
Espaces vectoriels normés

I Suites scalaires
Exercice 1 [Solution]
Étudier les suites définies par u0 ∈ R et pour tout n ∈ N :

1. un+1 = u2
n − 2un + 2 ; un+1 = 2

1 + u2
n

; un+1 = 1 + 1
2019 sin(un)

2. (Suites homographiques) un+1 = 2un − 1
un + 4 ; un+1 = 5un − 3

un + 1 .

indication : si l’équation du second degré f(x) = x admet deux solutions a et b poser vn = un−a
un−b (ou l’inverse...) ; si

elle a une racine double a poser vn = 1
un−a et déterminer l’expression de un en fonction de n et u0.

Exercice 2 (Mines-Ponts PSI 2006) [Solution]
Étudier la suite (un) définie par u0 = 0 et un+1 = 1 − 1

3u2
n.

Exercice 3 (ENSEA MP 2007) [Solution]

Soit f une application de C dans C telle que : ∃k ∈
ò
0,

1
2

ï
, ∀(x, y) ∈ C2, |f(x) − f(y)| ⩽ k(|f(x) − x| + |f(y) − y|).

1. Montrer que l’équation f(x) = x admet au plus une solution.
2. Soit (un) définie par u0 ∈ C et un+1 = f(un). Montrer que (un) converge vers un point fixe de f .

indication : étudier la série
∑

(un+1 − un).

Exercice 4 (Mines-Ponts PC 2012) [Solution]
Soit (un) définie par u1 = α > 0 et un+1 = u2

n + 1
n + 1.

1. Montrer que les limites possibles de (un) sont 0, 1 et +∞.
2. On note EL = {α > 0, L = lim un} ; montrer que E0, E1 et E∞ sont des intervalles.
3. Montrer que [1, +∞[⊂ E∞ puis que E∞ est un ouvert.

indication : pour la fin si α ∈ E∞ alors un0 > 1 et un0 est une fonction continue de α.

II Normes
Exercice 5 [Solution]
Sur E = R2, montrer que N1 : (x, y) 7→ sup

t∈[0,1]
|tx + y| et N2 : (x, y) 7→ sup

t∈[−1,1]
|tx + y| sont des normes et dessiner leur

boule unité fermée.

Exercice 6 [Solution]

1. Sur E = R2, montrer que N : (x, y) 7→ sup
t∈R

∣∣∣∣x + ty

1 + t2

∣∣∣∣ définit une norme.

2. Dessiner la boule unité fermée.
indication : montrer que N(x, y) ⩽ 1 est équivalent au fait que deux polynômes de degré 2 sont de signe fixe.

Exercice 7 (Mines-Télécom PSI 2023) [Solution]
1. Soit N la norme définie sur R2 par N(x, y) = max

(
|y|,
∣∣∣x + y

2

∣∣∣ , |x + y|
)

. Représenter la boule unité pour cette
norme.

2. Soit E un R-espace vectoriel de dimension n. Soit (φ1, . . . , φp) une famille de formes linéaires sur E. À quelle
condition l’application N : R → R+ qui à x associe max

1⩽i⩽p
|φi(x)| est-elle une norme ?

Exercice 8 (CCINP PSI 2019) [Solution]

1. N0(f) =
∫ 1

0
|f(t)| dt, N1(f) =

∣∣∣∣∣
∫ 1

0
f(t) dt

∣∣∣∣∣ +
∫ 1

0
|f ′(t)| dt et N2(f) =

∣∣∣∣∣
∫ 1

0
f(t) dt

∣∣∣∣∣ +
∣∣∣∣∣
∫ 1

0
f ′(t) dt

∣∣∣∣∣ +
∣∣∣∣∣
∫ 1

0
f ′′(t) dt

∣∣∣∣∣
définissent-elles des normes sur E = C2([0, 1],R) ?

2. Montrer que ∀f ∈ E, ∃c ∈ [0, 1], f(c) =
∫ 1

0
f(t) dt.

3. Montrer que ∀f ∈ E, N0(f) ⩽ N1(f) ; peut-il y avoir égalité pour f ̸= 0 ?
4. Montrer qu’il n’existe aucun réel a tel que ∀f ∈ E, N1(f) ⩽ aN0(f).



Exercice 9 (Centrale PC 2014) [Solution]
Soient E un espace vectoriel normé, A une partie non vide bornée de E et L l’ensemble des applications lipschitziennes
de A dans E.

1. Montrer que si f ∈ L alors f est bornée.
2. Pour f ∈ L, on note c(f) = inf{k ∈ R+, ∀(x, y) ∈ A2, ∥f(x) − f(y)∥ ⩽ k∥x − y∥}. Justifier l’existence de c(f) et

montrer que f est c(f)-lipschitzienne.
3. Pour f ∈ L et a ∈ A, on note ∥f∥a = ∥f(a)∥ + c(f). Montrer que ∥ ∥a est une norme sur L.

Pour b ∈ A, trouver α tel que ∥ ∥a ⩽ α∥ ∥b.

Exercice 10 (Centrale PSI 2017) [Solution]
Soit E = {f ∈ C2([0, 1], f(0) = f ′(0) = 0}

1. Montrer que N(f) = sup
t∈[0,1]

|f ′′(t) − 2f ′(t) + f(t)| définit une norme sur E.

2. Soit h(t) = f(t)e−t avec f ∈ E ; montrer que ∀t ∈ [0, 1], h(t) =
∫ t

0
(t − u)h′′(u) du.

3. Trouver a > 0 tel que ∥f∥∞ ⩽ aN(f) pour tout f ∈ E et minimiser a.

Exercice 11 [Solution]
Soit E =

{
f ∈ C1([0, 1]), f(0) = 0

}
1. Montrer que N1 : f 7→ ∥f∥∞ + ∥f ′∥∞ est une norme sur E.

Existe-t-il une constante C telle que N1 ⩽ C∥ ∥∞ ? Même question pour ∥ ∥∞ ⩽ CN1 ?
2. Montrer que N2 : f 7→ ∥f + f ′∥∞ est une norme sur E. La comparer à ∥.∥∞.
3. Comparer N1 et N2.

indication : introduire l’équation différentielle y′ + y = g et calculer f en fonction de f + f ′.

Exercice 12 (CCP PC 2007) [Solution]
E = Rn[X] est muni d’une norme notée ∥.∥, issue d’un produit scalaire.

1. Montrer que ∀(P, Q) ∈ E2, ∥P + Q∥2 + ∥P − Q∥2 = 2
(
∥P∥2 + ∥Q∥2) (identité du parallélogramme)

2. Montrer que ∥P∥a =
n∑

k=0
|P (al)|, a0, a1,. . .,an étant n + 1 entiers distincts est une norme.

