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PSI2. Devoir en classe n°4. 4h . Samedi 10 janvier 2026.
Proposition de solution.

Probleme 1. III.A - Estimation de I'anomalie gravitationnelle due a la présence de pétrole.
Extrait centrale tsi2021.
Q32. DESSIN OBLIGATOIRE non fourni ici .

L : . = BA
Interaction électrostatique subie par la charge ponctuelleen A: F, = % i
0
. N . = BA
Interaction gravitationnelle subie par la masse ponctuelle en A: F;, = —m,mzG e

Q33. On peut dresser les analogies suivantes :

électrostatique | gravitation

charge q masse m

champ E champ g

1
constante
4TTE

constante —G

(e

En utilisant cette analogie, le théoreme de Gauss ®, = fzﬁ -d2S = % s'écrit donc pour le champ
0

gravitationnel : &, = ff):g’ - d2S = —4nG M, .

Q34. On raissonne sur les symétries puis invariances :

e Toutplan (M, ,,1,) est un plan de symétrie pour la distribution de masse (car on néglige les
effets de bords) donc pour le champ g, donc g - i, = 0.

e Toutplan (M, iy, ﬁz) est un plan de symétrie pour la distribution de masse (car on néglige les
effets de bords) donc pour le champ g, donc g, - U, = 0.

e Comme la distribution de masse est supposée infiniment étendue dans les direction (Ox) et
(0y), il y a invariance par translation dans ces deux direction et g.(x,y,z) ne dépend
respectivement ni de x ni de y.

Finalement, on a donc §.(M) = g.(2)u,. En outre, le plan (Oxy) est un plan de symétrie pour la
distribution de masses, donc pour le champ donc la fonction g.(z) est impaire.

Q35. A

S
On choisit comme surface de Gauss un cylindre d'axe (0z), de TD
section §, situé entre les plan z et —2z.
On s'intéressera au cas ou z > H /2. (cf. ci-contre)

Y

Calculons le flux :

(Dg = ﬂi zgc : ﬁz = J.J- gc(z)ﬁz ) dSﬁZ + f gc(_Z)ﬁz ) dS(_ﬁz)
Sz

S-z

+ f fs 9eil, - dSyae (@i + BTLy) = go(2) - S — g(~2) - S = 29.(2) - §

lat
en utilisant I'imparité de la fonction.

La masse intérieure vaut alors M; = p.SH.
On a alors, d'apres le théoreme de Gauss : 29.(2).S = —4nGp.S.-H
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Finalement: g, = —-2nGp.H pour z > H/2. CQFD

Q36. On en déduit que I'anomalie gravitationnelle diie a la présence de la nappe de pétrole vaut :
Ag = 2nG(p, — pp)H. Numériquement: Ag ~ 1,68 x 10™* m - s™2,

Probleme 2. Extrait centrale mp 2023.
A - Un miroir pour les ondes électromagnétiques
Q 1. Equations de Maxwell :

Maxwell-Gauss div E(M, t) = @

0

Maxwell-Thomson div E(M, t)=0

Maxwell-Faraday rotE M, t) =— aBg\:'t)

Maxwell-Ampere r—ot)t_?)(M, t) = o (f(M, t) + & Z—f (M, t))

Dans une région vide de charges, elles deviennent :
Maxwell-Gauss div E M, t)=0
Maxwell-Thomson div §(M, t)=0

Maxwell-Faraday rotE M, t) =— -an,A:’t)

. =3 OE
Maxwell-Ampere rotB(M, t) = py&g a—f (M, t)
e el 6_) —_—— 2 _— a_) a TotB
Q 2. Comme rotE = — a—f, ona rot(rotE) = —rot (0_1:) = — %
par permutation des dérivées spatiale et temporelles (théoréme de Schwarz).

De plus rot(rotE) = grad(div E) — AE = —AF dans le vide. Avec I'équation de Maxwell-Ampére, on
obtient donc

AFo O OE\ 0°E
= Tt lloeoat = Hogoatz

d'ou, comme pygc? = 1,

l

pi-L0E 5
c2 9t2
Q3. Le direction de propagation de I'onde de la forme E}M, t) = Eycos (wt — kx)1,, est selonl'axe Ox.
En considérant k > 0, 1'onde se propage selon .
L'onde est polarisée rectilignement selon ,,.

