Séries entieres

La notation K désigne soit le corps des nombres réels, soit le corps des nombres complexes.

I Convergence d’une série entiere

1. Rayon de convergence

Définition : Une série entiére (de variable complexe) est une série de fonctions g uy, telle que :
n=0

A(an)nen € CN.Vz € C,¥n €N, Un(2) = anz"

Les an, n € N, sont les coefficients de la série entiere E anz™.
n=0

Une série entiere de variable réelle est une série entiere E anz™, o x € R et (an)nen € cN.
n=0

Exemple(s) :

@ Les polynomes.

+o0 1
@ E z" = —— pour |z| < 1.
1-=2
n=0

+oo

@ Z%zezpourtoutze(c.

n=0

Définition [I.1] : Soit (ay)nen € K. On appelle rayon de convergence de la série entiére Z anz"™ le « réel »

n=0
R défini par :
R = sup {p eRT, (anp™),cn est bornée} € [0, 4+o0).

Remarque(s) :

1
On a donc R = +o0 si, pour tout p € R™, la suite (a,p™) est bornée; ex : si a, = =
n!

Si la suite (ay,) est bornée, on a R > 1 par définition de R; on en déduit que si (a,) converge alors
R > 1. Mais on peut avoir R = 1 méme si la suite (a,) diverge (ex : a, = n).

® 6

Plus généralement, si, pour z € C, on a
* (anz") bornée alors |z| < R
* (anz™) non bornée alors R < |z].

S

{p eR*, (anp™),cn est bornée} est un intervalle de R™ qui contient 0 donc on a :

[0, R[ si (apR™)nen n'est pas bornée

+ n 2ol
{p ER 7(anp )nGN est bornee} - { [07R] si (aan)neN est bornée
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Conséquence [I.2] : SiVn € N,a,, =n® avec o € R alors

R=1

Propriété [1.3] : (Lemme d’Abel)
Soient (an)nen € CNet pe R,

Si la suite (a,p")nen est bornée alors pour tout z € C tel que |z| < p, la série Z anz" converge absolument
n>0

Théoréme [I.4] : Soient (a,)neny € CY, R le rayon de convergence de Z anz" et z € C.
n=0

1. Si |z| < R alors la série E anz™ est absolument convergente.
n>0

2. Si|z|] > R, la série E anz" est grossierement divergente, ie la suite (a,2")nen ne tend pas vers 0.
n=0

Remarque(s) :

On appelle disque ouvert de convergence, pour une série entiere de variable complexe, le disque
ouvert de centre 0 et de rayon R, ie B(0, R) = {z € C, |2| < R}; pour une série entiére de variable
réelle, 'intervalle | — R, R| est appelé intervalle ouvert de convergence. Une série entiére est donc
toujours définie au moins sur son disque ouvert (ou intervalle ouvert) de convergence, mais elle
peut aussi étre définie en certains points du disque fermé de rayon R, ie en certains points z tels
que |z| = R (ou en =R pour une série de variable réelle).

Le domaine de convergence D de cette série de fonctions vérifie donc
B(0,R) C D C B¢(0,R) ={z€C,|z| <R}

Pour une série entieére de variable réelle, on a | — R, R[C D C [-R, R]

1.10) On a aussi R = sup {7‘ €ER",3zcC,|z|=ret Za”z” converge}.
n=0

n
I.11) Si|z| = R, on ne peut a priori rien dire sur la nature de Z anz™ : Z c converge pour z = —1
n=0 n=1 n
Z’I’L
et diverge pour z = 1, Z —3 converge pour 2| =1 et Z 2™ diverge pour |z| = 1.
n>=0 n=0

Conséquence [1.5] : Soit z € C,
1. si Z anz" converge alors |z| < R
n=0

2. si g anz" diverge alors R < |z|.
n=0

Propriété [I.6] : Soient Z anz" et Z b, 2" deux séries entieres de rayons de convergence respectifs R, et Rp.
n=0 n=0

. . _ 3 < 1 = < .
1. Sia, e O(]bn|) (donc si |an| < |byp| ou si ay, e o(|bn|)) alors Ry < R,

2. Sia, W b, alors R, = Ry.
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Propriété [I.7] : (Reégle de d’Alembert)

Soient (a,) une suite de K de termes non nuls et R le rayon de convergence de la série entiére E anz".
n>=0

1
Si lim Jan ] =/¢eR"U{+o0} alors R = 7

n—-+o0o |an|

Remarque(s) :
Cela signifie que si £ = 0 alors R = +00 et si £ = +00 alors R = 0.

