Espaces vectoriels normés

I Suites scalaires

Exercice 1 W

Etudier les suites définies par ug € R et pour tout n € N :
2

1
Loty = = 2un 25 g = sy 5 e = L gaasin(un)
2, — 1 Sup —3
2. (Suites homographiques) w1 = :n - T4 0 U7 ’::L-i- I

;ST

indication : si l’équation du second degré f(x) = x admet deux solutions a et b poser v, = ===

elle a une racine double a poser v, = 17(1 et déterminer ’expression de u, en fonction de n et ug.

Exercice 2 (Mines-Ponts PSI 2006) |/Solution

Etudier la suite (uy) définie par ug =0 et up11 =1 — gui

Exercice 3 (ENSEA MP 2007) |[/Solution|

1
Soit f une application de C dans C telle que : 3k € }0, B {,V(x,y) e C?, If(z) = fy)] <k(f(x) —x|+|f(y) —yl])-

1. Montrer que I’équation f(z) = z admet au plus une solution.
2. Soit (u,) définie par ug € C et uy41 = f(un). Montrer que (u,) converge vers un point fixe de f.
indication : étudier la série Z(unﬂ — Up).

Exercice 4 (Mines-Ponts PC 2012) |/Solution|

Soit (uy,) définie par u; = a > 0 et up41 = ui +

n+1
1. Montrer que les limites possibles de (uy,) sont 0, 1 et +oo.

2. On note Ej, = {a > 0, L = limwu, } ; montrer que Ey, E; et E, sont des intervalles.

3. Montrer que [1,4+00[C Fo puis que E4, est un ouvert.
indication : pour la fin si o € Esy alors up, > 1 et uy, est une fonction continue de .

IT Normes

Exercice 5 |/Solution W

Sur E = R? montrer que Ny : (z,y) — sup |tz +y| et Ny : (z,9) — sup |tz + y| sont des normes et dessiner leur
te(0,1] te[—1,1]
boule unité fermée.

Exercice 6 [/Solution

t
1. Sur £ = R?, montrer que N : (z,y) — sup Tty

2 définit une norme.
teR

2. Dessiner la boule unité fermée.
indication : montrer que N(z,y) < 1 est équivalent au fait que deux polyndomes de degré 2 sont de signe fize.
Exercice 7 (Mines-Télécom PSI 2023) |/Solution|

1. Soit N la norme définie sur R? par N(z,y) = max (|y\7 ‘x —l—% S|z + y|) Représenter la boule unité pour cette

norme.
2. Soit E un R-espace vectoriel de dimension n. Soit (¢1,...,¢,) une famille de formes linéaires sur FE. A quelle
condition l'application N : R — R, qui & x associe max |p;i(x)| est-elle une norme ?
IIXRP

Exercice 8 (CCINP PsI 2019) [[Solution]]

1. No(f)=/ F(®)]dt, Ni(f /f B dt| + /|’<t>|dt et Nz(f)=’/0 £(t) dt| +

définissent-elles des normes sur £ = C*([0,1],R) ?

/olf’(t) dt| + /01 () dt

2. Montrer que Vf € FE,3c € [0, 1], / f@t)

3. Montrer que Vf € E, No(f) < N1(f); peut-il y avoir égalité pour f # 07
4. Montrer qu’il n’existe aucun réel a tel que Vf € E, N1(f) < aNo(f).



Exercice 9 (Centrale PC 2014) |/Solution|

Soient E un espace vectoriel normé, A une partie non vide bornée de E et £ ’ensemble des applications lipschitziennes
de A dans E.

1. Montrer que si f € £ alors f est bornée.

2. Pour f € £, on note c(f) = inf{k € R",¥(z,y) € A% ||f(z) — f(y)|| < kl|z — y||}. Justifier 'existence de c(f) et
montrer que f est ¢(f)-lipschitzienne.

3. Pour f € L et a € A, on note ||flla = || f(a)]l + ¢(f). Montrer que || ||, est une norme sur L.
Pour b € A, trouver « tel que || [|o < a| ||o-

Exercice 10 (Centrale PSI 2017) |[/Solution|
Soit E = {f € C*([0,1], f(0) = '(0) = 0}

1. Montrer que N(f) = sup |f"(t) — 2f'(t) + f(t)| définit une norme sur E.
t€[0,1]

t

2. Soit h(t) = f(t)e " avec f € E; montrer que V¢ € [0,1], h(t) = / (t —w)h" (u) du.
0

3. Trouver a > 0 tel que || f|lco < aN(f) pour tout f € E et minimiser a.

Exercice 11
Soit E = {f e ([0,1]), f(0) =0}

1. Montrer que Ny : f > || f]loc + [|f']loc €st une norme sur E.
Existe-t-il une constante C' telle que N1 < C| ||oo ? Méme question pour || ||oo < CNy?