Ecrivons que le champ vérifie I'équation de d'Alembert :
(1)2
<—k2 + C—Z) Eycos (wt — kx) =0, V(x,t)

Comme E, # 0, on en déduit la relation de dispersion (I'autre solution est évacuée)

w
k=—
C

Q 4. Le conducteur parfait correspond au cas théorique limite d'une conductivité électrique infinie :
)/ — 00,

A Tlintérieur d'un conducteur idéal, le champ électrique est nul: E(M, t) = 0.
Q5. Ecrivons la relation de passage en ne prenant en compte que le champ incident donné. Le milieu

(1) est le vide, le milieu (2) le conducteur (donc E, = 0, et fi;_,, = &,, d'ou *

Wie Gott in Frankreich.
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- . o(M,t)
0 — Egcos (wt)u, = Tux
En projetant selon i, on obtient
Eycos (wt) =0Vt
Comme E;, # 0, cette condition ne peut étre vérifiée.
Le champ électrique donné ne vérifie pas le relation de passage.
Il existe donc un champ EF(M, t), tel que le champ total F?(M, t) = Ei (M, t) + Er(M, t) vérifie la
relation de passage.
Al'interface x = 0, on a donc

= — = o —
0 — Eycos (wt)uy, — Egrcos (w't) = - Ux
0
En projetant selon u,, on obtient

—E,, - Uycos (w't) = i

€o
On peut a priori écrire

E. = Egrxcos (w't + k'x)u, + Egyycos (w't + k'),
Dans le vide, on a alors d'apres 1'équation de Maxwell-Gauss
div E = —Eor xk'sin (wt + k'x) = 0Vt,x
ce qui impose Ey., = 0, et donc o = 0 a la surface du conducteur. On a donc Ey,.,, = E, etlarelation
de passage s'écrit en projection selon i,
0 — Eycos (wt) — Eycos (w't) = 0 Vt.

On en déduire E), = —E, et ' = w. La relation de dispersion donne k' = w'/c = w/c = k.
On a finalement Er = —Eycos (wt + kx)ii,,.
Cette onde se propage dans le sens des x décroissants et est polarisée rectilignement selon ,,.

Q 6. Le champ électrique résultant est donné par
E(M,t) = (Eycos (wt — kx) — Egcos (wt + kx))i,,
soit
E(M,t) = 2Eysin (kx)sin (wt)d,.
On obtient le champ B avec I'équation de Maxwell-Faraday:
0B —

o = —rotE = —aﬁz = —2Eykcos (kx)sin (wt)i,

On integre par rapport a ¢, en prenant nulle la constante d'intégration (un terme constant n'a pas de
caractere ondulatoire) :

o k
B(M,t) = 2E, —cos (kx)cos (wt)i,
soit comme w = kc
- E
B(M,t) = ZTOCOS (kx)cos (wt)i,

L'onde correspondante est une onde stationnaire, les champs électrique et magnétique étant en
quadrature spatiale et temporelle.

Q 7. La tension mesurée s'annule quand E =0, Vt, soit aux points tels que sin (kx) = 0. Les abscisses

correspondantes vérifient donc kx = nm, avec n € Z. Entre deux annulations successives, on a,

2T
comme k = -

Ax =

N

T
k
Entre 4 annulations, on mesure
A
45 = (42,8 —-37,3)cm = 5,5cm
Wie Gott in Frankreich.
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d'oud = 2,75 cm. De f = c/A on déduit f = 10,9GHz.
Q 8. On a déduit A de la mesure des positions x, et x, des annulations extrémes sur la courbe

expérimentale.
0,5 mm

N

La graduation est de 1 mm, d'ou une incertitude relative u(x,) = u(x,) =

On en a déduit la longueur L = x, — x,, d'ou l'incertitude correspondante :
u(L)? = ulxg)? + ulxy)?

soit
V2
u(L) = V2u(xy) = EO'S mm = 0,41 mm
On en a déduit la longueur d'onde 4 = 2L/4 = L/2,d'ou
u(L)

u(d) = — = 0,21 mm

’ 7 C 'R
La fréquence est donnée par f = > d'ou

u(f) _u@)

f P

f 10,9
u(f) =u(d)7 =021~

On en déduit

soitu(f) = 0,08GHz.
L'écart normalisé entre la valeur mesurée et celle donnée par le constructeur est donné par
11,0 — 10,9
o= =0,17
J(0,6)% + (0,08)2
La condition o < 2 est largement vérifiée : la valeur mesurée est bien compatible avec la valeur du
constructeur.