Attention :
1. On ne peut appliquer cette propriété que si la série est de la forme Z an,z" donc pas d Z an 2"
par exemple (ou toute autre série « lacunaire ») .
2. La régle de d’Alembert n’est pas une équivalence : si le rayon de convergence de Z anz" est R >0,

An+41

méme si (a,) ne s’annule pas, il se peut que la suite ( ) n’ait pas de limite ; ex : a, = n=b",

La régle de d’Alembert est donc rarement utilisable pour des exercices « théoriques » sur les rayons
de convergence.

Exemple(s) :

Méthodes de détermination du rayon de convergence :

.. . N n! n 2n(n')2 2n
a) Utilisation de la régle de d’Alembert : Z n? et Z 2n)! .

n>1

P(
b) Utilisation d’équivalents : pour (P, Q) € R[X]*, Q # 0 Z Q—Z .

n>=ngo
zn
c) E — ol (pn)nen est la suite des nombres premiers.

n>0*""

d) Utilisation de la définition : Z a, 2" avec a, la n®™° décimale du nombre 7.
n=0

2. Opérations sur les séries entieres

Propriété [I.8] : (Somme de séries entiéres)
Soient Z anz" et Z by z" deux séries entiéres de rayons de convergence R, et R respectivement. Si R,1p est le
n>=0 n=0
rayon de convergence de Z(an + b,,)z" alors on a
n=0

Rats > min(R,, Ry).

Si de plus R, # Ry alors R,y = min(R,, Rp).

Remarque(s) :

1 1
Si R, = Ry alors on ne peut pas donner la valeur exacte de R, a priori : E (7 — ) z"
n
>

n+1
11 1\, R A
Y (Grm-a)mo X (pren o)
>1 1
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Propriété [1.9] : (Produit de Cauchy de séries entiéres)

Soient E apz" et E bp 2" deux séries entieres de rayons de convergence R, et R;, respectivement. Soit (¢, )nen la
n>0 n>0

n
suite produit de Cauchy de (a,)nen et (by)nen, ie Vn € Ny¢, = Zakbn_k. Alors le rayon R,.;, de convergence de

k=0
Z cn 2" vérifie
n>=0
Rgyp > min(Rg, Ry).
Remarque(s) :
1
Méme si R, # Ry, on peut avoir Ra., # min(Rq, Rp) @ (1 —2) x 1=2)(2-2)

Propriété [1.10] : Soit (ay,)nen une suite complexe. On note respectivement R, R, et R4 les rayons de convergence

. ;. BN An—1
des trois séries entiéres E anz", E (n+ Dapy12" et E ———2". Alors
n
n>=0 n>0 n>=1

R, =Ry = Ra.

Remarque(s) :

Plus généralement, pour tout « € R, on a R (Z anz”> =R (Z n"‘anz">

II Somme d’une série entiere

1. Continuité de la somme

Théoréme [II.1] : Soit E anz" une série entiere de rayon de convergence R. Si R > 0 alors la série E anz"”
n=0 n=0
converge normalement sur tout segment de l'intervalle ouvert de convergence, ie

Zanx” converge normalement sur tout segment [—a,a] C] — R, R|,

(donc avec 0 < a < R).

Attention : Il n’y a pas convergence normale, ni uniforme, sur l’intervalle ouvert|— R, R[; ¢/ex : Z ",

n=0
Conséquence [I1.2] : Soit Zanx” une série entiere de rayon de convergence R. Si R > 0 alors la somme
n=0
+o00o
S:ix— Z anx™ est continue sur l'intervalle ouvert | — R, R|.
n=0
Remarque(s) :

@D Comme on ’a vu précédemment, le domaine de définition de S vérifie | — R, R[C Dg C [—R, R].

x'll
(I1.2) On peut aussi avoir continuité en certains points du segment [—R, R] : Z(—l)"“—.
n
n>1

@@ Si la série Z an R™ est absolument convergente alors Z anx"™ converge normalement sur [—R, R)

n=0 n>0
n

. x
donc la somme est continue sur le segment [—R, R]; ex : E —.
n
n=1

PSI2 - Lycée Montaigne Page 4/@



Propriété [I1.3] : Soit Z anz" une série entiere de variable complexe et de rayon R. Si R > 0 alors la somme

n=0
—+oo
Sz Z anz" est continue sur le disque ouvert de convergence, ie sur B(0, R) = {z € C, |z|] < R}
n=0

Conséquence [II.4] : Les coefficients d’une série entiére de rayon R > 0 sont uniques.