2. Montrer que Ny : f + || f + f'||c est une norme sur E. La comparer & ||.||c.

3. Comparer Ny et Ns.
indication : introduire 'équation différenticlle y' +y = g et calculer f en fonction de f + f'.

Exercice 12 (CCP PC 2007) [[Solution

E = R,[X] est muni d’une norme notée ||.||, issue d’un produit scalaire.
1. Montrer que V(P,Q) € E?, [P+ Q|* + [P — Q|* = 2 (|[P|I* + |Q||*) (identité du parallélogramme)

n
2. Montrer que ||P||, = Z |P(a;)|, ag, ai,...,a, étant n + 1 entiers distincts est une norme.
k=0

3. Trouver P; tel que V(i,7), Pi(a;) = d; ;.

4. Montrer qu'il existe a et 3 tels que pour tout polynéme P de E, on a «||P|, < ||P|| < B||P|la-
Peut-on avoira==17

n
5. Montrer que ||P||’, = ZP(ak)2 est une norme sur F.
k=0

6. Montrer qu’il existe v et § tels que pour tout polyndéme P de E, on a || P||, < ||P|| < || P|..
Peut-on avoir y =6 =17

Exercice 13 (Mines-Ponts PSI 2018) [/Solution|

n n
Pour P = Zkak € R,[X], on note Noo(P) = sup |P(t)] et ||P] = Z |pk|- On admettra que N, et || || sont des
=0 t€l0,1] k=0
normes sur R, [X] et on note E,, = {P € R, [X],|P| =1}

1. On pose a, = Ping Noo(P); calculer ag et a; puis montrer l'existence de a,, (on pourra utiliser la fonction id de
E n
(R, [X], Noo) vers (R,[X], || 1)) et que a,, > 0.

2. Montrer que (a,) est décroissante et converge vers 0.

Exercice 14 (Centrale PSI 2009) |/Solution|

Soit (Fy,...,F),) une famille de sous-espaces d’un espace E normé de dimension finie n, vérifiant Fy N---N F, = {0}.
1. Justifier que pour tout m € E, d(m, F;) = hmlg |lm — hl| existe.
el
P

2. Montrer que N(m) = Z d(m, F;) est une norme sur FE.
i=1

Exercice 15 |/Solution)

Soit E I'ensemble des suites de RY bornées telles que ug = 0. On pose Noo(u) = sup |u,| et N (u) = Z |un+127nfun|, pour

neN neN

u€e k.



1. Montrer que Ny, et N sont des normes sur E telles que Vu € E, N(u) < 4Ny (u)
2. Montrer qu'’il n’existe pas de constante C' > 0 telle que Noo(u) < CN(u) pour toute suite u de E.

Exercice 16 |/Solution|

Soit n € N tel que n > 2.
telle que V(A4, B) € M, (K), |AB| = ||BA|.

2. Montrer qu'’il n’existe pas de norme sur M, (K) telle que deux matrices semblables aient toujours la méme norme.
indication : utiliser que toute matrice de M,,(K) est limite d’une suite de matrices inversibles.

1. Montrer qu’il n’existe pas de norme sur M, (K

o

IIT Suites de vecteurs

Exercice 17 (Centrale PC 2008) |/Solution/

Soit A € M,(R) telle que A= PDP™" avec D une matrice diagonale & coefficients diagonaux strictement positifs.

1

1. Montrer que la suite Xg = I, et Vn € N, X;,41 = 5 (Xn + AX;I) est définie et que X,, = PD,P~! avec D,
diagonale.

2. Montrer que (X,,) converge et que sa limite X vérifie X? = A. On la note V/A.

3. Montrer que si A est symétrique alors VA est symétrique.

Exercice 18 (CCP PSI 2018) |/Solution|

Soient E un espace euclidien et u € O(F).

1. Montrer que Im(v)*t = ker(v) ot v = u — id.

1 n
2. Soita € E et x,, = — E u*(a) ; montrer que la suite (x,),>1 converge.
n
k=1

Exercice 19 |/Solution|

Soient E un espace vectoriel normé de dimension finie et u € L(E) tel que la suite (u”) soit bornée. (c’est une suite de
L(E))
1. Soit xg € E, montrer que la suite (u"(zg)) est bornée.
2. Soit x € ker(u—id)?. Déterminer a,, et b, tels que u" (x) = a,u(z)+b,z et en déduire que ker(u—id)? = ker(u —id)
puis E = ker(u — id) @ Im(u — id).

n

1
3. Pour z¢ € F, on pose x,, = —— Z u¥ (z0). Montrer que la suite (z,,) converge.
n+1 P
Exercice 20 (Centrale PSI 2023) |/Solution
1 n
Soient E un espace vectoriel normé et u € L(E) tel que Vz € E, ||u(z)|| < ||z|]. On pose v,, = nrl Zuk.
n

k=0
Simplifier (u — id) o vy,
Montrer que ker(u — id) N Im(u — id) = {0}

Si E est de dimension finie, montrer que ker(u — id) ® Im(u — id) = E.

oW b=

Est-ce encore valable en dimension infinie ? .
indication : c’est fauz : on peut utiliser u: P € R[X]| — / P(t)dt et ||P|| = max |pg|
0

Exercice 21 (EIVP PSI 2017) |/Solution

Soit A € M, (R) telle que A® = §(A2 + A+ I,,). Etudier la suite (A").
Caractériser géométriquement la matrice P = lim A*.

1. a) Calculer le polynéme caractéristique P, de M,.
b) Effectuer la division euclidienne de 3P, par P, (P, étant la dérivée de P,).
¢) En déduire les valeurs de a pour lesquelles M, est diagonalisable.

2. a) Soit A € C une valeur propre de M, telle que |A| > 1.

A 1

> -,
1+~ 2

Montrer que : |a| >



b) Montrer que pour |a| assez petit (M}'), o converge vers 0.

Exercice 23 (CCP MP 2017) |/Solution|

Soit E un espace préhilbertien réel. On dit que (z,) converge faiblement vers x si Vy € E, 1irJ£1 (xn, —z|y) =0.
n——+0o0o

1. Montrer que la limite faible est unique si elle existe.

i

Montrer que si (z,) converge vers x (au sens habituel) alors (z,) converge faiblement vers x.