C - Le four a micro-ondes

Q 29. Le champ électrique étant nul dans les parois métalliques, la continuité de sa composante
tangentielle (relation de passage) implique la nullité de cette composante sur les parois du four.
Compte tenu de la forme du champ, cette condition est déja vérifiée pour les parois x = 0,y = 0 et
z=0.

Sur la paroi x = a, on doit avoir

Ey(x =a,y,zt)=0et E,(x=a,y,z,t) =0 Vy,z,t
soit

E, sin(k,a) cos(kyy) sin(k,z) cos(wt) = 0 vy, z,t
Et E; sin(k,a) sin(kyy) cos(k,z) cos(wt) =0 vy, z,t.

On en déduit sin (k,a) = 0, soit k,a = mm avecm € N.
ouk, =0etE; =0

De méme sur la paroi y = b, on doit avoir
E.(x,b,z,t) =0 et E,(x,b,2z,t) =0 Vx,z,t
soit
E; cos(k,x) sin(kyb) sin(k,z) cos(wt) =0 Vx,z,t
et
E; sin(k,x) sin(kyb) cos(k,z) cos(wt) =0 vy, z,t.
On en déduit de méme sin (kyb) = 0, soit kyb = nm avecn € N. Enfin sur la paroi z = d on doit avoir

Ex(x,y,d,t) =0 et E,(x,y,d,t) =0 Vx,y,t
soit
E; cos(k,x) sin(kyy) sin(k,d) cos(wt) =0 Vx,y,t
et
E, sin(k,x) cos(kyy) sin(k,d) cos(wt) = 0 Vx,y,t.

Wie Gott in Frankreich.
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On en déduit de méme sin (k,d) = 0, soit k,d = #m avec £ € N. On conclut donc par

mmn nm 3
k, ZT’ k, =7 et k, =7 avec (m,n,¥) € N°.
Q 30. On calcule
0°E, miy 2
T = Rk =)
On a de méme
0°E, Ny 2 0°E, om\?
ay? _(?) Ey et 572 = _(7> E.
Le champ E vérifie I'équation de propagation
. 10% _3
c2 ot2

soit

[ G () =

La pulsation du mode (m, n; ) est donc donnée par
o= (2 (2 ()
2 2 pN\?
o 2 (4 )

Avec wy ¢ = 21 f m ¢ ON en déduit la fréquence du mode (n,m, £) :
c | my2 2 8
fmne = E\/(E) + (E) + (E) .
Q 32. Avec E=E (x, t)iy, I'équation de Maxwell-Faraday donne

.- OE(x,t)_, nm nmwxy . .
rotE = U, = FEocos (T) sin (wt)u, = —

oB
ot

0x
d'ou
§ nTL’E (nnx) ( t)_)
= —FE,cos (— ) cos (wt)u,.
aw ° a z

La relation de dispersion, obtenue a partir de I'équation de d'Alembert, donne w = %, d'ou

- nmx . E,

B = Bycos (T) cos (wt)u, avec By = =
Q 33. Calcul non demandé : La densité volumique d'énergie dans la cavité est
dW  eE?(x,t) B*(x,t)  &kE; ., mmxy
i > + 2 sin (T) sin® (wt)

e () o w0
soit 0
2
dd_mT/ = f_.lfo [sin2 (naﬂ) sin? (wt) + cos? (?) cos? (wt)].

L'énergie totale est

Wie Gott in Frankreich.
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dw adw
W(t) = f d—dT = d—S dx
0
nwx
it 2
Zﬂof [sm )sm (wt) + cos? ( " )cos (wt)] dx
SB
2 [—sm (wt) +—cos (wt)]
soit
BiSa
4po

Simple AD pour nous...
L'énergie totale dans la cavité est constante au cours du temps. Ce résultat est attendu car il n'y a
aucun phénomene dissipatif pris en compte avec un conducteur parfait.

