
Séries entières

La notation K désigne soit le corps des nombres réels, soit le corps des nombres complexes.

I Convergence d’une série entière
1. Rayon de convergence

Définition : Une série entière (de variable complexe) est une série de fonctions
∑
n⩾0

un telle que :

∃(an)n∈N ∈ CN, ∀z ∈ C, ∀n ∈ N, un(z) = anzn

Les an, n ∈ N, sont les coefficients de la série entière
∑
n⩾0

anzn.

Une série entière de variable réelle est une série entière
∑
n⩾0

anxn, où x ∈ R et (an)n∈N ∈ CN.

Exemple(s) :�
 �	I.1 Les polynômes.�
 �	I.2
+∞∑
n=0

zn = 1
1 − z

pour |z| < 1.

�
 �	I.3
+∞∑
n=0

zn

n! = ez pour tout z ∈ C.

Définition [I.1] : Soit (an)n∈N ∈ KN. On appelle rayon de convergence de la série entière
∑
n⩾0

anzn le « réel »

R défini par :
R = sup

{
ρ ∈ R+, (anρn)n∈N est bornée

}
∈ [0, +∞].

Remarque(s) :�
 �	I.4 On a donc R = +∞ si, pour tout ρ ∈ R+, la suite (anρn) est bornée ; ex : si an = 1
n! .�
 �	I.5 Si la suite (an) est bornée, on a R ⩾ 1 par définition de R ; on en déduit que si (an) converge alors

R ⩾ 1. Mais on peut avoir R = 1 même si la suite (an) diverge (ex : an = n).�
 �	I.6 Plus généralement, si, pour z ∈ C, on a
⋆ (anzn) bornée alors |z| ⩽ R

⋆ (anzn) non bornée alors R ⩽ |z|.�
 �	I.7
{

ρ ∈ R+, (anρn)n∈N est bornée
}

est un intervalle de R+ qui contient 0 donc on a :

{
ρ ∈ R+, (anρn)n∈N est bornée

}
=
ß

[0, R[ si (anRn)n∈N n’est pas bornée
[0, R] si (anRn)n∈N est bornée
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Conséquence [I.2] : Si ∀n ∈ N, an = nα avec α ∈ R alors

R = 1

Propriété [I.3] : (Lemme d’Abel)
Soient (an)n∈N ∈ CN et ρ ∈ R+∗.

Si la suite (anρn)n∈N est bornée alors pour tout z ∈ C tel que |z| < ρ, la série
∑
n⩾0

anzn converge absolument

Théorème [I.4] : Soient (an)n∈N ∈ CN, R le rayon de convergence de
∑
n⩾0

anzn et z ∈ C.

1. Si |z| < R alors la série
∑
n⩾0

anzn est absolument convergente.

2. Si |z| > R, la série
∑
n⩾0

anzn est grossièrement divergente, ie la suite (anzn)n∈N ne tend pas vers 0.

Remarque(s) :�
 �	I.8 On appelle disque ouvert de convergence, pour une série entière de variable complexe, le disque
ouvert de centre 0 et de rayon R, ie B(0, R) = {z ∈ C, |z| < R} ; pour une série entière de variable
réelle, l’intervalle ] − R, R[ est appelé intervalle ouvert de convergence. Une série entière est donc
toujours définie au moins sur son disque ouvert (ou intervalle ouvert) de convergence, mais elle
peut aussi être définie en certains points du disque fermé de rayon R, ie en certains points z tels
que |z| = R (ou en ±R pour une série de variable réelle).�
 �	I.9 Le domaine de convergence D de cette série de fonctions vérifie donc

B(0, R) ⊂ D ⊂ Bf (0, R) = {z ∈ C, |z| ⩽ R}

Pour une série entière de variable réelle, on a ] − R, R[⊂ D ⊂ [−R, R]�
 �	I.10 On a aussi R = sup
{

r ∈ R+, ∃z ∈ C, |z| = r et
∑
n⩾0

anzn converge
}

.

�
 �	I.11 Si |z| = R, on ne peut a priori rien dire sur la nature de
∑
n⩾0

anzn :
∑
n⩾1

zn

n
converge pour z = −1

et diverge pour z = 1,
∑
n⩾0

zn

n2 converge pour |z| = 1 et
∑
n⩾0

zn diverge pour |z| = 1.