2. Dérivation et intégration des séries entieres de variable réelle

Propriété [I1.5] : Soient Z a,x" une série entiere de variable réelle de rayon de convergence R > 0 et f sa somme

n=0
+oo
définie par f : z €] — R, R[— Zanx”
n=0
5 b too pntl b
1. Pour tout (a, b) €] — R, R[?, /tdt: ni}
our tout (a,b) €] , R onaaf() ngoa w1l

2. La primitive F' de f nulle en 0 est somme sur | — R, R[ d’une série entiére :

+oo

Va €] — R, R[,F(z) = /Om fyar=3Y" %xn

n=1

Conséquence [II.6] : Soient Z anz™ une série entiere de rayon de convergence R > 0 et f sa somme sur | — R, R].
n>=0
Alors f est de classe C*° sur | — R,R[ et sip € N, on a :

+oo too |
Vo< BRIV = S onn 1)yt D = S g
n=0 n=p (n — p).
= mtp)!
- Z T Ontpt
n=0 :
(o
En particulier, on a, pour tout n € N, a,, = ! n'( )
@@ Pour p € N, orlam:Vgce]—l,l[,#:Jri:.O n+p "
(L—z)pptt =\ p

III Fonctions développables en série entiere

1. Série de Taylor d’une fonction de variable réelle

Définition : Soient I un intervalle de R dont 0 est un point intérieur et f € F(I,K). On dit que f est développable
en série entiére s'il existe r > 0 et une suite (a,)nen € K" telle que

+oo
|—rrlcI et Vee]l—rrflz)= Zanx”
n=0
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Remarque(s) :

(I11.1) Cela signifie en particulier que le rayon de convergence de la série entiere Z an,x" est au moins

n=>0
égal a r.
(II1.2) Si f est paire (resp. impaire) et développable en série entiére alors as,+1 = 0 (resp. ag, = 0) pour
tout n € N.
Propriété [IIL.1] : Soient f et g deux fonctions développables en série entiere sur | — r, r|.

1. Si (a,8) € R? alors af + By est développable en Série entiére sur | —r,r[:

Si, pour z €] —r,r[, on a f(x Zanx et g(z Z bpz™, alors
+oo
Va €] =7l af(2) + Bg(e) = Y (aan + fby)a"
n=0

2. f x g est développable en série entiére sur | —r,r|

Si, pour z €] —r,r[, on a f(x Z anx” et g(x Z b,z", alors
n=0
“+o0 n
Ve €]l —rr, f(z) x g(x) = ch:p" avec Vn € Ny ¢, = Zakbn_k
n=0 k=0
L’ensemble des fonctions développables en série entiére sur | — r, [ est un sous-espace vectoriel de F(] — r,r[,K),

stable par produit.

Exemple(s) :
+oo
1 n+p\ ,
I11.3) Pour p € N, on a, pour z € C, |z] < 1’(1—z)l’+120< » )z .

II1.4) Toute fraction rationnelle dont le dénominateur ne s’annule pas en 0 est développable en série
entiere.

Attention : Pour appliquer la formule du produit de Cauchy, les deux séries doivent obligatoirement étre
de la forme Z anz" et Z bpz" (donc commencer en n =0 et avec tous les termes z™)

n>=0 n=0
Propriété [II1.2] : Soit f une fonction développable en série entiere sur | — r, 7| Z anz™ Alors
n=0
1. Toute primitive F de f sur I est développable en série entiére sur | — r,r[ :
400 a
Flz)=F nolgn €] -
(x) (0)—1—2 —2", pour z gl —r,r
n=1
2. Toutes les dérivées de f sont développables en série entiére sur | — r,7[ : sip € N,
—+oo
P (z) = Z nn—1)...(n —p+ Da,z" P, pour z €] —r,r|
n=0
Exemple(s) :
400 o
II1.5) On en déduit —In(1 — ) = Z — pour |z| < 1.
n=1 n
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Propriété [II1.3] : Soient I un intervalle de R dont 0 est un point intérieur, f € F(I,R) et r > 0. Alors on a
équivalence de :

i. f est développable en série entiere

2 p)
il fec®(—rr[R)et Ve €]~ fla) =D S0 n

n!
n=0

Le développement en série entiére d’'une fonction f est, s’il existe, unique.

(0
La série E / ‘( )sc" est appelée série de Taylor de f en 0.
n!
n=0

Remarque(s) :
I11.6) Cela signifie en particulier que toute fonction développable en série entiére sur | —r, r[ est de classe
C* sur | — r,r[, cela permet donc de prouver qu’'une fonction est de classe C*°.
Exemple(s) :

—In(1 —
—hn-2) se prolonge en une fonction de classe C*° sur | — oo, 1].