3. Trouver Pi tel que ∀(i, j), Pi(aj) = δi,j .
4. Montrer qu’il existe α et β tels que pour tout polynôme P de E, on a α∥P∥a ⩽ ∥P∥ ⩽ β∥P∥a.

Peut-on avoir α = β = 1 ?

5. Montrer que ∥P∥′
a =

Ã
n∑

k=0
P (ak)2 est une norme sur E.

6. Montrer qu’il existe γ et δ tels que pour tout polynôme P de E, on a γ∥P∥′
a ⩽ ∥P∥ ⩽ δ∥P∥′

a.
Peut-on avoir γ = δ = 1 ?

Exercice 13 (Mines-Ponts PSI 2018) [Solution]

Pour P =
n∑

k=0
pkXk ∈ Rn[X], on note N∞(P ) = sup

t∈[0,1]
|P (t)| et ∥P∥ =

n∑
k=0

|pk|. On admettra que N∞ et ∥ ∥ sont des

normes sur Rn[X] et on note En = {P ∈ Rn[X], ∥P∥ = 1}.
1. On pose an = inf

P ∈En

N∞(P ) ; calculer a0 et a1 puis montrer l’existence de an (on pourra utiliser la fonction id de
(Rn[X], N∞) vers (Rn[X], ∥ ∥)) et que an > 0.

2. Montrer que (an) est décroissante et converge vers 0.

Exercice 14 (Centrale PSI 2009) [Solution]
Soit (F1, . . . , Fp) une famille de sous-espaces d’un espace E normé de dimension finie n, vérifiant F1 ∩ · · · ∩ Fp = {0}.

1. Justifier que pour tout m ∈ E, d(m, Fi) = inf
h∈Fi

∥m − h∥ existe.

2. Montrer que N(m) =
p∑

i=1
d(m, Fi) est une norme sur E.

Exercice 15 [Solution]

Soit E l’ensemble des suites de RN bornées telles que u0 = 0. On pose N∞(u) = sup
n∈N

|un| et N(u) =
∑
n∈N

|un+1 − un|
2n

, pour

u ∈ E.



1. Montrer que N∞ et N sont des normes sur E telles que ∀u ∈ E, N(u) ⩽ 4N∞(u)
2. Montrer qu’il n’existe pas de constante C > 0 telle que N∞(u) ⩽ CN(u) pour toute suite u de E.

Exercice 16 [Solution]
Soit n ∈ N tel que n ⩾ 2.

1. Montrer qu’il n’existe pas de norme sur Mn(K) telle que ∀(A, B) ∈ Mn(K), ∥AB∥ = ∥BA∥.
2. Montrer qu’il n’existe pas de norme sur Mn(K) telle que deux matrices semblables aient toujours la même norme.

indication : utiliser que toute matrice de Mn(K) est limite d’une suite de matrices inversibles.

III Suites de vecteurs
Exercice 17 (Centrale PC 2008) [Solution]
Soit A ∈ Mp(R) telle que A = PDP −1 avec D une matrice diagonale à coefficients diagonaux strictement positifs.

1. Montrer que la suite X0 = Ip et ∀n ∈ N, Xn+1 = 1
2
(
Xn + AX−1

n

)
est définie et que Xn = PDnP −1 avec Dn

diagonale.
2. Montrer que (Xn) converge et que sa limite X vérifie X2 = A. On la note

√
A.

3. Montrer que si A est symétrique alors
√

A est symétrique.

Exercice 18 (CCP PSI 2018) [Solution]
Soient E un espace euclidien et u ∈ O(E).

1. Montrer que Im(v)⊥ = ker(v) où v = u − id.

2. Soit a ∈ E et xn = 1
n

n∑
k=1

uk(a) ; montrer que la suite (xn)n⩾1 converge.

Exercice 19 [Solution]
Soient E un espace vectoriel normé de dimension finie et u ∈ L(E) tel que la suite (up) soit bornée. (c’est une suite de
L(E))

1. Soit x0 ∈ E, montrer que la suite (uk(x0)) est bornée.
2. Soit x ∈ ker(u− id)2. Déterminer an et bn tels que un(x) = anu(x)+bnx et en déduire que ker(u− id)2 = ker(u− id)

puis E = ker(u − id) ⊕ Im(u − id).

3. Pour x0 ∈ E, on pose xn = 1
n + 1

n∑
k=0

uk(x0). Montrer que la suite (xn) converge.

Exercice 20 (Centrale PSI 2023) [Solution]

Soient E un espace vectoriel normé et u ∈ L(E) tel que ∀x ∈ E, ∥u(x)∥ ⩽ ∥x∥. On pose vn = 1
n + 1

n∑
k=0

uk.

1. Simplifier (u − id) ◦ vn

2. Montrer que ker(u − id) ∩ Im(u − id) = {0}
3. Si E est de dimension finie, montrer que ker(u − id) ⊕ Im(u − id) = E.
4. Est-ce encore valable en dimension infinie ?

indication : c’est faux : on peut utiliser u : P ∈ R[X] 7→
∫ x

0
P (t) dt et ∥P∥ = max |pk|

Exercice 21 (EIVP PSI 2017) [Solution]
Soit A ∈ Mn(R) telle que A3 = 1

3(A2 + A + In). Etudier la suite (Ak).
Caractériser géométriquement la matrice P = lim Ak.

Exercice 22 (CCINP PSI 2024) [Solution]

Soit a ∈ C, on pose Ma =

Ñ
0 0 a
1 0 0
1 1 0

é
.

1. a) Calculer le polynôme caractéristique Pa de Ma.
b) Effectuer la division euclidienne de 3Pa par P ′

a (P ′
a étant la dérivée de Pa).

c) En déduire les valeurs de a pour lesquelles Ma est diagonalisable.
2. a) Soit λ ∈ C une valeur propre de Ma telle que |λ| ⩾ 1.

Montrer que : |a| ⩾ |λ|
1 + |λ|

⩾
1
2 .



b) Montrer que pour |a| assez petit (Mn
a )n∈N converge vers 0.

Exercice 23 (CCP MP 2017) [Solution]
Soit E un espace préhilbertien réel. On dit que (xn) converge faiblement vers x si ∀y ∈ E, lim

n→+∞
(xn − x|y) = 0.

1. Montrer que la limite faible est unique si elle existe.
2. Montrer que si (xn) converge vers x (au sens habituel) alors (xn) converge faiblement vers x.
3. Montrer que (xn) converge vers x si et seulement si (xn) converge faiblement vers x et lim

n→+∞
∥xn∥ = ∥x∥.

