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PSI2. Devoir en classe n°4. 4h . Samedi 10 janvier 2026. 
Proposition de solution. 
 
Problème 1. III.A - Estimation de l'anomalie gravitationnelle due à la présence de pétrole. 
Extrait centrale tsi2021. 
Q32. DESSIN OBLIGATOIRE non fourni ici .  

Interaction électrostatique subie par la charge ponctuelle en A : 𝐹⃗𝑒 =
𝑞𝐴𝑞𝐵

4𝜋𝜀0

𝐵𝐴⃗⃗ ⃗⃗ ⃗⃗

∥𝐵𝐴⃗⃗ ⃗⃗ ⃗⃗ ∥3
. 

Interaction gravitationnelle subie par la masse ponctuelle en A: 𝐹⃗𝑔 = −𝑚𝐴𝑚𝐵𝐺
𝐵𝐴⃗⃗ ⃗⃗ ⃗⃗

∥𝐵𝐴⃗⃗ ⃗⃗ ⃗⃗ ∥3. 

 
Q33. On peut dresser les analogies suivantes : 

électrostatique gravitation 

charge 𝑞 masse 𝑚 

champ 𝐸⃗⃗ champ 𝑔⃗ 

constante 
1

4𝜋𝜀0
 constante −𝐺 

 

En utilisant cette analogie, le théorème de Gauss Φ𝑒 = ∫
Σ

 𝐸⃗⃗ ⋅ d2𝑆 =
𝑄𝑖𝑛𝑡

𝜀0
 s'écrit donc pour le champ 

gravitationnel : Φ𝑔 = ∬
Σ

 𝑔⃗ ⋅ d2𝑆 = −4𝜋𝐺𝑀int . 

 
Q34. On raissonne sur les symétries puis invariances : 

• Tout plan (𝑀, 𝑢⃗⃗𝑥, 𝑢⃗⃗𝑧) est un plan de symétrie pour la distribution de masse (car on néglige les 
effets de bords) donc pour le champ 𝑔⃗𝑐 donc 𝑔⃗𝑐 ⋅ 𝑢⃗⃗𝑦 = 0. 

• Tout plan (𝑀, 𝑢⃗⃗𝑦 , 𝑢⃗⃗𝑧) est un plan de symétrie pour la distribution de masse (car on néglige les 

effets de bords) donc pour le champ 𝑔⃗𝑐 donc 𝑔⃗𝑐 ⋅ 𝑢⃗⃗𝑥 = 0. 
• Comme la distribution de masse est supposée infiniment étendue dans les direction (𝑂𝑥) et 

(𝑂𝑦), il y a invariance par translation dans ces deux direction et 𝑔𝑐(𝑥, 𝑦, 𝑧) ne dépend 
respectivement ni de 𝑥 ni de 𝑦. 

Finalement, on a donc 𝑔⃗𝑐(𝑀) = 𝑔𝑐(𝑧)𝑢⃗⃗𝑧. En outre, le plan (𝑂𝑥𝑦) est un plan de symétrie pour la 
distribution de masses, donc pour le champ donc la fonction 𝑔𝑐(𝑧) est impaire. 
 
Q35.  
 
On choisit comme surface de Gauss un cylindre d'axe (𝑂𝑧), de 
section 𝑆, situé entre les plan 𝑧 et −𝑧.  
On s'intéressera au cas où 𝑧 > 𝐻/2. (cf. ci-contre) 
 
 
 
 
Calculons le flux : 

Φ𝑔 = ∰  
Σ

𝑔⃗𝑐 ⋅ d𝑆⃗⃗⃗⃗⃗ = ∬  
𝑆𝑧

 𝑔𝑐(𝑧)𝑢⃗⃗𝑧 ⋅ d𝑆𝑢⃗⃗𝑧 + ∬  
𝑆−𝑧

 𝑔𝑐(−𝑧)𝑢⃗⃗𝑧 ⋅ d𝑆(−𝑢⃗⃗𝑧)