Conséquence [I.5] : Soit z ∈ C,

1. si
∑
n⩾0

anzn converge alors |z| ⩽ R

2. si
∑
n⩾0

anzn diverge alors R ⩽ |z|.

Propriété [I.6] : Soient
∑
n⩾0

anzn et
∑
n⩾0

bnzn deux séries entières de rayons de convergence respectifs Ra et Rb.

1. Si an =
n→+∞

O(|bn|) (donc si |an| ⩽ |bn| ou si an =
n→+∞

o(|bn|)) alors Rb ⩽ Ra.

2. Si an ∼
n→+∞

bn alors Ra = Rb.
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Propriété [I.7] : (Règle de d’Alembert)
Soient (an) une suite de KN de termes non nuls et R le rayon de convergence de la série entière

∑
n⩾0

anzn.

Si lim
n→+∞

|an+1|
|an|

= ℓ ∈ R+ ∪ {+∞} alors R = 1
ℓ

Remarque(s) :�
 �	I.12 Cela signifie que si ℓ = 0 alors R = +∞ et si ℓ = +∞ alors R = 0.
Attention :

1. On ne peut appliquer cette propriété que si la série est de la forme
∑

anzn donc pas à
∑

anz2n

par exemple (ou toute autre série « lacunaire ») .

2. La règle de d’Alembert n’est pas une équivalence : si le rayon de convergence de
∑

anzn est R > 0,

même si (an) ne s’annule pas, il se peut que la suite
Å

an+1

an

ã
n’ait pas de limite ; ex : an = n(−1)n

.
La règle de d’Alembert est donc rarement utilisable pour des exercices « théoriques » sur les rayons
de convergence.

Exemple(s) :�
 �	I.13 Méthodes de détermination du rayon de convergence :

a) Utilisation de la règle de d’Alembert :
∑
n⩾1

n!
nn

zn et
∑
n⩾0

2n(n!)2

(2n)! z2n.

b) Utilisation d’équivalents : pour (P, Q) ∈ R[X]2, Q ̸= 0
∑

n⩾n0

P (n)
Q(n)zn.

c)
∑
n⩾0

zn

pn
n

où (pn)n∈N est la suite des nombres premiers.

d) Utilisation de la définition :
∑
n⩾0

anzn avec an la nème décimale du nombre π.

2. Opérations sur les séries entières

Propriété [I.8] : (Somme de séries entières)
Soient

∑
n⩾0

anzn et
∑
n⩾0

bnzn deux séries entières de rayons de convergence Ra et Rb respectivement. Si Ra+b est le

rayon de convergence de
∑
n⩾0

(an + bn)zn alors on a

Ra+b ⩾ min(Ra, Rb).

Si de plus Ra ̸= Rb alors Ra+b = min(Ra, Rb).

Remarque(s) :�
 �	I.14 Si Ra = Rb alors on ne peut pas donner la valeur exacte de Ra+b a priori :
∑
n⩾1

Å 1
n

− 1
n + 1

ã
zn

ou
∑
n⩾1

Å 1
n

+ 1
n! − 1

n

ã
zn ou

∑
n⩾1

Å 1
n

+ e−n − 1
n

ã
zn.
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Propriété [I.9] : (Produit de Cauchy de séries entières)
Soient

∑
n⩾0

anzn et
∑
n⩾0

bnzn deux séries entières de rayons de convergence Ra et Rb respectivement. Soit (cn)n∈N la

suite produit de Cauchy de (an)n∈N et (bn)n∈N, ie ∀n ∈ N, cn =
n∑

k=0
akbn−k. Alors le rayon Ra∗b de convergence de∑

n⩾0
cnzn vérifie

Ra∗b ⩾ min(Ra, Rb).

Remarque(s) :�
 �	I.15 Même si Ra ̸= Rb, on peut avoir Ra∗b ̸= min(Ra, Rb) : (1 − z) × 1
(1 − z)(2 − z)

Propriété [I.10] : Soit (an)n∈N une suite complexe. On note respectivement Ra, Ra′ et RA les rayons de convergence
des trois séries entières

∑
n⩾0

anzn,
∑
n⩾0

(n + 1)an+1zn et
∑
n⩾1

an−1

n
zn. Alors

Ra = Ra′ = RA.