4. Montrer qu’en dimension finie, ces deux modes de convergence sont équivalents.

Exercice 24 [Solution]
Soit A ∈ Mn(C), on pose ρ(A) = max

λ∈Sp(A)
|λ| (rayon spectral de A).

On va montrer que pour toute norme de E, on a lim
k→+∞

∥∥Ak
∥∥ 1

k = ρ(A).

1. Pour commencer, on considère la norme ∥A∥∞ = max
(i,j)

|ai,j |.

Montrer que si T est triangulaire et que ses coefficients diagonaux valent 1 alors lim
k→+∞

∥∥T k
∥∥ 1

k

∞ = 1.
indication : écrire T = In + N avec N = T − In (nilpotente) et utiliser la formule du binôme.

2. Montrer que si B est telle que ∀(i, j), |ai,j | ⩽ bi,j alors
∥∥Ak

∥∥
∞ ⩽

∥∥Bk
∥∥

∞.

3. Conclure en trigonalisant A

ρ(A) et la norme ∥ ∥∞.

4. En déduire le résultat pour une norme ∥ ∥ quelconque.
indication : commencer par justifier qu’il existe a, b > 0 tels que a∥Ak∥∞ ⩽ ∥Ak∥ ⩽ b∥Ak∥∞ en commençant par
vérifier que la suite (∥Ak∥−1Ak) est bornée.

Exercice 25 (CCP PSI 2009) [Solution]

Soit la matrice M(a) = (mi,j) ∈ Mn(K) définie par mi,j = aj , où a = (a1, . . . , an) ∈ Kn. On note α =
n∑

j=1
aj .

1. Calculer M(a)M(b). Trouver le noyau et l’image de M(a).
2. Trouver une CNS pour que M(a) soit la matrice d’un projecteur.
3. Montrer que {M(a), a ∈ Kn} est un espace vectoriel stable par produit dont on donnera une base et la dimension.

4. Montrer que exp(M(a)) = lim
n→+∞

n∑
k=0

M(a)k

k! et l’exprimer en fonction de eα et M(a).

Exercice 26 (Centrale PSI 2014) [Solution]
Pour A ∈ Mn(R), on note r(A) = max{|λ|, λ ∈ SpC(A)} et on suppose r(A) < 1.

1. Montrer que si A possède une seule valeur propre alors la suite (Ap) converge vers 0.
indication : que vaut (A − λIn)n ?

2. Montrer que si A est diagonalisable dans R alors la suite (Ap) tend vers 0.
3. Soir B ∈ Rn. Montrer que F : X ∈ Rn 7→ AX + B admet un unique point fixe L.
4. On pose X0 = B et Xp+1 = F (Xp). Montrer que (Xp) tend vers L si (Ap) tend vers 0.

Exercice 27 (Centrale PSI 2018) [Solution]

Soit A = (ai,j) ∈ Mn(R) à coefficients strictement positif telle que ∀i ∈ [[ 1, n ]] ,

n∑
j=1

ai,j = 1. On note α = min
1⩽i,j⩽n

ai,j .

Pour X ∈ R à coordonnées positives, on note max(X) et min(X) la plus grande et la plus petite des coordonnées de X.
1. Si X ∈ R est à coordonnées positives, montrer que min(AX) ⩾ α max(X).
2. Montrer que min(AX) ⩾ α max(X) + (1 − α) min(X) et max(AX) ⩽ α min(X) + (1 − α) max(X).
3. En déduire que la suite (Ap)p∈N converge et déterminer le rang de la matrice limite.

Exercice 28 (Centrale PSI 2019) [Solution]
Soient θ1, . . . , θp des réels de [0, 2π[ deux à deux distincts et m1, . . . , mp des entiers non tous nuls. On veut démontrer
que la suite

(
m1einθ1 + · · · + mpeinθp

)
n∈N ne tend pas vers 0. On raisonne par l’absurde

1. Soit Mn =

á
einθ1 . . . einθp

e2inθ1 . . . e2inθp

...
...

eipnθ1 . . . eipnθp

ë
et Y =

á
m1
m2
...

mp

ë
. Montrer que lim

n→+∞
MnY = 0.



2. Montrer qu’il existe ε > 0 et une suite extraite (Mφ(n)) de (Mn) telle que ∀n ∈ N, | det(Mφ(n))| > ε.
indication : il s’agit de montrer que det(Mn) ne tend pas vers 0. Faire apparaître un déterminant de Vandermonde
puis montrer que si x ∈]0, π[ alors (sin(nx))n∈N ne tend pas vers 0 (par l’absurde par exemple)

3. Conclure en utilisant le théorème de Cayley-Hamilton

Exercice 29 (Mines-Ponts PSI 2018) [Solution]
1. Montrer que si (un) est une suite d’un espace vectoriel normé E de dimension finie telle que

∑
∥un∥ converge alors∑

un converge.
indication : quasi hors-programme ! Il s’agit de montrer que la suite des sommes partielles de la série CV ; commencer
par le cas où la norme est ∥x∥∞ = max |αi| quand x =

∑
αiei avec (ei) base de E et dans le cas général, prouver

qu’il existe C > 0 telle que ∥x∥∞ ⩽ C∥x∥ pour tout x ∈ E.
2. Soit f une application k-lipschitzienne, avec k < 1. Montrer que la suite (un) définie par u0 ∈ E et un+1 = f(un)

converge et en déduire que f admet un unique point fixe.



Solutions

Exercice 1 [sujet] 1. a) On pose f(x) = x2 − 2x + 2 ; f(R) = [1, +∞[ et f est croissante sur cet intervalle donc
(un)n⩾1 monotone ; f(x) − x = (x − 1)(x − 2) donc si u1 ∈ [1, 2[, (un) décroît donc CV vers 1, si u1 = 2 alors
(un) et constante égale à 2 et si u1 > 2, (un) est croissante donc DV vers +∞.

b) f(x) = 2
1 + x2 décroît sur [0, 2] = f(R) donc (u2n) et (u2n+1) sont monotones et bornées donc CV vers l1 et

l2 ; f ◦ f(x) = x ⇔ (x − 1)(x2 + x + 2) = 0 donc l1 = l2 = 1 et (un) CV vers 1.

c) sin est 1-lip donc |un+1 − un| ⩽ 1
2018 |un − un−1| ⩽

Å 1
2018

ãn

|u1 − u0| donc
∑

(un+1 − un) est ACV et (un)

CV vers l’unique solution de x = 1 + 1
2018 sin(x).