 + ∬  
𝑆𝑙𝑎𝑡

 𝑔𝑐 𝑢⃗⃗𝑧 ⋅ d𝑆𝑙𝑎𝑡(𝛼𝑢⃗⃗𝑥 + 𝛽𝑢⃗⃗𝑦) = 𝑔𝑐(𝑧) ⋅ 𝑆 − 𝑔(−𝑧) ⋅ 𝑆 = 2𝑔𝑐(𝑧) ⋅ 𝑆
 

en utilisant l'imparité de la fonction. 
La masse intérieure vaut alors 𝑀𝑖 = 𝜌𝑐𝑆𝐻.  
On a alors, d'après le théorème de Gauss :   2𝑔𝑐(𝑧). 𝑆 = −4𝜋𝐺𝜌𝑐𝑆. 𝐻 
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Finalement :  𝑔𝑐 = −2𝜋𝐺𝜌𝑐𝐻  pour 𝑧 > 𝐻/2. CQFD 
 
Q36. On en déduit que l'anomalie gravitationnelle dûe à la présence de la nappe de pétrole vaut : 
Δ𝑔 = 2𝜋𝐺(𝜌𝑐 − 𝜌𝑝)𝐻. Numériquement : Δ𝑔 ≈ 1,68 × 10−4 m ⋅ s−2. 

 

Problème 2. Extrait centrale mp 2023. 
A - Un miroir pour les ondes électromagnétiques 
Q 1. Équations de Maxwell : 

Maxwell-Gauss div 𝐸⃗⃗(𝑀, 𝑡) =
𝜌(𝑀,𝑡)

𝜀0
 

Maxwell-Thomson div 𝐵⃗⃗(𝑀, 𝑡) = 0 

Maxwell-Faraday rot⃗⃗ ⃗⃗ ⃗⃗ 𝐸⃗⃗(𝑀, 𝑡) = −
∂𝐵⃗⃗(𝑀,𝑡)

∂𝑡
 

Maxwell-Ampère rot⃗⃗ ⃗⃗ ⃗⃗ 𝐵⃗⃗(𝑀, 𝑡) = 𝜇0 (𝐽(𝑀, 𝑡) + 𝜀0
∂𝐸⃗⃗

∂𝑡
(𝑀, 𝑡)) 

 
Dans une région vide de charges, elles deviennent : 

Maxwell-Gauss div 𝐸⃗⃗(𝑀, 𝑡) = 0 

Maxwell-Thomson div 𝐵⃗⃗(𝑀, 𝑡) = 0 

Maxwell-Faraday rot⃗⃗ ⃗⃗ ⃗⃗ 𝐸⃗⃗(𝑀, 𝑡) = −
∂𝐵⃗⃗(𝑀,𝑡)

∂𝑡
 

Maxwell-Ampère rot⃗⃗ ⃗⃗ ⃗⃗ 𝐵⃗⃗(𝑀, 𝑡) = 𝜇0𝜀0
∂𝐸⃗⃗

∂𝑡
(𝑀, 𝑡) 

 

Q 2. Comme rot⃗⃗ ⃗⃗ ⃗⃗ 𝐸⃗⃗ = −
∂𝐵⃗⃗

∂𝑡
, on a rot⃗⃗ ⃗⃗ ⃗⃗ (rot⃗⃗ ⃗⃗ ⃗⃗ 𝐸⃗⃗) = −rot⃗⃗ ⃗⃗ ⃗⃗ (

∂𝐵⃗⃗

∂𝑡
) = −

∂(rot⃗⃗⃗⃗ ⃗⃗⃗𝐵⃗⃗)

∂𝑡
 

par permutation des dérivées spatiale et temporelles (théorème de Schwarz). 