(II1.7) Vérifier que f : x —

Conséquence [II1.4] : Soient I un intervalle de R dont 0 est un point intérieur, f € F(I,R) et » > 0. Alors f est
développable en série entiére si et seulement si f € C*(] — r,7[,R) et

xT _ t n
v 6] -h 7‘[, ngl}rloo 0 (x n! ) f(nJrl)(t) dt=0

Remarque(s) :

= f(k) (0) k ‘ (.1? — t)n (n+1)
(HI1.8) Tl ne faut pas confondre le reste de Taylor R, (x) = f(z) —Z = Tf (t)dt
kzo . 0 .

(qui existe si f est de classe C"™! sur I contenant z) et le reste de la série de Taylor défini par
= S AUON

R,(x) = Z ¢ (qui existe si la série de Taylor de f est convergente au point ).
k=n-+1 :
Si f est développable en série entieére sur | — r,7[, les deux restes sont égaux pour xz €] — r, 7| et

tendent vers 0 quand n tend vers 4oco.

(I11.9) 11 existe des fonctions f de classe C*™ sur R pour lesquelles la série de Taylor converge mais pas
-1
vers [ : f(x) = exp <?> siz#0et f(0)=0.
1l existe des fonctions de classe C*° pour lesquelles la série de Taylor est divergente pour x # 0
(cf feuille d’exercices).
Exemple(s) :

111.11) Soit f € C*°(] —r,7[,R) paire (ou impaire) telle que, sur [0, 7], on ait ¥n € N, £ > 0. Montrer
que f est développable en série entiere.

PSI2 - Lycée Montaigne Page 7/@



2. Fonctions usuelles

Propriété [IIL.5] :
+o0 "
1. Ve e R, e” = Z — , le rayon de convergence étant 4oco.
n!
n=0
+oo 2n
2. Vz € R,ch(z) = Z i le rayon de convergence étant +oo
. ) - . (277,)! I y g °
n—
T p2ntl
Vz € R, sh(x) = ; m , le rayon de convergence étant +oo.
+oo 2n
x .
3. Yz € R, cos(x) = Z(—l)" , le rayon de convergence étant +oo.
— (2n)!
+o0 Z2n+1
Vz € R,sin(z) = ngo(fl)"m , le rayon de convergence étant +oo.
+oo
1 . .
4. Vz €] — 1,1], T—2= Z T , le rayon de convergence étant 1.
—x
=0
1 =
Vo e] —1,1] 152 (=)™ , le rayon de convergence étant 1.
x
n=0
too ( 1)n+1
5. Ve e]—1,1,In(1+2z) = Z —" , le rayon de convergence étant 1.
n
n= 1
n
Ve el —-1,1[, —In(l —z) Z — , le rayon de convergence étant 1.
+°O I2"+1
Va €] — 1, 1], arct = " , 1 d étant 1.
x €] [, arctan(x) 7;0( ) 1 e rayon de convergence étan
—+oo
—1...(a— 1) |,
6. Soit @ € R, alors Vz €] — 1, 1[, (1 + ) = Z ale—1) '(a n+l) x" , le rayon de convergence étant
n!
n=0
lsia¢ Net 4oosiaeN.
Exemple(s) :
II1.12) V€] —1,1[,arccos(x) = = — Z 2t
o +1
n=0
3. Exponentielle complexe
+oo  _p
Définition : Pour z € C, on pose exp(z) = e* = Z Z—' Le rayon de convergence de cette série entiere est +oc0.
n!
n=0

Propriété [III.6] :
1. V(z,2') € C?,exp(z + 2') = exp(z) x exp(2').
2. ¥(z,y) € R? exp(z + iy) = e”(cos(y) + isin(y)).
3. Soit z € C et f, : R — C définie par V¢ € R, f.(t) = exp(tz). Alors f. est de classe C' sur R et f, est la

Yy =zxy

solution de {
y(0) =1
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4. Exercices
Exemple(s) :

+oo
Calculer Z n3z™.

n=0

+oo
2n
II1.14) Calcul "
alculer Z <n>1’

n=0

“+oo
(="
Calculer Zl m

x
II1.16) Montrer que f : x — e~ / e’ dt est développable en série entiere.
0

z
II1.17) Montrer que f(z) = / In(1 + zsint) dt est développable en série entiére sur | — 1, 1].
0
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