Remarque(s) :�
 �	I.16 Plus généralement, pour tout α ∈ R, on a R
Ä∑

anzn
ä

= R
Ä∑

nαanzn
ä

II Somme d’une série entière
1. Continuité de la somme

Théorème [II.1] : Soit
∑
n⩾0

anxn une série entière de rayon de convergence R. Si R > 0 alors la série
∑
n⩾0

anxn

converge normalement sur tout segment de l’intervalle ouvert de convergence, ie∑
anxn converge normalement sur tout segment [−a, a] ⊂] − R, R[,

(donc avec 0 ⩽ a < R).

Attention : Il n’y a pas convergence normale, ni uniforme, sur l’intervalle ouvert ]−R, R[ ; c/ex :
∑
n⩾0

xn.

Conséquence [II.2] : Soit
∑
n⩾0

anxn une série entière de rayon de convergence R. Si R > 0 alors la somme

S : x 7−→
+∞∑
n=0

anxn est continue sur l’intervalle ouvert ] − R, R[.

Remarque(s) :�
 �	II.1 Comme on l’a vu précédemment, le domaine de définition de S vérifie ] − R, R[⊂ DS ⊂ [−R, R].�
 �	II.2 On peut aussi avoir continuité en certains points du segment [−R, R] :
∑
n⩾1

(−1)n+1 xn

n
.�
 �	II.3 Si la série

∑
n⩾0

anRn est absolument convergente alors
∑
n⩾0

anxn converge normalement sur [−R, R]

donc la somme est continue sur le segment [−R, R] ; ex :
∑
n⩾1

xn

n2 .
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Propriété [II.3] : Soit
∑
n⩾0

anzn une série entière de variable complexe et de rayon R. Si R > 0 alors la somme

S : z 7→
+∞∑
n=0

anzn est continue sur le disque ouvert de convergence, ie sur B(0, R) = {z ∈ C, |z| < R}

Conséquence [II.4] : Les coefficients d’une série entière de rayon R > 0 sont uniques.

2. Dérivation et intégration des séries entières de variable réelle

Propriété [II.5] : Soient
∑
n⩾0

anxn une série entière de variable réelle de rayon de convergence R > 0 et f sa somme

définie par f : x ∈] − R, R[ 7−→
+∞∑
n=0

anxn

1. Pour tout (a, b) ∈] − R, R[2, on a
∫ b

a

f(t) dt =
+∞∑
n=0

an

ï
xn+1

n + 1

òb

a

.

2. La primitive F de f nulle en 0 est somme sur ] − R, R[ d’une série entière :

∀x ∈] − R, R[,F (x) =
∫ x

0
f(t) dt =

+∞∑
n=1

an−1

n
xn

Conséquence [II.6] : Soient
∑
n⩾0

anxn une série entière de rayon de convergence R > 0 et f sa somme sur ]−R, R[.

Alors f est de classe C∞ sur ] − R, R[ et si p ∈ N, on a :

∀x ∈] − R, R[, f (p)(x) =
+∞∑
n=0

n(n − 1) . . . (n − p + 1)anxn−p =
+∞∑
n=p

n!
(n − p)!anxn−p

=
+∞∑
n=0

(n + p)!
n! an+pxn

En particulier, on a, pour tout n ∈ N, an = f (n)(0)
n!

Exemple(s) :�
 �	II.4 Pour p ∈ N, on a : ∀x ∈] − 1, 1[, 1
(1 − x)p+1 =

+∞∑
n=0

Ç
n + p

p

å
xn.

III Fonctions développables en série entière
1. Série de Taylor d’une fonction de variable réelle

Définition : Soient I un intervalle de R dont 0 est un point intérieur et f ∈ F(I,K). On dit que f est développable
en série entière s’il existe r > 0 et une suite (an)n∈N ∈ KN telle que

] − r, r[⊂ I et ∀x ∈] − r, r[, f(x) =
+∞∑
n=0

anxn
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Remarque(s) :�
 �	III.1 Cela signifie en particulier que le rayon de convergence de la série entière
∑
n⩾0

anxn est au moins

égal à r.�
 �	III.2 Si f est paire (resp. impaire) et développable en série entière alors a2n+1 = 0 (resp. a2n = 0) pour
tout n ∈ N.