3. Montrer que (z,,) converge vers z si et seulement si (z,) converge faiblement vers z et Hrf lzn]l = 12|
n—-+0o0

4. Montrer qu’en dimension finie, ces deux modes de convergence sont équivalents.

Exercice 24 |/Solution|

Soit A € M,,(C), on pose p(A) = )\HslagcA) [A| (rayon spectral de A).
€5p

1
On va montrer que pour toute norme de E, on a lim ||AkH * = p(A).
k—+4oco

1. Pour commencer, on considére la norme ||Al|oo = r(na;)( la; ;1.
0

1
Montrer que si T est triangulaire et que ses coefficients diagonaux valent 1 alors i lirf HT’“H ;“O =1.
— 400

indication : écrire T =1, + N avec N =T — I, (nilpotente) et utiliser la formule du bindme.
2. Montrer que si B est telle que V(3, 5), |a; ;| < b; ; alors HA’“HOO < HB’“HOC.

3. Conclure en trigonalisant et la norme || ||-

A
p(A)
4. En déduire le résultat pour une norme || || quelconque.

indication : commencer par justifier qu’il existe a,b > 0 tels que al|A¥||oo < ||A¥|] < b]|A¥||0o en commencant par
vérifier que la suite (|| A¥|| 71 A¥) est bornée.

Exercice 25 (CCP PSI 2009) |/Solution|

Soit la matrice M(a) = (m; ;) € My (K) définie par m; ; = aj, ot a = (a1,...,a,) € K". On note o = Zaj.
j=1
1. Calculer M (a)M(b). Trouver le noyau et 'image de M (a).
2. Trouver une CNS pour que M (a) soit la matrice d’un projecteur.

3. Montrer que {M(a),a € K"} est un espace vectoriel stable par produit dont on donnera une base et la dimension.

4. Montrer que exp(M(a)) = Hr_irrl Z ]E:?) et I'exprimer en fonction de e® et M (a).

Exercice 26 (Centrale PSI 2014) |[Solution|
Pour A € M,,(R), on note r(A) = max{|A|, A € Spc(A4)} et on suppose r(A) < 1.

1. Montrer que si A posséde une seule valeur propre alors la suite (AP) converge vers 0.
indication : que vaut (A — \I,)" ?

2. Montrer que si A est diagonalisable dans R alors la suite (A?) tend vers 0.
3. Soir B € R". Montrer que F': X € R" — AX + B admet un unique point fixe L.
4. On pose Xy = B et X,+1 = F(X,). Montrer que (X,) tend vers L si (AP) tend vers 0.

Exercice 27 (Centrale PSI 2018) |/Solution|

Soit A = (a;,;) € M, (R) & coefficients strictement positif telle que Vi € [1,n] ,Zam = 1. On note a = 1<mig aj ;.
\1’7.7\/’1'

n

j=1
Pour X € R a coordonnées positives, on note max(X) et min(X) la plus grande et la plus petite des coordonnées de X.

1. Si X € R est & coordonnées positives, montrer que min(AX) > amax(X).
2. Montrer que min(AX) > amax(X) + (1 — a) min(X) et max(AX) < amin(X) + (1 — @) max(X).

3. En déduire que la suite (AP),en converge et déterminer le rang de la matrice limite.

Exercice 28 (Centrale PSI 2019) |/Solution/

Soient 01, ...,0, des réels de [0, 27| deux a deux distincts et my,...,m; des entiers non tous nuls. On veut démontrer
que la suite (mleme1 4+ + mpemef’) ne tend pas vers 0. On raisonne par ’absurde

neN
e e my
6217191 o e2zn9p Mo
1. Soit M,, = . . et Y = . . Montrer que lim M,Y =0.
. . : n—+oo
eipn91 eipnép mp



2. Montrer qu'il existe € > 0 et une suite extraite (M,(,)) de (M,) telle que Vn € N, |det(M,,))| > €.
indication : il s’agit de montrer que det(M,) ne tend pas vers 0. Faire apparaitre un déterminant de Vandermonde
puis montrer que si x €]0, [ alors (sin(nz))nen ne tend pas vers 0 (par labsurde par exemple)

3. Conclure en utilisant le théoreme de Cayley-Hamilton

Exercice 29 (Mines-Ponts PSI 2018) |/Solution/

1. Montrer que si (u,) est une suite d’un espace vectoriel normé E de dimension finie telle que E ||, || converge alors

Z Uy, converge.

indication : quasi hors-programme ! Il s’agit de montrer que la suite des sommes partielles de la série CV ; commencer
par le cas ot la norme est ||x]|oo = max |a;| quand x = Z aje; avec (e;) base de E et dans le cas général, prouver
qu’il existe C > 0 telle que ||z|loo < C||z|| pour tout x € E.

2. Soit f une application k-lipschitzienne, avec k < 1. Montrer que la suite (u,,) définie par ug € E et up11 = f(un)
converge et en déduire que f admet un unique point fixe.



Solutions

1 [[sujet] 1. a) On pose f(x) = 2% — 22+ 2; f(R) = [1, 400 et f est croissante sur cet intervalle donc
(tn)n>1 monotone; f(z) —z = (x — 1)(x — 2) donc si u; € [1,2[, (un) décroit donc CV vers 1, si u; = 2 alors
(un) et constante égale & 2 et si ug > 2, (uy,) est croissante donc DV vers +o0.

Exercice

2
b) f(x)= T3 22 décroit sur [0,2] = f(R) donc (uz,) et (ugn4+1) sont monotones et bornées donc CV vers I; et

la; fof(x)=xe (x—1)(a*+x+2)=0doncl; =l =1 et (u,) CV vers 1.