2. a) x = 2x − 1
x + 4 ⇔ (x + 1)2 = 0, on pose vn = 1

1 + un
qui vérifie vn+1 = vn + 1

3 donc (vn) tend vers +∞ et

un = 1
vn

− 1 tend vers −1.

b) x = 5x − 3
x + 1 ⇔ (x − 1)(x − 3) = 0, on pose vn = un − 1

un − 3 qui vérifie vn+1 = 2vn donc (vn) tend vers +∞ et

un = 1 − 3vn

1 − vn
tend vers 3 sauf si u0 = 1 et dans ce cas (un) est constante égale à 1.

Exercice 2 [sujet] On pose f(x) = 1
3(3 − x2) ; [0, 1] est stable par f et f décroît sur cet intervalle donc (u2n) et (u2n+1)

sont monotones et bornées donc CV vers l1 et l2 qui vérifient f ◦ f(x) = x ; on vérifie que f(x) = x ⇔ x2 + 3x − 3 = 0

puis f ◦ f(x) = x ⇔ (x2 + 3x − 3)(x2 − 3x + 6) = 0 donc le seul point fixe de f ◦ f dans [0, 1] est x = −3 +
√

21
2 = l1 = l2

et (un) CV vers cette valeur.

Exercice 3 [sujet] 1. Si f(x) = x et f(y) = y alors on a |f(x) − f(y)| = |x − y| ⩽ 0.

2. Avec x = un et y = un−1, on obtient |un+1 − un| ⩽ k

1 − k
|un − un−1| donc |un+1 − un| ⩽

Å
k

1 − k

ãn

|u1 − u0| et
k

1 − k
< 1 donc

∑
(un+1 − un) est ACV

Exercice 4 [sujet] 1. Si (un) CV vers l alors l = l2 et comme un ⩾ 0 elle ne peut pas tendre vers −∞.
2. Si un(α) → l et un(β) → l et si α ⩽ γ ⩽ β, par récurrence sur n, on prouve un(α) ⩽ un(γ) ⩽ un(β) donc par

encadrement, on a un(γ) → l aussi donc les trois ensembles sont des intervalles.
3. Si α ⩾ 1 alors par récurrence, on a un ⩾ 1 puis (un) croît et comme u1 > 1 elle ne peut tendre ni vers 0, ni vers 1

donc elle DV vers +∞.
Si α ∈ E∞ alors il existe n0 tel que un0(α) ⩾ 2 et comme on vérifie que α 7→ un0(α) est continue, on a un0(x) > 1
si x est proche de α (|x − α| < η) ; la preuve précédente justifie ensuite que si un0(x) > 1 alors lim

n→+∞
un(x) = +∞.

On a donc ]α − η, α + η[⊂ E∞ qui est donc ouvert.

Exercice 5 [sujet] N1(x, y) existe car t 7→ tx + y est continue sur le segment [0, 1] donc bornée ; si N1(x, y) = 0 alors

∀t ∈ [0, 1], tx+y = 0 donc
ß

y = 0
x + y = 0 ⇒ x = y = 0 ; |tλx+λy| = |λ||tx+y| ⩽ |λ|N1(x, y) donc N1(λx, λy) ⩽ |λ|N1(x, y)

et on termine classiquement ; enfin |t(x + x′) + (y + y′)| ⩽ N1(x, y) + N1(x′, y′) donnera l’inégalité triangulaire ; on fait de
même pour N2.

Comme t 7→ tx + y est monotone sur [0, 1], N1(x, y) = max{|y|, |x + y|} ; on a donc N1(x, y) ⩽ 1 ⇔
ß

−1 ⩽ y ⩽ 1
−1 ⩽ x + y ⩽ 1

La boule unité fermée pour N1 est donc le parallélogramme délimité par les 4 droites y = ±1 et y = −x ± 1.
On trouve de même pour N2 le carré délimité par les 4 droites y = x ± 1 et y = −x ± 1.

Exercice 6 [sujet] 1. t 7→ x + ty

1 + t2 est continue sur R et tend vers 0 en ±∞ donc est bornée et N(x, y) existe ; si

N(x, y) = 0 alors ∀t ∈ R, x + ty = 0 donc x = y = 0 (prendre t = 0 et t = 1 par ex) ; |λx + tλy|
1 + t2 ⩽ |λ|N(x, y)

donne N(λx, λy) ⩽ |λ|N(x, y) et on termine classiquement ; enfin |x + x′ + t(y + y′)|
1 + t2 ⩽ N(x, y) + N(x′, y′) donnera

l’inégalité triangulaire.

2. N(x, y) ⩽ 1 ⇔ ∀t ∈ R, |x + ty| ⩽ (1 + t2) ⇔ ∀t ∈ R
ß

x + ty ⩽ 1 + t2

x + ty ⩾ −1 − t2 Ces deux polynômes gardent un signe

constant si et seulement si ∆1 = y2 + 4(1 − x) ⩽ 0 et ∆2 = y2 − 4(x + 1) ⩽ 0 ; la boule unité fermée est donc la

portion de plan délimitée par les deux paraboles x = 1 − y2

4 et x = −1 + y2

4 .



Exercice 7 [sujet] 1. N(x, y) ⩽ 1 ⇔

 −1 ⩽ y ⩽ 1
−1 ⩽ x + y ⩽ 1
−2 ⩽ 2x + y ⩽ 2

donc c’est l’intérieur d’un parallélogramme (la condition

−2 ⩽ 2x + y ⩽ 2 ne sert en fait à rien)

2. Seul N(x) = 0 ⇒ x = 0 pose problème : N(x) = 0 ⇔ x ∈
p⋂

i=1
ker(φi) donc N est une norme si et seulement si

p⋂
i=1

ker(φi) = {0}

Exercice 8 [sujet] 1. N0 oui (cours), N1 aussi car si N1(f) = 0 alors N0(f ′) = 0 donc f ′ = 0, f est constante donc

nulle car
∫ 1

0
f(t) dt est nulle aussi. Par contre N2 n’est pas une norme car on peut trouver f non nulle telle que

N2(f) = 0 (un polynôme de degré 3 par exemple)

2. f est continue sur [0, 1] donc m = min
[0,1]

f et M = max
[0,1]

f existe puis m ⩽
∫ 1

0
f(t) dt ⩽ M donc, d’après le TVI (f

continue),
∫ 1

0
f(t) dt est une valeur atteinte par f .

3. pour t ∈ [0, 1], on a f(t) = f(c) +
∫ t

c

f ′(u) du donc |f(t)| ⩽ |f(c)| +
∫ 1

0
|f ′(u)| du et en intégrant cette inégalité sur

[0, 1], on obtient N0(f) ⩽ N1(f). S’il y a égalité, il y a égalité dans toutes les inégalités précédentes : on en déduit
que f est constante et on vérifie que seule la constante nulle est solution.