Propriété [III.1] : Soient f et g deux fonctions développables en série entière sur ] − r, r[.
1. Si (α, β) ∈ R2 alors αf + βg est développable en série entière sur ] − r, r[ :

Si, pour x ∈] − r, r[, on a f(x) =
+∞∑
n=0

anxn et g(x) =
+∞∑
n=0

bnxn, alors

∀x ∈] − r, r[, αf(x) + βg(x) =
+∞∑
n=0

(αan + βbn)xn

2. f × g est développable en série entière sur ] − r, r[ :

Si, pour x ∈] − r, r[, on a f(x) =
+∞∑
n=0

anxn et g(x) =
+∞∑
n=0

bnxn, alors

∀x ∈] − r, r[, f(x) × g(x) =
+∞∑
n=0

cnxn avec ∀n ∈ N, cn =
n∑

k=0
akbn−k

L’ensemble des fonctions développables en série entière sur ] − r, r[ est un sous-espace vectoriel de F(] − r, r[,K),
stable par produit.

Exemple(s) :�
 �	III.3 Pour p ∈ N, on a, pour z ∈ C, |z| < 1, 1
(1 − z)p+1 =

+∞∑
n=0

Ç
n + p

p

å
zn.�
 �	III.4 Toute fraction rationnelle dont le dénominateur ne s’annule pas en 0 est développable en série

entière.
Attention : Pour appliquer la formule du produit de Cauchy, les deux séries doivent obligatoirement être
de la forme

∑
n⩾0

anzn et
∑
n⩾0

bnzn (donc commencer en n = 0 et avec tous les termes zn)

Propriété [III.2] : Soit f une fonction développable en série entière sur ] − r, r[ : f(x) =
+∞∑
n=0

anxn Alors

1. Toute primitive F de f sur I est développable en série entière sur ] − r, r[ :

F (x) = F (0) +
+∞∑
n=1

an−1

n
xn, pour x ∈] − r, r[

2. Toutes les dérivées de f sont développables en série entière sur ] − r, r[ : si p ∈ N,

f (p)(x) =
+∞∑
n=0

n(n − 1) . . . (n − p + 1)anxn−p, pour x ∈] − r, r[

Exemple(s) :�
 �	III.5 On en déduit − ln(1 − x) =
+∞∑
n=1

xn

n
pour |x| < 1.
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Propriété [III.3] : Soient I un intervalle de R dont 0 est un point intérieur, f ∈ F(I,R) et r > 0. Alors on a
équivalence de :

i. f est développable en série entière

ii. f ∈ C∞(] − r, r[,R) et ∀x ∈] − r, r[, f(x) =
+∞∑
n=0

f (n)(0)
n! xn.

Le développement en série entière d’une fonction f est, s’il existe, unique.

La série
∑
n⩾0

f (n)(0)
n! xn est appelée série de Taylor de f en 0.

Remarque(s) :�
 �	III.6 Cela signifie en particulier que toute fonction développable en série entière sur ]−r, r[ est de classe
C∞ sur ] − r, r[, cela permet donc de prouver qu’une fonction est de classe C∞.

Exemple(s) :�
 �	III.7 Vérifier que f : x 7→ − ln(1 − x)
x

se prolonge en une fonction de classe C∞ sur ] − ∞, 1[.

Conséquence [III.4] : Soient I un intervalle de R dont 0 est un point intérieur, f ∈ F(I,R) et r > 0. Alors f est
développable en série entière si et seulement si f ∈ C∞(] − r, r[,R) et

∀x ∈] − r, r[, lim
n→+∞

∫ x

0

(x − t)n

n! f (n+1)(t) dt = 0

Remarque(s) :�
 �	III.8 Il ne faut pas confondre le reste de Taylor Rn(x) = f(x)−
n∑

k=0

f (k)(0)
k! xk =

∫ x

0

(x − t)n

n! f (n+1)(t) dt

(qui existe si f est de classe Cn+1 sur I contenant x) et le reste de la série de Taylor défini par

R̃n(x) =
+∞∑

k=n+1

f (k)(0)
k! xk (qui existe si la série de Taylor de f est convergente au point x).