1 1 \"
¢) sin est 1-lip donc |up41 — un| < mmn —Up_1| < (m> |uy — ug| done Z(Un+1 —up) est ACV et (uy,)
CV vers 'unique solution de z = 1 + 5018 sin(x).
2z —1 1
2. a) x = ;;_4 & (r+1)% = 0, on pose v, = T qui vérifie v,11 = v, + 3 donc (vy,) tend vers +oo et
Uy = — — 1 tend vers —1.
Un
5x — 3 Up — 1 ..
b) = o1 < (z—1)(xz —3) =0, on pose v, = 3 qui vérifie v, 11 = 2v, donc (v,) tend vers +oo et
x n—
1-3
Un = 7 " tend vers 3 sauf si ug = 1 et dans ce cas (u,) est constante égale a 1.
—w,
1
Exercice 2 [[sujet]] On pose f(z) = = (3 —x%); [0, 1] est stable par f et f décroit sur cet intervalle donc (ug,) et (uz,11)

3
sont monotones et bornées donc CV vers I; et Iy qui vérifient f o f(z) = x; on vérifie que f(z) =z < 2> +3x -3 =0

-3+v21

puis fo f(x) =z & (2* 4+ 3z — 3)(2* — 3z + 6) = 0 donc le seul point fixe de f o f dans [0, 1] est = =h =1

2
et (u,) CV vers cette valeur.
Exercice 3 1. Si f(z) =z et fly) =y alorson a |f(z) — f(y)] = |z —y| <O.
k n
2. Avec z = u,, et y = u,—_1, on obtient |u,41 — up| < ﬁ|un — Up—1| donc |up+1 — uy| < (ﬁ) |up — up| et
k
1% < 1 donc Z(unH — uy,) est ACV

Exercice 4 [[sujet]] 1. Si (u,) CV vers [ alors [ = I? et comme u,, > 0 elle ne peut pas tendre vers —oo.

2. Si up(a) = 1 et uy(B) — L et si a < v < S, par récurrence sur n, on prouve u, () < un(y) < u,(8) donc par
encadrement, on a u,(y) — [ aussi donc les trois ensembles sont des intervalles.

3. Si a > 1 alors par récurrence, on a u, > 1 puis (u,) croit et comme u; > 1 elle ne peut tendre ni vers 0, ni vers 1
donc elle DV vers +o0.
Si @ € E alors il existe ng tel que uy, () > 2 et comme on vérifie que a — uy, («) est continue, on a wu,,(x) > 1
si @ est proche de a (|Jz — a] < n); la preuve précédente justifie ensuite que si u,,(z) > 1 alors ngr}:oo up () = +o0.

On a donc Ja — n, o + n[C E qui est donc ouvert.

Exercice 5 |[sujet]| N1(z,y) existe car t — tx + y est continue sur le segment [0, 1] donc bornée; si Ny (z,y) = 0 alors
Vt € [0,1],tz+y = 0 donc . 3_;2 g TE=Y= 0; |[tAx+Ay| = |A||[tz+y| < [A|N1(z,y) donc Ny (Az, Ay) < |A|N1(z,y)
et on termine classiquement ; enfin |t(z + ') + (y +9)| < N1(z,y) + N1(2',9’) donnera I'inégalité triangulaire ; on fait de
méme pour No.

-1<y<1
Comme t — tx + y est monotone sur [0, 1], Ni(x,y) = max{|y|, |z + y|}; on a donc Ny(z,y) <1 & { v
-1<z+y<1
La boule unité fermée pour N; est donc le parallélogramme délimité par les 4 droites y = +1 et y = —x + 1.
On trouve de méme pour Ny le carré délimité par les 4 droites y =x £ 1let y = —x £ 1.
t
Exercice 6 |[sujet/| 1.t — fitg est continue sur R et tend vers 0 en oo donc est bornée et N(x,y) existe; si
Az + tAy|
N(z,y) = 0 alors Vi € R,z +ty = 0 donc 2 =y = 0 (prendre t = 0 et ¢t = 1 par ex); e < AN (z,9)

|z + 2" +t(y +y')|
14 ¢2

donne N(Az, Ay) < |A|N(z,y) et on termine classiquement ; enfin < N(x,y)+ N(z',y’') donnera

I'inégalité triangulaire.

Tty <1412

Tty > —1— ¢

constant si et seulement si Ay = y*> +4(1 —2) < 0 et Ay = y> —4(z + 1) < 0; la boule unité fermée est donc la
2 2

portion de plan délimitée par les deux paraboles x = 1 — yz et x=—-1+ yz

2. Nz,y) <1l e VteR |z +ty < (1+1t*) &Vt e ]R{ Ces deux polynémes gardent un signe



-1<y<1
Exercice 7 |[sujet/| 1. N(z,y) <1< —1<z+4+y<1 donc cest l'intérieur d'un parallélogramme (la condition
—2< 2 +y<2
—2 < 2z 4+ y < 2 ne sert en fait a rien)
p
2. Seul N(z) =0 = x = 0 pose probléeme : N(z) =0 & x € m ker(p;) donc N est une norme si et seulement si
i=1

,ﬂ ker(p;) = {0}

Exercice 8 1. Ny oui (cours), Ny aussi car si Nq(f) = 0 alors No(f') = 0 donc f' = 0, f est constante donc

0

nulle car f(t) dt est nulle aussi. Par contre Ny n’est pas une norme car on peut trouver f non nulle telle que
N3(f) =0 (un polynéme de degré 3 par exemple)

1
2. f est continue sur [0,1] donc m = I[glilr]lf et M = r[réaf]cf existe puis m < / f(t)dt < M donc, d’apres le TVI (f
; , 0

1
continue), / f(t) dt est une valeur atteinte par f.
0

¢
3. pourt € [0,1], on a f(t) = f(c) —|—/ f'(u) du donc | f(t)] < |f(c)] —|—/ |f/(u)| du et en intégrant cette inégalité sur

[0,1], on obtient No(f) < N1(f). S’il y a égalité, il y a égalité dans toutes les inégalités précédentes : on en déduit
que f est constante et on vérifie que seule la constante nulle est solution.