4. Si une telle constante a existait, avec f(t) = tn, on a N0(f) = 1
n + 1 et N1(f) = 1

n + 1 +1 ce qui est absurde (quand
n tend vers +∞).

Exercice 9 [sujet] 1. Soit a ∈ A fixé, on a ∥f(x) − f(a)∥ ⩽ k∥x − a∥ ⩽ k(∥a∥ + M) avec A ⊂ Bf (0, M) donc
∥f(x)∥ ⩽ ∥f(a)∥ + k(∥a∥ + M) est bornée.

2. {k ∈ R+, ∀(x, y) ∈ A2, ∥f(x) − f(y)∥ ⩽ k∥x − y∥} est une partie de R non vide et minorée par 0 donc c(f) existe.
Il existe une suite (kn) de {k ∈ R+, ∀(x, y) ∈ A2, ∥f(x) − f(y)∥ ⩽ k∥x − y∥} qui converge vers c(f). Pour (x, y), on
a |f(x) − f(y)| ⩽ kn|x − y| qui donne |f(x) − f(y)| ⩽ c(f)|x − y| quand n → +∞.

3. Si ∥f∥a = 0 alors f(a) = 0 et c(f) = 0 ce qui donne f constante puis nulle ; pour le reste, il suffit de prouver
c(λf) = |λ|c(f) et c(f +g) ⩽ c(f)+c(g) : ∥λf(x)−λf(y)∥ = |λ|∥f(x)−f(y)∥ ⩽ |λ|c(f)∥x−y∥ donne c(λf) ⩽ |λ|c(f)
et on termine classiquement ; puis ∥f(x)+g(x)−f(y)−g(y)∥ ⩽ (c(f)+c(g))∥x−y∥ donne bien c(f +g) ⩽ c(f)+c(g).
On a ∥f(a)−f(b)∥ ⩽ c(f)∥a−b∥ donc ∥f(a)∥ ⩽ ∥f(b)∥+c(f)∥a−b∥ ce qui donne ensuite ∥f∥a ⩽ (1+∥a−b∥)∥f∥b.

Exercice 10 [sujet] 1. Le théorème de Cauchy-Lipschitz assure que N(f) = 0 avec f(0) = f ′(0) = 0 donne f = 0, le
reste est facile.

2. h est C2, h(0) = h′(0) = 0 donc la formule de Taylor avec reste intégral donne l’égalité.

3. On a donc |f(t)| ⩽ e−t

∫ t

0
(t − u)(f ′′(u) − 2f ′(u) + f(u))eu du ⩽ N(f)e−t

∫ t

0
(t − u)eu du = N(f)(t − 1 + e−t) puis

max
t∈[0,1]

t−1+e−t = e−1 donc ∥f∥∞ ⩽ e−1N(f) ; la constante est minimale puisqu’on a égalité avec f : t 7→ 1+(t−1)e−t

(qui est bien dans E)

Exercice 11 [sujet] 1. Facile en partant du fait que ∥ ∥∞ est une norme ; ∥f∥∞ ⩽ N1(f) mais l’autre inégalité est
impossible puisque si fn(t) = sin(nt) ∈ E, on a ∥fn∥∞ ⩽ 1 et N1(fn) ⩾ n −−−−−→

n→+∞
+∞

2. Si N2(f) = 0 alors f + f ′ = 0 avec f(0) = 0 donc f = 0 (Cauchy-Lipschitz), le reste est facile. On a N2(fn) ⩾ 1 + n

donc N2 ⩽ C∥ ∥∞ est impossible ; pour l’autre sens, on vérifie que f(x) = e−x

∫ (

0
f(t) + f ′(t))et dt ce qui donne

|f(x)| ⩽ N2(f)e−x

∫ x

0
et dt donc ∥f∥∞ ⩽ (1 − e−1)N2(f)

3. N2(f) ⩽ N1(f) et N1(f) ⩽ 2∥f∥∞ + N2(f) ⩽ (3 + e−1)N2(f)

Exercice 12 [sujet] 1. Vérifier ∥x + y∥2 = ∥x∥2 + 2(x|y) + ∥y∥2 et tout développer (cours espaces préhilbertiens)
2. Facile : si ∥P∥a = 0 alors les ai sont n + 1 racines distinctes de P

3. Pi = Li polynômes d’interpolation de Lagrange aux points (ai).

4. (L0, . . . , Ln) est une base de E donc avec P =
n∑

k=0
P (ak)Lk alors ∥P∥ ⩽

n∑
k=0

|P (ak)| × ∥Lk∥ ⩽ max
0⩽k⩽n

∥Lk∥ × ∥P∥a.

De l’autre côté : on introduit (P0, . . . , Pn) une bon de E pour le produit scalaire associé à ∥ ∥, on a, si P =
n∑

k=0
αiPi,



∥P∥2 =
n∑

i=0
α2

i et ∥P∥a ⩽
n∑

i=0
|αi| × ∥Pi∥a

C−Sch
⩽ ∥P∥ ×

(
n∑

i=0
∥Pi∥2

a

)1/2

; reste à prendre α =
(

n∑
i=0

∥Pi∥2
a

)−1/2

.

Si α = β = 1 alors ∥ ∥ = ∥ ∥a donc ∥ ∥a vérifierait l’identité du parallélogramme ce qui est faux : ∥L1 + L2∥2
a =

∥L1 − L2∥2
a = 4 et ∥L1∥2

a = ∥L2∥2
a = 1

5. C’est la norme euclidienne associé au produit scalaire (P |Q) =
n∑

k=0
P (ak)Q(ak) (pour lequel les Li constituent une

bon)

6. Si P =
n∑

i=0
P (ai)Li alors ∥P∥ ⩽

n∑
i=0

|P (ai)| × ∥Li∥
C−Sch
⩽ ∥P∥′

a ×

(
n∑

i=0
∥Li∥2

)1/2

; l’autre côté se traite comme dans

4.
Comme ∥ ∥′

a est associée à un produit scalaire, on peut avoir γ = δ = 1 si ∥ ∥ = ∥ ∥′
a.