Si f est développable en série entière sur ] − r, r[, les deux restes sont égaux pour x ∈] − r, r[ et
tendent vers 0 quand n tend vers +∞.�
 �	III.9 Il existe des fonctions f de classe C∞ sur R pour lesquelles la série de Taylor converge mais pas

vers f : f(x) = exp
Å−1

x2

ã
si x ̸= 0 et f(0) = 0.�
 �	III.10 Il existe des fonctions de classe C∞ pour lesquelles la série de Taylor est divergente pour x ̸= 0

(cf feuille d’exercices).
Exemple(s) :�
 �	III.11 Soit f ∈ C∞(] − r, r[,R) paire (ou impaire) telle que, sur [0, r[, on ait ∀n ∈ N, f (n) ⩾ 0. Montrer

que f est développable en série entière.
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2. Fonctions usuelles

Propriété [III.5] :

1. ∀x ∈ R, ex =
+∞∑
n=0

xn

n! , le rayon de convergence étant +∞.

2. ∀x ∈ R, ch(x) =
+∞∑
n=0

x2n

(2n)! , le rayon de convergence étant +∞.

∀x ∈ R, sh(x) =
+∞∑
n=0

x2n+1

(2n + 1)! , le rayon de convergence étant +∞.

3. ∀x ∈ R, cos(x) =
+∞∑
n=0

(−1)n x2n

(2n)! , le rayon de convergence étant +∞.

∀x ∈ R, sin(x) =
+∞∑
n=0

(−1)n x2n+1

(2n + 1)! , le rayon de convergence étant +∞.

4. ∀x ∈] − 1, 1[, 1
1 − x

=
+∞∑
n=0

xn , le rayon de convergence étant 1.

∀x ∈] − 1, 1[, 1
1 + x

=
+∞∑
n=0

(−1)nxn , le rayon de convergence étant 1.

5. ∀x ∈] − 1, 1[, ln(1 + x) =
+∞∑
n=1

(−1)n+1

n
xn , le rayon de convergence étant 1.

∀x ∈] − 1, 1[, − ln(1 − x) =
+∞∑
n=1

xn

n
, le rayon de convergence étant 1.

∀x ∈] − 1, 1[, arctan(x) =
+∞∑
n=0

(−1)n x2n+1

2n + 1 , le rayon de convergence étant 1.

6. Soit α ∈ R, alors ∀x ∈] − 1, 1[, (1 + x)α =
+∞∑
n=0

α(α − 1) . . . (α − n + 1)
n! xn , le rayon de convergence étant

1 si α /∈ N et +∞ si α ∈ N.

Exemple(s) :�
 �	III.12 ∀x ∈] − 1, 1[, arccos(x) = π

2 −
+∞∑
n=0

Ç
2n

n

å
4−n

2n + 1x2n+1.

3. Exponentielle complexe

Définition : Pour z ∈ C, on pose exp(z) = ez =
+∞∑
n=0

zn

n! . Le rayon de convergence de cette série entière est +∞.

Propriété [III.6] :
1. ∀(z, z′) ∈ C2, exp(z + z′) = exp(z) × exp(z′).
2. ∀(x, y) ∈ R2, exp(x + iy) = ex(cos(y) + i sin(y)).
3. Soit z ∈ C et fz : R −→ C définie par ∀t ∈ R, fz(t) = exp(tz). Alors fz est de classe C1 sur R et fz est la

solution de
ß

y′ = z × y
y(0) = 1
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4. Exercices
Exemple(s) :�
 �	III.13 Calculer

+∞∑
n=0

n3xn.

�
 �	III.14 Calculer
+∞∑
n=0

Ç
2n

n

å
xn.

�
 �	III.15 Calculer
+∞∑
n=1

(−1)n

n(2n + 1) .

�
 �	III.16 Montrer que f : x 7−→ e−x2
∫ x

0
et2

dt est développable en série entière.

�
 �	III.17 Montrer que f(x) =
∫ π

2

0
ln(1 + x sin t) dt est développable en série entière sur ] − 1, 1[.
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