1 1
4. Si une telle constante a existait, avec f(t) = ¢", on a No(f) = 1 et Ni(f) = o +1 ce qui est absurde (quand
n n

n tend vers +00).

Exercice 9 1. Soit a € A fixé, on a ||f(z) — f(a)|| < k|l — a|| < k(||la|| + M) avec A C By(0, M) donc
1 (@) < [[f(@)ll + k([lal| +- M) est bornée.

2. {k € RT,V(z,y) € A%, ||f(x) — f(y)|| < k||z — ||} est une partie de R non vide et minorée par 0 donc c(f) existe.
Il existe une suite (k,) de {k € RY,V(x,y) € A%, || f(x) — f(y)|| < k||z — y||} qui converge vers ¢(f). Pour (z,%), on
a |f(x) = f(y)| < knlz — y| qui donne |f(z) — f(y)| < c(f)lz —y| quand n — +oo.

3. Si ||flla = 0 alors f(a) = 0 et ¢(f) = 0 ce qui donne f constante puis nulle; pour le reste, il suffit de prouver

c(Af) = [Ae(f) et e(f+g) < c(f)+cg) - [Af(2)=AfW)I] = MI|f (2) = f ()]l < [Ale(f)l|lz =yl donne c(Af) < [Ale(f)
et on termine classiquement ; puis || f(z)+g(z) — f(y) —g9(y) || < (c(f)+c(9))]|z—y]| donne bien e(f+g) < c(f)+c(g).
Ona | f(a) = f(b)l| < c(f)lla—0bl| donc [|f(a)|| < £ ()| +c(f)]la—Dbl| ce qui donne ensuite [[fl[a < (1+[la—0bl[)[[ -

Exercice 10 [[sujet]| 1. Le théoréme de Cauchy-Lipschitz assure que N(f) = 0 avec f(0) = f/(0) = 0 donne f =0, le
reste est facile.

2. hest C?, h(0) = A’(0) = 0 donc la formule de Taylor avec reste intégral donne I’égalité.
¢

¢
3. On a donc |f(t)| < e*t/ (t—u)(f"(u) = 2f" (u) + f(u))e" du < N(f)e*t/ (t —u)e"du = N(f)(t —1+e ") puis
0 0
m{g;i t—14e"" = e P donc || f||eo < e 'N(f);la constante est minimale puisqu’on a égalité avec f : ¢+ 1+(t—1)e™"
telo,
(qui est bien dans F)

Exercice 11 |/sujet/| 1. Facile en partant du fait que || ||oo est une norme; ||f|lcc < N1(f) mais lautre inégalité est
impossible puisque si f,(t) = sin(nt) € E, on a || fulloo <1 et Ni(fn) = n o T
n—-+oo

2. Si No(f) =0alors f + f =0 avec f(0) = 0 donc f = 0 (Cauchy-Lipschitz), le reste est facile. On a No(f,) = 1+n

(
donc Ny < C|| || est impossible; pour 'autre sens, on vérifie que f(z) = e_f’:/ f(t) + f'(t)et dt ce qui donne
0

F@)] < Na(f)e™ / "t dt done [[flloe < (1 — ¢ )Na(f)

3. Nao(f) < Ni(f) et Ni(f) < 2l|flloo + Na(f) < 3+ €7 )N2(f)

Exercice 12 [[sujet]] 1. Vérifier ||z + y||? = ||z]|* + 2(x|y) + ||y]|* et tout développer (cours espaces préhilbertiens)
2. Facile : si ||P||, = 0 alors les a; sont n + 1 racines distinctes de P
3. P, = L; polynémes d’interpolation de Lagrange aux points (a;).

4. (Lg,...,L,) est une base de E donc avec P = ZP(ak)Lk alors || P|| < Z |P(ag)| x || Lkl < Jmax HL;C|| X || Pl q-

k=0
n

De l'autre coté : on introduit (Pp, ..., P,) une bon de E pour le produit scalaire associé a || ||, on a, si P = Z o; P,
k=0



n n C—Sch n 12 n —1/2
P> =) " af et [|Plla <Y lail x [Billa < [P X (Z Pilli) ; reste a prendre a = (Z ||Pz'|§) :
= =0 i=0

= 1=0
Sia=pB=1alors || =] |l donc |||, vérifierait I'identité du parallélogramme ce qui est faux : ||L; 4+ Ly =
1Ly = Lol = 4 et | La[lZ = || 2] = 1
n
5. C’est la norme euclidienne associé au produit scalaire (P|Q) = Z P(a (pour lequel les L; constituent une
k=0
bon)

n n 1/2
C—Sch
6. SiP= E P(a;)L; alors || P < E |P(a;)| x |Li]| < ||P|, x ( E ||LZ||2> ; Pautre coté se traite comme dans
=0 i=0 i=0

4.

Comme || ||/, est associée & un produit scalaire, on peut avoir v =6 = 1si ||| = || ||%-

Exercice 13 1. By ={-1,41} doncap =1. E; = {aX + 3, |a|+|8| = 1} donc si P € Ey, P est de degré < 1
donc monotone sur [0, 1] et Ny (P) = max{|P(0)],|P(1)|}. Quitte & remplacer P par —P, on peut supposer S > 0.