Exercice 13 [sujet] 1. E0 = {−1, +1} donc a0 = 1. E1 = {αX + β, |α| + |β| = 1} donc si P ∈ E1, P est de degré ⩽ 1
donc monotone sur [0, 1] et N∞(P ) = max{|P (0)|, |P (1)|}. Quitte à remplacer P par −P , on peut supposer β ⩾ 0.
On a alors 3 cas : si α ⩾ 0 alors P (t) = β+(1−β)t et N∞(P ) = P (1) = 1 ; si α < 0 et β ⩾

1
3 alors P (t) = β+(β−1)t

et N∞(P ) = P (0) = β et enfin, si α < 0 et β <
1
3 , P (t) = β + (β − 1)t et N∞(P ) = |P (1)| = 1 − 2β. Dans les 3 cas,

on a N∞(P ) ⩾ 1
3 et avec P = 1

3 +
Å1

3 − 1
ã

t, on a N∞(P ) = 1
3 donc a1 = 1

3.

id est linéaire donc continue sur En qui est la sphère unité de Rn[X] pour la norme ∥ ∥, donc une partie fermée
bornée non vide ; ainsi N∞(id) (à valeurs dans R et continue par composée) admet un minimum sur En donc an

existe et comme c’est un minimum, on a an = N∞(P ) pour un P ∈ En ; comme P ̸= 0 et que N∞ est une norme,
on a an > 0.

2. Comme En ⊂ En+1, on a an+1 ⩽ an. Si on pose Pn = 1
n + 1

n∑
k=0

(−1)Xk, on a Pn ∈ En donc N∞(Pn) ⩾ an et pour

x ∈ [0, 1], on a |Pn(x)| = 1
n + 1 × 1 − (−1)n+1xn+1

1 + x
⩽

1
n + 1 donc N∞(Pn) ⩽ 1

n + 1 −−−−−→
n→+∞

0.

Exercice 14 [sujet] 1. Fait en cours
2. Si N(m) = 0 alors d(m, Fi) = 0 pour tout i, ce qui donne m ∈ Fi = Fi car Fi est un sev de dimension finie donc

est fermé. Reste à vérifier d(λm, Fi) = |λ|d(m, Fi) et d(m + n, Fi) ⩽ d(m, Fi) + d(n, Fi) : d(λm, Fi) ⩽ ∥λm − λy∥ =
|λ|∥m − y∥ donne la première inégalité et d(n + m, Fi) ⩽ ∥m + n − (y + z)∥ ⩽ ∥m − y∥ + ∥n − z∥ la seconde.

Exercice 15 [sujet] 1. N∞ est une norme sur E facile.

Si u est bornée alors |un+1 − un|
2n

⩽
2∥u∥∞

2n
donc la série qui définit N(u) CV et si N(u) = 0 alors ∀n ∈ N, un+1 = un

ce qui donne u = 0 avec la condition u0 = 0 ; le reste est facile.

On a aussi N(u) =⩽ 2N∞(u)
+∞∑
n=0

2−n = 4N∞(u)

2. Si u est la suite telle que uk = δk,n pour un n ∈ N∗ fixé (on a bien u ∈ E si n ⩾ 1), on a N∞(u) = 1 et

N(u) = 1
2n

+ 1
2n+1 . Si la constante C existait, on aurait 1 ⩽ C

Å 1
2n

+ 1
2n+1

ã
pour tout n ⩾ 1 ce qui est absurde

Exercice 16 [sujet] 1. Si une telle norme existait, on aurait ∥E1,2E2,2∥ = ∥E2,2E1,2∥ ce qui est absurde car E1,2E2,2 =
E1,2 ̸= 0 et E2,2E1,2 = 0.

2. Si une telle norme existait, comme AP et PA sont semblables pour toute matrice P inversible, on aurait ∥AP∥ =
∥PA∥ pour tout P inversible puis si B ∈ Mn(K), il existe (Pk) suite de matrices inversibles tendant vers B ; par
continuité de M 7→ AM et M 7→ MA, on a lim

k→+∞
APk = AB et lim

k→+∞
PkA = BA donc en faisant tendre k vers

+∞ dans l’égalité ∥APk∥ = ∥PkA∥, on obtient ∥AB∥ = ∥BA∥ pour toutes matrices A et B.

Exercice 17 [sujet] 1. Par récurrence sur n

2. (Dn) vérifie Dn+1 = 1
2(Dn + DD−1

n ) donc les coefficient diagonaux de Dn vérifie une relation du type u0 = 1 et

un+1 = 1
2(un + α/un) où α est un coefficient diagonal de D. On a alors avec f(x) = 1

2

(
x + α

x

)
, f(R+) = [

√
a, +∞[

est stable par f ; f(x) − x = a − x2

2x
⩽ 0 donc (un)n⩾1 décroît et CV vers l tel que f(l) = l donc l =

√
a. La suite

(Dn) CV donc vers une matrice diagonale ∆ dont les coefficients diagonaux sont les racines carrées de ceux de D ;
on a donc ∆2 = D puis X2 = A



3. Il existe P ∈ R[X] tel que P (
√

αi) = αi pour toutes les valeurs propres de A (il y en a au plus n), on a alors√
A = P (A) donc si A est symétrique,

√
A aussi.

Exercice 18 [sujet] 1. si a ∈ ker(v) alors (a|v(v)) = (a|u(b) − b) u(a)=a= (u(a)|u(b)) − (a|b) = 0 car u orthogonal ; on
trouve l’égalité par le théorème du rang

2. On écrit a = a0 + u(b) − b et on trouve xn = a0 + 1
n

(un+1(b) − b) −−−−−→
n→+∞

0 car ∥un+1(b)∥ = ∥b∥ (donc borné)

Exercice 19 [sujet] 1. On introduit une base B de E et on utilise sur L(E) la norme N(u) = max
1⩽i,j⩽n

|ai,j | si

MatB(u) = (ai,j)1⩽i,j⩽n et sur E la norme ∥x∥ = max
1⩽i⩽n

|xi| si x =
n∑

i=1
xiei. On vérifie alors, si on note ai,j(k)

les coefficients de la matrice MatB(uk), ∥uk(x0)∥ = max
1⩽i⩽n

∣∣∣∣∣∣
n∑

j=1
ai,j(k)(x0)j

∣∣∣∣∣∣ ⩽ n2N(uk)∥x0∥ donc est bornée.

2. un(x) = nu(x) + (1 − n)x donc ∥u(x) − x∥ = 1
n

∥un(x) − x∥ −−−−−→
n→+∞

0 car (un(x)) est bornée ; on en déduit

ker(u − id)2 ⊂ ker(u − id), réciproque facile. Si y ∈ ker(u − id) ∩ Im(u − id) alors y = u(x) − x et x ∈ ker(u − id)2 =
ker(u − id) donc y = (u − id)(x) = 0 ; la somme est directe et le théorème du rang appliqué à u − id permet de
conclure.

3. On pose x0 = a + (u − id)(b) et on vérifie xn = a + 1
n

(un+1(b) − b) −−−−−→
n→+∞

a puisque (un(b)) est bornée.