De plus rot⃗⃗ ⃗⃗ ⃗⃗ (rot⃗⃗ ⃗⃗ ⃗⃗ 𝐸⃗⃗) = grad⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (div 𝐸⃗⃗) − Δ𝐸⃗⃗ = −Δ𝐸⃗⃗ dans le vide. Avec l'équation de Maxwell-Ampère, on 
obtient donc 

−Δ𝐸⃗⃗ = −
∂

∂𝑡
(𝜇0𝜀0

∂𝐸⃗⃗

∂𝑡
) = −𝜇0𝜀0

∂2𝐸⃗⃗

∂𝑡2
 

d'où, comme 𝜇0𝜀0c2 = 1, 

Δ𝐸⃗⃗ −
1

c2

∂2𝐸⃗⃗

∂𝑡2
= 0⃗⃗ 

 

Q3. Le direction de propagation de l'onde de la forme 𝐸⃗⃗i𝑀, 𝑡) = 𝐸0cos (𝜔𝑡 − 𝑘𝑥)𝑢⃗⃗𝑦 est selon l'axe 𝑂𝑥. 

En considérant 𝒌 > 𝟎, l'onde se propage selon 𝑢⃗⃗𝑥. 
L'onde est polarisée rectilignement selon 𝑢⃗⃗𝑦. 

Écrivons que le champ vérifie l'équation de d'Alembert : 

(−𝑘2 +
𝜔2

c2
) 𝐸0cos (𝜔𝑡 − 𝑘𝑥) = 0,  ∀(𝑥, 𝑡) 

Comme 𝐸0 ≠ 0, on en déduit la relation de dispersion (l’autre solution est évacuée) 

𝑘 =
𝜔

c
 

Q 4. Le conducteur parfait correspond au cas théorique limite d'une conductivité électrique infinie : 
𝛾 → ∞. 

À l'intérieur d'un conducteur idéal, le champ électrique est nul:           𝐸⃗⃗(𝑀, 𝑡) = 0⃗⃗. 
 
Q5. Écrivons la relation de passage en ne prenant en compte que le champ incident donné. Le milieu 

(1) est le vide, le milieu (2) le conducteur (donc 𝐸⃗⃗2 = 0⃗⃗, et 𝑛⃗⃗1→2 = 𝑒𝑥 , d'où  1 
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0⃗⃗ − 𝐸0cos (𝜔𝑡)𝑢⃗⃗𝑦 =
𝜎(𝑀, 𝑡)

𝜀0
𝑢⃗⃗𝑥 

En projetant selon 𝑢⃗⃗𝑦, on obtient 

𝐸0cos (𝜔𝑡) = 0 ∀𝑡 
Comme 𝐸0 ≠ 0, cette condition ne peut être vérifiée. 
Le champ électrique donné ne vérifie pas le relation de passage. 

Il existe donc un champ 𝐸⃗⃗r(𝑀, 𝑡), tel que le champ total 𝐸⃗⃗(𝑀, 𝑡) = 𝐸⃗⃗i(𝑀, 𝑡) + 𝐸⃗⃗r(𝑀, 𝑡) vérifie la 
relation de passage. 
À l'interface 𝑥 = 0, on a donc 

0⃗⃗ − 𝐸0cos (𝜔𝑡)𝑢⃗⃗𝑦 − 𝐸⃗⃗0rcos (𝜔′𝑡) =
𝜎

𝜀0
𝑢⃗⃗𝑥  

En projetant selon 𝑢⃗⃗𝑥, on obtient 

−𝐸⃗⃗0r ⋅ 𝑢⃗⃗𝑥cos (𝜔′𝑡) =
𝜎

𝜀0
 

On peut a priori écrire 

𝐸⃗⃗r = 𝐸0r,𝑥cos (𝜔′𝑡 + 𝑘′𝑥)𝑢⃗⃗𝑥 + 𝐸0r,𝑦cos (𝜔′𝑡 + 𝑘′𝑥)𝑢⃗⃗𝑦 

Dans le vide, on a alors d'après l'équation de Maxwell-Gauss 

div 𝐸⃗⃗ = −𝐸0r,𝑥𝑘′sin (𝜔𝑡 + 𝑘′𝑥) = 0 ∀𝑡, 𝑥 

ce qui impose 𝐸0r,𝑥 = 0, et donc 𝜎 = 0 à la surface du conducteur. On a donc 𝐸0r,𝑦 = 𝐸0𝑟 et la relation 