Q 34.Si E, estl'amplitude du champ électrique, I'amplitude du courant de conduction est donnée par
Jo = o Ey
et 'amplitude du courant de déplacement fd =& g—f est donnée par
Jao = w&Ey = 2nf e E

Le courant de déplacement peut étre négligé devant le courant de conduction si

i 2me

Iao _ 21 4

Jo o
Aveco = 1,5x 10°S-m™1, on peut négliger le courant de déplacement si

< = 2,7 x 10'° Hz
/ 2TE,

Cette condition est largement vérifiée dans le four 4 microondes ou f = 2,45 x 10° Hz.

Q 35. En négligeant le courant de déplacement, I' equatlon de Maxwell-Ampeére s'écrit

rotB = Uo ]
On en déduit

Wf(mﬁ) = ,uoﬁf = ,uar_otf'>
rot(rotB) = grad(div B) — AB = AE
et I'équation de Maxwell-Faraday

e _ 0B
rotE = ——
ot
on obtient
AR = dB
o—
Mo 4
Il s'agit d'une équation de la diffusion. Sa non invariance par renversement du temps (changement
de variable t' = —t ), du fait de la dérivée temporelle d'ordre impair en t (premier ordre ici), traduit

l'irréversibilité du phénomene.
Une telle équation régit 1'évolution de la température dans un milieu siege d'un phénomeéne de
conduction thermique.

Q 36. Ecrivons que le champ proposé vérifie I'équation précédente :
f"(x)e'?® = pyoiwf (x)e'“t vx, t
soit comme e'®t = 0,
f"'(x) —iwpeof(x) =0
L'équation caractéristique associée a cette équation différentielle linéaire homogene du seconde

ordre est
r? —iwpgo = 0,

Wie Gott in Frankreich.
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soit
i
r? = iwlyo = wlyoexp (2)
Ses racines sont

Ty = +,/a),uoaexp

Ta+n=1+

en posant

2
WUy

5 =

homogene a une longueur.
On en déduit la solution générale de I'équation différentielle
f(X) — e(1+1)x/6 + A e—(1+1)x/é‘
Le champ magnétique (et donc Re (f) ) ne peut diverger pour x = 400, donc 4; = 0.
En x = 0, la continuité du champ magnétique impose
B(x = 0,t) = Byel®ti, f(O)e“"t_’
d'ou
]_C(O) = 4; = B,.

On a donc

f(X) — Boe—(1+i)x/5

Q 37. Le champ magnétique est donné par la partie réelle de
§(X, t) = Boe—(1+i)x/56iwta2 — Boe—x/Sei(wt—x/é‘)l—iZ
soit
B -x/8 X\ -
B(x,t) = Bye cos (wt - 5) U,
Le champ magnétique se propage dans le conducteur dans le sens des x croissants, avec une

amplitude qui décroit exponentiellement sur une longueur caractéristique §, d'autant plus petite que
la pulsation est élevée (c'est I'effet de peau; § est alors appelée épaisseur de peau).

Le vecteur densité de courant électrique est donné par I'équation de Maxwell-Ampere :

> _ 1_,§ 10B
J(x,t) = M—Orot = —M—Oa
= ‘f)—%e"‘/‘S [cos (a)t — g) — sin (wt - g)] i,

Q 38. La puissance volumique cédée par le champ électromagnétique a un conducteur ohmique a
pour expression

p(M, ) = (M, ¢) - E(M, t) = o (M, £)? :f(MT,t)2
On adonc
p(x,t) = 252 e—2x/8 [cos (a)t - g) —sin (wt _ g)]z
- M(Z)sza e™2x/8 [cos2 (wt - g) + sin? (a)t — g)
— 2cos (wt — %) sin (a)t — g)]

= M(Z)Bg_‘iae—zx/‘s [1 — 2cos (wt — g) sin (a)t — g)] = #Si—gzae—zxw [1 — sin {2 (a)t — %)}] .

La puissance volumique moyenne (temporelle) est donc donnée par
Wie Gott in Frankreich.
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2

_ By —2x/8
(PG = e

On considere une section S de paroi, dans le demi-espace x > 0 (avec les données relatives au four,
on calcule une épaisseur de peau § = 8,3um, tres faible devant I'épaisseur des plaques métalliques
des parois, ce qui justifie de pouvoir les considérées comme semi-infinies).