Exercice 20 [sujet] 1. (u − id) ◦ vn = 1
n + 1(un+1 − id)

2. si x ∈ ker(u − id) ∩ Im(u − id) alors u(x) = x et x = u(y) − y donc vn ◦ (u − id)(y) = vn(x) = x puis x =
vn ◦ (u − id)(y) = 1

n + 1(un+1(y) − y) donc ∥x∥ ⩽
1

n + 1(∥vn+1(y)∥ + ∥y∥) ⩽ 2
n + 1∥y∥ −−−−−→

n→+∞
0 et x = 0

3. th du rang appliqué à u − id

4. on vérifie ∥u(P )∥ ⩽ ∥P∥, deg(u(P ) − P ) = 1 + deg(P ) (si P ̸= 0) donc ker(u − id) = {0} et 1 /∈ Im(u − id) donc
Im(u − id) ̸= R[X]

Exercice 21 [sujet] Le polynôme 3X3 − Xp2 − X − 1 = (X − 1)(X − r1)(X − r2) avec ri = −1 ±
√

2
3 annule A donc

A est DZ : A = QDQ−1 avec D = diag(In1 , r1In2 , r2In3) comme |ri| < 1, la suite (Dk) CV vers ∆ = diag(In1 , 0In2 , 0In3)
et (Ak) CV vers P = Q∆Q−1 par continuité de M 7→ QMQ−1 (linéaire)
On vérifie que P est la matrice du projecteur sur E1(A) parallèlement à Er1(A) ⊕ Er2(A) = Im(A)

Exercice 22 [sujet] 1. a) Pa = X3 − aX − a

b) 3Pa = XP ′
a − 2aX − 3a donc Ra = −2aX − 3a

c) Si Pa est SARS alors Ma est DZ et Pa est SARS dans C si et seulement si Pa et P ′
a n’ont pas de racine

communes. Pa(z) = P ′
a(z) ⇔ P ′

a(z) = Ra(z) = 0 ⇔ (a = 0 et z = 0) ou
Å

z = −3
2 et a = 27

4

ã
. Donc si

a /∈
ß

0,
27
4

™
alors Pa est SARS donc Ma est DZ. Par contre, si a = 0 ou a = 27

4 alors Pa admet une racine

multiple (0 ou −3
2 resp.) et Ma ne peut pas être DZ car rg(Ma − λI3) ⩾ 2 donc dim(ker(Ma − λI3)) ⩽ 1.

2. a) On a λ3 = a(1 + λ) donc |λ|
|λ|⩾1
⩽ |λ|3 = |a| × |1 + λ| ⩽ |a|(1 + |λ|)

b) Si a = 0 alors M3
0 = 0 donc la suite est nulle à partir du rang 3. Si 0 < |a| <

1
2 alors Ma est DZ et les vp de

Ma vérifient toutes |λ| < 1. On a donc Mn
a = Pdiag(λn

1 , λn
2 , λn

3 )P −1 −−−−−→
n→+∞

0 car M 7→ PMP −1 est linéaire
donc continue.

Exercice 23 [sujet] 1. si (xn) CV faiblement vers x et x′ alors (x − x′|y) = −(x − xn|y) + (xn − x′|y) −−−−→
n→∞

0 donc
x − x′ ∈ E⊥ donc x = x′.

2. par C-Sch, on a |(xn − x|y)| ⩽ ∥xn − x∥ × ∥y∥ −−−−−→
n→+∞

0

3. Si (xn) CV faiblement vers x et lim ∥xn∥ = ∥x∥ alors ∥xn − x∥2 = ∥xn∥2 − ∥x∥2 − 2(xn − x|x) −−−−−→
n→+∞

0.

4. Si (ei) est une bon de E alors lim
n→+∞

(xn − x|ei) = 0 donc les coordonnées de xn vérifient xn(i) = (xn|ei) −−−−−→
n→+∞

(x|ei) = xi donc (xn) CV vers x.



Exercice 24 [sujet] 1. On a XT = (X − 1)n donc C-Ham donne Nn = 0 donc N est bien nilpotente. On a alors

T k =
n−1∑
p=0

Ç
k

p

å
T p puis

Ç
k

p

å
⩽ kp donc 1 ⩽ ∥T k∥∞ ⩽ nkpM avec M = max{∥T p∥∞, p ∈ [[ 0, n − 1 ]] } et comme

(nkpM)1/k −−−−−→
k→+∞

0, on a la limite par encadrement.

2. On montre par récurrence sur k que |ai,j(k)| ⩽ bi,j(k) (ce sont les coefficients des puissances kème)

3. B = 1
ρ(A) = PTP −1 avec T = D + N ; on introduit T ′ = In + N+ (avec N+ la matrice de coefficients |ti,j |) à

laquelle on peut appliquer la première question. On a |ti,j | ⩽ t′
i,j et il existe un coefficient diagonal de T de module

1, on a donc 1 ⩽ ∥T k∥1/k
∞ ⩽ ∥T ′ k∥1/k

∞ −−−−−→
k→+∞

1 donc lim
k→+∞

∥T k∥∞ = 1.

On revient alors à A : les applications M 7→ PMP −1 et M 7→ P −1MP sont linéaires donc lipschitziennes donc il
existe α, β tels que α∥P −1MP∥∞ ⩽ ∥M∥∞ ⩽ β∥P −1MP∥∞ ce qui donne α1/k∥T k∥1/k

∞ ⩽ ∥Bk∥1/k
∞ ⩽ β1/k∥T k∥1/k

∞
puis lim ∥Bk∥1/k

∞ = 1 et lim ∥A∥1/k
∞ = ρ(A)

4. On choisit cette fois une norme ∥ ∥ quelconque. La suite
Å 1

∥Ak∥
Ak

ã
est bornée pour la norme ∥ ∥ donc aussi pour la

norme ∥ ∥∞, il existe donc a tel que ∥Ak∥∞ ⩽ a∥Ak∥ ; de même (en échangeant les 2 normes) on prouve l’existence
de b tel que ∥Ak∥ ⩽ b∥Ak∥∞ ; on en déduit a−1/k∥Ak∥1/k

∞ ⩽ ∥Ak∥1/k ⩽ b1/k∥Ak∥1/k
∞ ce qui donne le résultat par

encadrement

Exercice 25 [sujet] 1. M(a)M(b) = αM(b) ; si a ̸= 0 alors rg(M(a)) = 1, ker(M(a)) = {(xi) ∈ Rn, a1x1 + · · · +
anxn = 0} et Im(M(a)) = Vect{a}

2. α = 1

3. On a M(a) =
n∑

j=1
ajMj où Mj =

n∑
k=1

Ek,j donc {M(a), a ∈ Kn} est de dimension n

4. M(a)k = αkM(a) pour k ⩾ 1 donc exp(M(a)) = In + (eα − 1)M(a).

Exercice 26 [sujet] 1. XA = (X − λ)n donc C-Ham donne (A − λIn)n = 0 ; on pose N = A − λIn (nilpotente) et

on a, pour k ⩾ n, Ak = (λIn + N)k =
n−1∑
p=0

Ç
k

p

å
λk−pNp puis

Ç
k

p

å
⩽ kp et ∥Ak∥ ⩽

n−1∑
p=0

kpr(A)k−p∥Np∥ −−−−−→
k→+∞

0

(somme de n, fixé, suites tendant vers 0 puisque r(A) < 1).
2. A = PDP −1, lim

k→+∞
Dk = 0 et par continuité de M 7→ PMP −1, on a aussi lim

k→+∞
Ak = 0.