1
Onaalors3cas:sia > 0alors P(t) =8+ (1—8)tet Noo(P)=P(1) =1;sia<0et 8 > 3 alors P(t) = B+(B8—1)t

et Noo(P) = P(0) = S et enfin, sia < 0et § < %, P(t) =064 (B —1)t et Noo(P) = |P(1)] =1 —20. Dans les 3 cas,

1 1 1 1 1
onaNoo(P)>getavecP:g—i—(g—l)t,onaNoo(P):gdoncalzf
id est linéaire donc continue sur E, qui est la sphére unité de R, [X] pour la norme |||, donc une partie fermée

bornée non vide; ainsi Ny, (id) (& valeurs dans R et continue par composée) admet un minimum sur E,, donc a,
existe et comme c’est un minimum, on a a,, = Ny (P) pour un P € E,, ; comme P # 0 et que N4 est une norme,

on a a, > 0.
n

1
2. Comme FE, C Fp41,0n a ayy1 < ay. Sion pose P, = T (—1)Xk, on a P, € E,, donc N (P,) > a,, et pour
n
k=0
1 1—(-1 n+1,.n+1 1 1
€ [0.1], on a [Py(a)] = CU o L e Nu(P) < — ——0
1 n+1 no+oo

X
n+1 1+2x

Exercice 14 |[sujet/|| 1. Fait en cours
2. Si N(m) = 0 alors d(m, F;) = 0 pour tout i, ce qui donne m € F; = F}; car F}; est un sev de dimension finie donc
est fermé. Reste a vérifier d(Am, F;) = |A|d(m, F;) et d(m +n, F;) < d(m, F;) +d(n, F;) - d(Am, F;) < ||Am — My|| =
[Al|lm — y|| donne la premiere inégalité et d(n +m, F;) < [[m +n — (y + 2)|| < |[|m — y|| + ||n — 2|| la seconde.

Exercice 15 |[sujet/|| 1. Ny est une norme sur E facile.

— 2
Si u est bornée alors |Un+12n n| < H;UOO donc la série qui définit N(u) CV et si N(u) = 0 alors Vn € Ny up11 = up,

ce qui donne u = 0 avec la condition ug = 0; le reste est facile.

On a aussi N(u) =< 2N (u) Z 27" = 4Ny (u)

2. Si u est la suite telle que up = i, pour un n € N* fixé (on a bien u € Esin > 1), on a Neo(u) = 1 et
1 1 1
N(u) = o0 + PYESE Si la constante C' existait, on aurait 1 < C <27 + ﬁ) pour tout n > 1 ce qui est absurde

Exercice 16 [[sujet/| 1. Siune telle norme existait, on aurait || Eq 2Es 2| = || E2,2E1,2|| ce qui est absurde car By 2E5 2 =
E172 75 0 et E272E1,2 =0.

2. Si une telle norme existait, comme AP et PA sont semblables pour toute matrice P inversible, on aurait |AP|| =
||PA|| pour tout P inversible puis si B € M,,(K), il existe (Py) suite de matrices inversibles tendant vers B; par
continuité de M +— AM et M — MA, ona lim AP, = AB et lim P,A = BA donc en faisant tendre k vers

k—+oo k——+oo

+oo dans Pégalité ||APx|| = || PxA||, on obtient ||AB|| = ||BA|| pour toutes matrices A et B.
Exercice 17 1. Par récurrence sur n
2. (D) vérifie Dy 41 = %(Dn + DD, ') donc les coefficient diagonaux de D,, vérifie une relation du type ug = 1 et
=(un + a/uy,) ol a est un coefficient diagonal de D. On a alors avec f(x) = 1 (Jc + %), fRT) = [Va,+o0]
< 0 donc (up)n>1 décroit et CV vers [ tel que f(I) =1 donc | = v/a. La suite

2 2
a— 22
est stable par f; f(z) —z =

(D) CV donc vers une matrice diagonale A dont les coefficients diagonaux sont les racines carrées de ceux de D ;
on a donc A? = D puis X? = A

Up4+1 =




3. 1l existe P € R[X] tel que P(y/a;) = a; pour toutes les valeurs propres de A (il y en a au plus n), on a alors
VA = P(A) donc si A est symétrique, VA aussi.
Exercice 18 1. si a € ker(v) alors (alv(v)) = (a]u(b) —b) ula=e
trouve 1’égalité par le théoreme du rang

(u(a)|u(d)) — (a|b) = 0 car u orthogonal ; on

1
2. On écrit a = ag + u(b) — b et on trouve z,, = ag + 5(u"+1(b) -b) T 0 car [[u™(b)|| = ||b]| (donc borné)

Exercice 19 1. On introduit une base B de E et on utilise sur £(E) la norme N(u) = max |a;;| si

1<4,5<n
n
Matp(u) = (aij)i<i,j<n €t sur E la norme ||z| = jmax |z;| stz = inei. On vérifie alors, si on note a; ;(k)
N X
i=1
les coefficients de la matrice Matg(u®), ||u”(zo)| = Jmax Z a;;( < n?N(u)||zo|| donc est bornée.
n '7
2. u"(z) = nu(z) + (1 — n)z donc |lu(z) — z| = f||u”(x) — x| P 0 car (u"(z)) est bornée; on en déduit
n n——+40o0

ker(u — id)? C ker(u — id), réciproque facile. Si y € ker(u —id) NIm(u — id) alors y = u(z) — x et = € ker(u — id)? =
ker(u — id) donc y = (u — id)(z) = 0; la somme est directe et le théoreme du rang appliqué & u — id permet de
conclure.