Q 39. La puissance moyenne dissipée vaut
+o00 2 + 00
SB§ oy /8
P, = f (p(x))S dx = —— J e 2¥/%dx
0 1620 Jo
2 +00 2
_ SB§ _§ —2x/6] _ SB;
pss2al 2 0 2uiad
En prenant en compte les deux parois, on obtient la puissance moyenne totale dissipée P = 2P;, soit
_ SB}
~ ugos

On élimine sigma a partir de I'expression de I'épaisseur de peau, soit o0 = s
0

d'ou
SBiwés
P =
2110

On vérifie par AD.
Q39bis. Il ya qd méme un petit probleme : le calcul a été effectué pour une épaisseur infinie ce qui a
permis d’évacuer une solution possible. Et, juste apres, I'épaisseur n’est plus infinie...

Q 40. On a établi a la question 33 l'expression de l'énergie totale portée par le champ
électromagnétique dans la cavité :
BZSa
410
On suppose cette expression toujours valable malgré la conductivité finie des parois.
L'énergie dissipée dans les parois pendant une période T = 2m/w s'exprime en fonction de la
puissance P dissipée :

S 27TP _ 2mSB§w§
diss — - w - w 2,110 -

Le facteur de qualité vaut donc

w BiSa w 2u,
Q =2m =2 Polpm
Ediss 4uy 2m SBfwd

soit

Q 41. On calcule 6 = 8,3um pour le four, d'ou
Q =2,2x10*
On remarque que Q > 1 :1'atténuation est faible.

Q 42. En l'absence de rayonnement, la variation de 1'énergie électromagnétique contenue dans la
cavité est donnée par I'énergie absorbée dans les parois. Entre t et t + T, le bilan d'énergie pour la
cavité s'écrit donc

W(e)
Wit+T)—W(t) = —¢giss = —ZHT

Comme Q > 1, la variation relative d'énergie sur une période est tres faible et on peut assimiler le
taux de variation a une dérivée :
dw  W(t+T)—-W(t) W (t)
dt T B QT
Wie Gott in Frankreich.
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Avec T = 2n/w, on obtient

dW w

E + 5 wW(t)=20
L'énergie décroit de facon exponentielle selon la loi

W(t) = W(0)e t/?
avec une constante de temps

Q 43.0n calcule T = 1,4us.

La décroissance du champ présent dans la cavité lorsque 1'on coupe le klystron se fait avec une durée
bien plus faible que la durée typique d'un péritio. Le champ restant dans la cavité apres ouverture de
la porte ne permet pas d'expliquer 1'observation des péritios.

Une étude plus poussée a montré que la source des péritios était le magnétron du four (source du
champ magnétique) : un certain type de magnétron provoquerait 1'émission des péritios. Cependant,
la variation fréquentielle observée lors de I'émission reste inexpliquée.

Probleme 3.Dosage du glucose contenu dans une boisson isotonique
Q4. Réaction de combustion du glucose :
C6H1206 (s) +6 02 ® — 6 C02 ® + 6 Hzo(g)

D’apres la loi de Hess :

A HO = z VA H? = 1274 — 0 + 6 X (—393,5) + 6 x (—285,8) = 1274 — 6 X 679,3

4

L
D'ou: AH® ~ 1,3.10° — 6 X 6,8.10% = 1,3.10% — 4,1. 103 = —2,8.103 kJ.mol™?

Dans la liste proposée, on choisit donc: |A,H° = —2802 kJ.mol~!
Q5. L'énergie libérée par la combustion est intégralement fournie aux muscles et, en définissant le

Pméca

rendement musculaire parn = , on obtient en raisonnant une durée At :

Prgca- At = 1. |Qcomb|
Or en considérant la réaction de combustion du glucose isotherme et isobare, on a :

mg;
AH = Qcomp & ffArHO = Qcomb avec: ff = M:lez

muscle

Mgluc-Pméca-At
n.A-H°

_ Qcomb M

) A . — —
D'ou: Mgiuc = Ef'Mgluc = A HO gluc A mgluc - =

AN: My =6x12+12x1+6x 16 =72+ 12 + 96 = 180 g.mol ™"

_ 180 X 180 X 4 X 3,6.10°
Mgluc = 0,25 x 2.8.106

~ 670g

Dans la liste proposée, on choisit donc : |mgy, = 670 g

Q6. Sachant que no(0) = —II et en respectant les regles usuelles, on obtient :
especes | Iz 103 -
no(I) 0 +V -1