3. F (X) = X ⇔ (A − In)X = −B qui admet une unique solution puisque A − In est inversible car 1 /∈ Sp(A).
4. On a Xp+1 −L = A(Xp −L) donc Xp −L = Ap(B−L) ; par continuité de M 7→ M(B−L), on a lim

p→+∞
(Ap(B−L)) =

( lim
p→+∞

Ap)(B − L) = 0.

Exercice 27 [sujet] 1. Soit i tel que (AX)i = min(AX), on a (AX)i =
n∑

j=1
ai,jxj ⩾ ai,jxj ⩾ αxj pour tout j ∈ [[ 1, n ]]

donc min(AX) ⩾ α max(X).

2. Avec les mêmes notations, et si j est tel que Xj = max(X), on a (AX)i = ai,jxj +
∑
k ̸=j

ai,kxk ⩾ ai,j max(X) +∑
k ̸=j

ak,i min(X) = ai,j max(X) + (1 − ai,j) min(X) = min(X) + ai,j(max(X) − min(X)) ⩾ min(X) + α(max(X) −

min(X)) qui donne le résultat. La deuxième inégalité se prouve de la même façon.

3. On note up = max(ApX) et vp = min(AX) et on vérifie que (up) et (vp) sont adjacentes : on a (AX)i =
n∑

j=1
ai,jxj ⩽

max(X)
n∑

j=1
ai,j = max(X) ce qui donne up+1 ⩽ up ; on prouve de même que (vp) est croissante. Puis max(AX) −

min(AX) ⩽ (1 − 2α)(max(X) − min(X)) avec les deux inégalités de la question précédente ; on en déduit 0 ⩽
up − vp ⩽ (1 − 2α)p(u0 − v0) donc lim(up − vp)0 car 0 ⩽ 1 − 2α < 1 (car α ∈]0, 1/2[). On en déduit que (up) et (vp)
converge vers la même limite l.
En prenant X = Ei un des vecteurs de la base canonique de Rn (qui est à coordonnées positives), tous les coeffs
de la ième colonne de Ap convergent donc vers la même limite li par encadrement (entre up et vp) ; ainsi tous les
coefficients de Ap convergent donc (Ap) converge vers L. De plus toutes les lignes de L sont égales d’après ce qui

précède et sont non nulles car on conserve, par passage à la limite,
n∑

j=1
li,j = 1 (et li,j ⩾ 0) donc rg(L) = 1.



Exercice 28 [sujet] 1. On pose un = m1einθ1 + · · · + mpeinθp et on a (MnY )k = ukn −−−−−→
n→+∞

0 (suite extraite de
(un))

2. det(Mn) = ein(θ1+...,θp) × V
(
einθ1 , . . . , einθp

)
(factoriser par colonne) donc | det(Mn)| =

∏
1⩽h<k⩽p

2
∣∣∣∣sin n(θk − θh)

2

∣∣∣∣.
Il s’agit de prouver que (det(Mn))n∈N ne tend pas vers 0 donc que aucune des suites

Å
sin n(θk − θh)

2

ã
ne tend vers

0 : on pose x = |θk − θh|
2 ∈]0, π[ et on suppose que (sin(nx)) tend vers 0 ; on a alors sin(n + 1)x = sin(x) cos(nx) +

cos(x) sin(nx) et on en déduit sin(x) cos(nx) −−−−−→
n→+∞

0 ce qui est absurde car sin(x) ̸= 0 et lim
n→+∞

cos2(nx) = 1 (car

sin2 + cos2 = 1).
3. On a, avec C-Ham, XMφ(n)(Mφ(n))Y = 0 et lim

n→+∞
Mk

φ(n)Y = 0 donc il reste (seul le terme constant donne une
limite à priori non nulle) lim

n→+∞
(−1)p det(Mφ(n))Y = 0 ce qui est absurde car si mk ̸= 0, la ligne k donnerait

mk det(Mφ(n)) −−−−−→
n→+∞

0.

Exercice 29 [sujet] 1. Si on choisit la norme ∥ ∥∞, la CV de la série
∑

∥un∥∞ donne la CVA des séries
∑

un(i)
où un(i) est la ième coordonnée de un. Comme une série absolument convergente est aussi CV, on en déduit que∑

un(i) CV, ie toutes les coordonnées de la série de vecteurs
∑

un CV donc
∑

un CV aussi.
Si une telle constante C n’existait pas, pour tout n ∈ N, il existerait xn tel que ∥xn∥∞ > n∥xn∥ (donc xn ̸= 0). Si
on pose yn = xn√

n∥xn∥
, on a ∥yn∥ = 1√

n
donc (yn) CV vers 0 pour la norme ∥ ∥ alors que ∥yn∥∞ ⩾

√
n donc (yn)

ne tend pas vers 0 pour ∥ ∥∞ ce qui est absurde en dimension finie.
L’existence de la constante C permet de justifier que si

∑
∥un∥ CV alors, par th de comparaison,

∑
∥un∥∞ CV

aussi et le premier cas permet de conclure.
2. On a ∥un+1−un∥ = ∥f(un)−f(un−1)∥ ⩽ k∥un−un−1∥, ce qui donne ∥un+1−un∥ ⩽ kn∥u1−u0∥ donc

∑
∥un+1−un∥

CV (car k ∈ [0, 1[) puis
∑

(un+1 − un) CV d’après 1 et (un) CV par télescopage.
Si on note l la limite de (un), f étant continue car lipschitzienne, on a f(l) = l. Si on suppose que l′ est un point
fixe de f , on a ∥l − l′∥ = ∥f(l) − f(l′)∥ ⩽ k∥l − l′∥ donc ∥l − l′∥ = 0 car k < 1 ; le point fixe est donc unique.
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