1
3. On pose xg = a + (u —id)(b) et on vérifie x,, = a + ﬁ(u"H(b) b) ——— a puisque (u, (b)) est bornée.

n—-4o0o

1

Exercice 20 1. (u—id)owv, = ?(un'H —id)
n
2. si z € ker(u — id) N Im(u — id) alors u(x) = = et * = u(y) — y donc v, o (u —id)(y) = vy(x) = x puis & =
1 2
o (= id)(y) = — (0 (y) — ) done ol < — (10" () + ) < Il = Ot =0

3. th du rang appliqué a u — id

4. on vérifie ||u(P)|| < ||P||, deg(u(P) — P) = 1 + deg(P) (si P # 0) donc ker(u — id) = {0} et 1 ¢ Im(u — id) donc
Im(u —id) # R[X]
. : R 3 5 -1+2
Exercice 21 Le polynéme 3X° — Xp* — X — 1= (X — 1)(X — r1)(X — r2) avec r; = —s annule A donc
Aest DZ: A=QDQ " avec D = diag(I,,,711n,,r21,,) comme |r;| < 1, la suite (D) CV vers A = diag(1,,,,01,,,01l,,)
et (A®) CV vers P = QAQ™! par continuité de M +— QMQ ™! (linéaire)
On vérifie que P est la matrice du projecteur sur F4(A) parallelement a E,, (4) @ E,,(A) = Im(A)
Exercice 22 [[sujet] 1. a) P,=X3—-aX —a
b) 3P, = XP, —2aX —3a donc R, = —2aX — 3a
c) Si P, est SARS alors M, est DZ et P, est SARS dans C si et seulement si P, et P, n’ont pas de racine

2
communes. P,(z) = Pi(z) & P.(2) = Ruo(2) = 0 (a = 0et z = 0) ou <z: fg et a = 17) Donc si

27 27
a ¢ {0, Z} alors P, est SARS donc M, est DZ. Par contre, sia = 0 ou a = T alors P, admet une racine

multiple (0 ou —g resp.) et M, ne peut pas étre DZ car rg(M, — M3) > 2 donc dim(ker(M, — Al3)) <1
[A1=1
2. a) OnaX =a(l+)) donc |\ < |A?=a] x |1+ A <|a](1+]\])
b) Sia =0 alors M3 = 0 donc la suite est nulle & partir du rang 3. Si 0 < |a| < % alors M, est DZ et les vp de
M, vérifient toutes |A| < 1. On a donc M = Pdiag(\}, A5, \§)P~! — o Ocar M= PMP™ est linéaire

donc continue.

Exercice 23 1. si (z,) CV faiblement vers z et 2’ alors (z — 2'|y) = —(z — z,|y) + (zn — 2'|y) — 0 donc
z—a' € B+ donc x = 2.
2. par C-Sch, on a |(x, — z|y)| < ||zn — 2| % ||y]| T 0
3. Si (z,,) CV faiblement vers z et lim ||z, || = ||z alors ||z, — z||* = ||zal® — ||z]|* — 2(z,, — z|2) e 0.
4. Si (e;) est une bon de E alors lim (z, — z|e;) = 0 donc les coordonnées de x,, vérifient (i) = (x,|e;) ——

n—-+4oo n—-+4oo
(z]e;) = x; donc (z,,) CV vers z.



Exercice 24 [[sujet/| 1. On a Xp = (X —1)" donc C-Ham donne N = 0 donc N est bien nilpotente. On a alors

n—1
k k
T = Z( )Tp puis ( > < kP donc 1 < ||T%]|oe < nkPM avec M = max{||T?||o0,p € [0,n — 1]} et comme
b
p=0
(nkPM)Y/* . 0, on a la limite par encadrement.
s—>—+00

2. On montre par récurrence sur k que |a; ; (k)| < b; j(k) (ce sont les coefficients des puissances k°™°)

1
3. B= oA = PTP ' avec T = D+ N; on introduit 7" = I, + NT (avec N™ la matrice de coefficients |¢; ;|) &
p

laquelle on peut appliquer la premiére question. On a |t; ;| < t;’j et il existe un coefficient diagonal de T' de module
1, on a donc 1 < ||TF||X% < |77 F||2/F ——— 1 donc lim  ||T%]|o = 1.

k— 400 k—-+o0
On revient alors & A : les applications M — PMP~! et M — P~ MP sont linéaires donc lipschitziennes donc il
existe o, 8 tels que a| P MP||o < [|M||lso < S|P MP)|s ce qui donne o/*||T%||1/F < || BF||}/* < gtk ||T% | LLF
puis lim || B*||}/F = 1 et lim || A||}/% = p(A)

4. On choisit cette fois une norme || || quelconque. La suite < Ak) est bornée pour la norme || || donc aussi pour la

1
TAF]
norme || ||oo, il existe donc a tel que ||A¥||o < a||A*||; de méme (en échangeant les 2 normes) on prouve l'existence
de b tel que || A*|| < b||AF||lso ; on en déduit a=VF|AF||LF < | AF|IVF < bYF||AFR||X/F ce qui donne le résultat par
encadrement

Exercice 25 1. M(a)M((b) = aM(b); si a # 0 alors rg(M(a)) = 1, ker(M(a)) = {(x;) € R*,a121 + -+ +
anty, =0} et Im(M(a)) = Vect{a}
2. a=1

3. Ona M(a Za]M ou M; = ZE;” donc {M(a),a € K"} est de dimension n
Jj=1 k=1

4. M(a)* = o*M(a) pour k > 1 donc exp(M(a)) = I,, + (e* — 1) M (a).
Exercice 26 1. X4 = (X — A\)" donc C-Ham donne (A — A,)" = 0; on pose N = A — Al,, (nilpotente) et

n—1 n—1

k k
on a, pour k > n, A¥ = (I, + N)F = Z( )/\k”N” puis ( ) <K et [|A] <Y RPr(A)FP N —— 0
»=0 p k—4o00
(somme de n, fixé, suites tendant vers 0 puisque r(A) < 1).