Les especes étant placées dans le diagramme E-pH par nombre d’oxydation croissant selon I'axe
des ordonnées, on peut associer les domaines :

lol- lobk I & 10;]

Au-dela de pH=7,4, le diode n’est plus stable et dismute pour former les deux auttres ions. On écrit
les deux couples :

Wie Gott in Frankreich.
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(103 /13) 210 + 12H* +10e” =1, + 6 H,0 (a)
(I,/17) L+2e =21 (b)
D’ou 5(b) - (a): 61, +6H,0 —» 101~ + 21035 + 12 H*

31, +3H,0 —» 51" + 105 + 6 HY

Q7. Le segment BD sépare les domaines I et III, il faut donc considérer le couple (I03/17) dont la

demi-équation électronique est : 103 + 6H" + 6e” = I~ + 3 H,0
La formule de Nersnt s’écrit alors :
0,06 105][H*]® 0,06
E=E°+ e log<[ 3[1E] ] ) =E° +Tlog([H+]6) + -+ =E°—0,06 pH + -

\La pente du segment BD est donc 0,06 V/pH\

Le segment CB sépare les domaines II et I1], il faut donc considérer le couple (103 /I,) dont la demi-
équation électronique est : [0 + 6H" + 5e~ = %Iz + 3 H,0
La formule de Nersnt s’écrit alors :
0,0610g<[103][H+]6> — EO 4 %log([H+]6) 4 o= O — 6 X 0,06 pH + -+
6 (1] 5 5
‘La pente du segment CB est donc -0,072 V/pH‘

E=E°+

Q8. On passe en milieu basique, ou le diiode est instable et dismute
Demi-équations électroniques :
(I03/1,) 2105 +12H* +10e” =1, + 6 H,0 (a)
(I,/17) L+2e =217 (b)
D’'ou 5(b)-(a): 61,+6H,0 — 101~ + 21035 + 12H"
Or on se place en milieu basique, on utilise alors I'autoprotolyse de 'eau (H,0 = H* + OH™) pour
obtenir et on divise par 2:

31 +60H" — 51 + 103 + 3 H,0| réaction de dismutation du diiode (I2)

Bilan de matiere : la réaction est totale et on a au départ C;V; mol de I,. On obtient donc

_ n(1)introauir  Ci1V1
n(103)initiar = ”; e 3

Q9. La réaction qui se produit lors de cette étape est lente, il faut donc attendre suffisamment
longtemps afin que la réaction soit finie avant de passer a 'opération suivante.
Demi-équations électroniques :

(C6H110;/C6H1206 C6H110; + 3 H+ + 2 e = C6H1206 + Hzo (a)

(I03/17) [0 +6H"+6e” =17 +3H,0 (b)
D’ou (b)-3(a): 105 + 3C¢H,0 — 17 +3C4H,,07 + 3HY
Or on se place en milieu basique, on utilise alors I'autoprotolyse de 'eau (H,0 = H* + OH™) pour
obtenir :

|103_’ +3 C6H1206 +30H — 1" +3 C6H110; + 3 H20| réaction (1)

Q10.11 s’agit de la réaction inverse de celle écrite ala Q8 :

(101" +210; + 6 H,0 — 61, + 12 0H" réaction (2)
Q11. Demi-équations électroniques :
(I,/17) Lb+2e =217 (a)

Wie Gott in Frankreich.
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(S40¢7/S,057) S40¢” +2e” =2S5,05" (b)
D'ou (a)- (b): I, +2S,05 — 21~ +S,0% réaction (3)

La régle du gamma est vérifiée, de plus E°(l,/17) - E°(S,027/S,027) = 0,59 V> 0,3 V Donc la
réaction est quasi-totale.

