (u,)nen converge vers £ pour N

Remarque(s) :

II.11) Cela signifie que, si E est de dimension finie, la nature de la suite (up)nen et la valeur de sa
limite (si elle existe) ne dépendent pas de la norme sur E que lon choisit.

Conséquence [I1.7] : Soient E un espace vectoriel normé de dimension finie p, B = (ey, ..., €p,) une base de E et

p
(un)nen une suite de E"N telle que, pour tout n € N, u,, = Z u;(n)e;. Alors
=1

la suite (uy,),en converge si et seulement si les p suites (u1(n))nen, - -, (Up(n))nen convergent.

Dans ce cas, on a
y4

Jm =3 (Jim ) e

i=1
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Remarque(s) :

I1.12) Une suite de polynémes de K,[X] converge si et seulement si les p 4 1 suites de ses coefficients
convergent.

I1.13) Une suite de matrices de M, (K) converge si et seulement si les p? suites de ses coefficients
convergent.

I1.14) Pour étudier une suite de vecteurs dans un espace vectoriel de dimension finie, il n’est pas néces-
saire de préciser la norme a utiliser.

Exemple(s) :
. 11N L N — AF
Soit A = 0 1/2 ; étudier la nature des suites (A") et (Sy,), ou Sp, = e
k=0

n

~ 1
Pour A € M, (K), on définit S,, = Z EAk' Montrer que (S, )nen converge pour toute matrice A.
k=0

2. Propriétés des suites convergentes

Propriété [I1.8] : (Linéarité de la limite)
Soit (E, | ||) un espace vectoriel normé.
1. Si (uy) et (v,) sont deux suites de EN convergentes et (o, ) € K2, alors la suite (au, + Bv,) converge et

lim (au, + fv,) =« lim u, + 8 lim v,
n— oo n— oo n—00

2. L’ensemble des suites de EN convergentes est un sous-espace vectoriel de EN sur lequel Iapplication définie
par (u,) +— lim wu, est linéaire.
n—oo

Attention : Ne pas écrire lim(au,, + fv,) = alimu, + Blimv, sans avoir vérifié (avant) que (u,) et
(vn) sont convergentes.

Propriété [I1.9] : (Produit par une suite scalaire)
Soient (E, || ||) un K-espace vectoriel normé, (u,,) une suite de E™ et (\,) une suite de K. Si (uy,) et (\,) convergent
alors (A\,u,) converge et

lim Au, = lim A, x lim wu,
n— oo n— oo n—oo

Attention : Les produits et quotients de suites n'ont pas de sens pour deux suites & valeurs vectorielles,
les limites infinies n'ont de sens que pour les suites d valeurs réelles.

Exemple(s) :

Soient (Ag)ken et (Bk)ren deux suites de M, (K) qui convergent respectivement vers L et Lp.
Montrer que la suite (AgByg)ken converge vers LaLp.
En déduire que si, pour tout k € N, Ay, est inversible et si la suite (A,;l)keN converge alors L 4 est
inversible et lim (A;l) = LZI.
k— 400

Soit A € M, (R) telle que 24% + A% — 2A — I, = 0. Justifier que la suite (Uy)pen définie par
k

1 .
= jgo A7 converge.

La suite (A¥)gen est elle convergente ?

Uy
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