2. A=PDP~', lim D* =0 et par continuité de M — PMP~! on aaussi lim AF =0

k—4o00 k—+o00
3. F(X)=X & (A-1I,)X = —B qui admet une unique solution puisque A — I, est inversible car 1 ¢ Sp(A).
4. Ona X, 1 —L=A(X,—L)donc X,—L = AP(B—L); par continuité de M — M (B—L), on a hrf (AP(B-L)) =
p——+o00
( lim AP)(B—-L)=0.

p——+oo

p=0

Exercice 27 [[sujet]| 1. Soit i tel que (AX); = min(AX), on a (AX); Za”x] > a; jr; > axj pour tout j € [1,n]

donc min(AX) > amax(X).

2. Avec les mémes notations, et si j est tel que X; = max(X), on a (AX); = a; jz; + Zaiykwk > a;;max(X) +
Py
Za;m min(X) = a; j max(X) + (1 — a; ;) min(X) = min(X) + a; ;(max(X) — min(X);Z min(X) + a(max(X) —
fri]n(X )) qui donne le résultat. La deuxiéme inégalité se prouve de la méme fagon.
3. On note u, = max(APX) et v, = min(AX) et on vérifie que (u,) et (vy,) sont adjacentes : on a (AX); = i a; ;T <
j=1

max(X) Z a;,; = max(X) ce qui donne wup 1 < up; on prouve de méme que (v,) est croissante. Puis max(AX) —

min(AX ) < (1 — 2a)(max(X) — min(X)) avec les deux inégalités de la question précédente; on en déduit 0 <

up — Up < (1 —2a)P(up — vp) done lim(u, —v,)0 car 0 < 1 —2a < 1 (car v €]0,1/2[). On en déduit que (up) et (vp)

converge vers la méme limite [.

En prenant X = E; un des vecteurs de la base canonique de R™ (qui est & coordonnées positives), tous les coeffs

de la i*™¢ colonne de AP convergent donc vers la méme limite I; par encadrement (entre u, et v,); ainsi tous les

coefficients de AP convergent donc (AP) converge vers L. De plus toutes les lignes de L sont égales d’aprés ce qui
n

précede et sont non nulles car on conserve, par passage a la limite, Z li; =1 (et l;; >0) donc rg(L) = 1.
Jj=1



Exercice 28 [[sujet] 1. On pose u, = mie% + ... + mpemgp et on a (M,Y)r = ug, —— 0 (suite extraite de

n——+00
(un))

. . : 0, — 06
2. det(M,) = ¢ rt0p) 5 7/ (e, ..., e™) (factoriser par colonne) donc |det(M,)| = H 2 |sin w .
1<h<k<p
0 — 0
Il s’agit de prouver que (det(M,,))nen ne tend pas vers 0 donc que aucune des suites (sin w> ne tend vers

O — 0
Ozonposex:MG

10, 7] et on suppose que (sin(nz)) tend vers 0; on a alors sin(n + 1)z = sin(z) cos(nx) +

cos(z) sin(nx) et on en déduit sin(z) cos(nz) —— 0 ce qui est absurde car sin(z) # 0 et lim cos?(nx) =1 (car
n—+oo n—+oo

sin? 4 cos? = 1).

3. On a, avec C-Ham, X, M

gp(n)( ¥

m)Y =0et liIE Mg(n)Y = 0 donc il reste (seul le terme constant donne une
n—-+0oo
limite & priori non nulle) liI’JIrl (=1)P det(M,n))Y = 0 ce qui est absurde car si m; # 0, la ligne & donnerait
n—-—+0oQo

Exercice 29 |[sujet/| 1. Si on choisit la norme || [|oo, la CV de la série Z |tn|loo donne la CVA des séries Zun(z)
ol uy, (i) est la i®™¢ coordonnée de u,. Comme une série absolument convergente est aussi CV, on en déduit que
Z un (i) CV, ie toutes les coordonnées de la série de vecteurs Z u, CV donc Z u, CV aussi.

Si une telle constante C' n’existait pas, pour tout n € N, il existerait x,, tel que ||z,|/c > n||Ty] (donc z, # 0). Si
on pose Yy, = L’ on a ||y, || = —= donc (y,,) CV vers 0 pour la norme || || alors que ||y, |l = v/n donc (y,)
V||| n

ne tend pas vers 0 pour || || ce qui est absurde en dimension finie.
L’existence de la constante C' permet de justifier que si Z |lun|| CV alors, par th de comparaison, Z [tnlloo CV
aussi et le premier cas permet de conclure.

2. Ona [[upt1—un| = [|f(un) = f(un-1)[l < kl|un—un—1]], ce qui donne [uy11—unl| < k"[|ur—uoll donc Z (|1 —un |
CV (car k € [0,1]) puis Z(U,H_l —uy) CV d’apres 1 et (uy,) CV par télescopage.

Si on note [ la limite de (u,), f étant continue car lipschitzienne, on a f(I) = I. Si on suppose que I’ est un point
fixe de f,ona ||l =1 = ||f(1) = fFI)|| < k||l =U'|| donc ||l =] = 0 car k < 1; le point fixe est donc unique.
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