Q12. Bilans de matieres successifs: toutes les réactions sont totales, le corps en défaut a
reconnaitre disparait :

Opération2: 31, + 6 OH™ — 51™ + 103 + 3 H,0 réaction de dismutation du diiode (/2)

Bilan de matiere : la réaction est totale et on a au départ C;V; mol de I,. On obtient donc

_ n(12)introauic  C1V1
n(103) initiar = ”51, e 3
Opération 3 :
IO?: + 3 C6H1206 + 3 OH_ — I~ + 3 C6H110; + 3 HZ
CLV CoV:
équilibre 613V1 — & Ngpe — 33 = 0 car en défaut

L’ion iodate est partiellement consommée par la réaction (1) supposé totale. Le bilan de matiere
donne si on suppose le glucose en défaut (sinon, on ne le dose pas) :

Cl Vl _ ng luc
3 3

n(log)rest(mt = n(los_‘)initial —& =

Opération 4 :D’apres la réaction (2),
101" +2103 +6H,0 — 61, +120H™
la quantité de diiode formée vaut :

n(lz)formé = 3 n(I03)restant = C1V1 — Ngluc

. qoee s Lo . : CoV:
Par ailleurs en tenant compte de la dilution, a I'opération 3, on a introduit : |ngg,. = %

Opération 6 :
Enfin, la réaction (3) correspond a la réaction de dosage. Or a I'’équivalence d’un dosage, les réactifs

ont été introduits dans les proportions steechiométriques donc il n’en reste plus si la réaction est
totale, et le bilan de matiére donne :

2— C3Veq
n(lz)formé —$éc=0cet n(8203 )verséééquivalence —2§=0- n(lz)formé = T
Finalement, on obtient en éliminant n(l;) forme :
C3Viq CoV, 10 C3Vyq
=CV——(:>C=—(CV— )

Q13. Pour que ce dosage soit valide, il faut que I'ion iodate soit effectivement en exces a la réaction
(1) (voir Q9). Ainsi, il faut que :

CoV,

Wie Gott in Frankreich.
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Probléme 4. Extrait mines ponts 2025 psi.
9. Les nombres d'oxydation de I'élément zirconium dans les différentes espéces :

Zr(s) | ZrOyy) | Zr** o4 | HZrOz ~ 54

n.o(Zr)dans | 0 +IV +IV +IV

10.0n classe selon les nombres d'oxydation et l'acido basicité et on trace un diagramme
préliminaire :

Zr*t 4 acide associé 3 ZrOy Zr*t g+ 2H,0 = ZrOy + 4 H

Zr0,) acide associé a HZrO; ~ ,q ZrOys) + H,0 = HZrO3 ~ .+ HT

+IV | Zr** ,, | ZrOyq | HZrO; ~ 44

0 Zr(s)

Par identification :

AiZriy  BiZryy  C:ZrOyy (HZrO3zaq ne figure pas; on va justifier plus tard).
Les domaines A et C : domaines d'existence (espéces solides).
Le domaine B : Domaine de prédominance ( espece soluble).

11. La frontiére qui sépare A et B est déterminée par le couple redox : Zr** /Zr(s) :
La demi-équation redox : Zr** + 4e~ 2 Zr(,

Le potentiel de Nernst: E = E° + %log [Zr*t] Ala frontiere : Er = E° + %log C,

Ontrouve: C, =107*mol/L
La droite de la frontiere entre les domaines A et C a pour équation E = a+b.pH.

12. Le couple C/A est le couple redox : ZrO; ~aq /Zr(s) :
La demi-équation redox : HZrO3 + 5e~ + 5H* = Zr() + 3H,0

+
(1) _ 0,06 V/ unité de pH

ale™)

La pente: b = —0,06 -

13. La frontiere verticale entre les especes HZrO; ~(aq) et ZrO,( s) :

_ _ [HZrO3]
Zr0,(s) + OH™ = HZrO3(aq) : K, = W
Ala frontiere : K, = [O}CI"_] on trouve pH¢ = 15 (> 14) donc HZrO3 ne figure pas.
f

14. Les deux couples de 'eau:
0,06 [H*]?

> log

2H+ + 26_ = Hz(g) ; EH+/H2 = 0,00 + PH

;EH+/H2 = _0,06pH

2
+ - 0,06 +14
Oz(g) +4H™ 4+ 4e™ = 2H20, EOZ/HZO = 1,23 + Tlog [H ] Poz; EOZ/HZO = 1,23 - 0,06pH
15.Le zirconium et I'eau sont disjoints dans le diagramme, donc il n'est pas stable dans l'eau.

Il réagit avec I'eau si pH < 1,25 pour donner Zr** ou pour donner ZrO, si pH > 1,25 suivant :

Zr(s) + 4H" = Zr** + 2Hy 4 sipH < 1,25
Zr(s) + 2H,0 = ZrOy(g) + 2Hy(g)  sipH > 1,25

Wie Gott in Frankreich.