de passage s'écrit en projection selon 𝑢⃗⃗𝑦 

0 − 𝐸0cos (𝜔𝑡) − 𝐸0rcos (𝜔′𝑡) = 0 ∀𝑡. 
On en déduire 𝐸0r = −𝐸0 et 𝜔′ = 𝜔. La relation de dispersion donne 𝑘′ = 𝜔′/c = 𝜔/c = 𝑘. 

On a finalement 𝐸⃗⃗r = −𝐸0cos (𝜔𝑡 + 𝑘𝑥)𝑢⃗⃗𝑦. 

Cette onde se propage dans le sens des 𝑥 décroissants et est polarisée rectilignement selon 𝑢⃗⃗𝑦. 

 
Q 6. Le champ électrique résultant est donné par 

𝐸⃗⃗(𝑀, 𝑡) = (𝐸0cos (𝜔𝑡 − 𝑘𝑥) − 𝐸0cos (𝜔𝑡 + 𝑘𝑥))𝑢⃗⃗𝑦 

soit 

𝐸⃗⃗(𝑀, 𝑡) = 2𝐸0sin (𝑘𝑥)sin (𝜔𝑡)𝑢⃗⃗𝑦. 

On obtient le champ 𝐵⃗⃗ avec l'équation de Maxwell-Faraday: 

∂𝐵⃗⃗

∂𝑡
= −rot⃗⃗ ⃗⃗ ⃗⃗ 𝐸⃗⃗ = −

∂𝐸

∂𝑥
𝑢⃗⃗𝑧 = −2𝐸0𝑘cos (𝑘𝑥)sin (𝜔𝑡)𝑢⃗⃗𝑧 

On intègre par rapport à 𝑡, en prenant nulle la constante d'intégration (un terme constant n'a pas de 
caractère ondulatoire) : 

𝐵⃗⃗(𝑀, 𝑡) = 2𝐸0

𝑘

𝜔
cos (𝑘𝑥)cos (𝜔𝑡)𝑢⃗⃗𝑧 

soit comme 𝜔 = 𝑘c 

𝐵⃗⃗(𝑀, 𝑡) = 2
𝐸0

c
cos (𝑘𝑥)cos (𝜔𝑡)𝑢⃗⃗𝑧 

L'onde correspondante est une onde stationnaire, les champs électrique et magnétique étant en 
quadrature spatiale et temporelle. 
 

Q 7. La tension mesurée s'annule quand 𝐸⃗⃗ = 0⃗⃗, ∀𝑡, soit aux points tels que sin (𝑘𝑥) = 0. Les abscisses 
correspondantes vérifient donc 𝑘𝑥 = 𝑛𝜋, avec 𝑛 ∈ 𝐙. Entre deux annulations successives, on a, 

comme 𝑘 =
2𝜋

𝜆
, 

Δ𝑥 =
𝜋

𝑘
=

𝜆

2
 

Entre 4 annulations, on mesure 

4
𝜆

2
= (42,8 − 37,3)cm = 5,5 cm 
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d'où 𝜆 = 2,75 cm. De 𝑓 = c/𝜆 on déduit 𝑓 = 10,9GHz. 
Q 8. On a déduit 𝜆 de la mesure des positions 𝑥0 et 𝑥4 des annulations extrêmes sur la courbe 
expérimentale. 

La graduation est de 1 mm, d'où une incertitude relative 𝑢(𝑥0) = 𝑢(𝑥4) =
0,5 mm

√3
. 

On en a déduit la longueur 𝐿 = 𝑥4 − 𝑥0, d'où l'incertitude correspondante : 
𝑢(𝐿)2 = 𝑢(𝑥0)2 + 𝑢(𝑥4)2 

soit 

𝑢(𝐿) = √2𝑢(𝑥0) =
√2

√3
0,5 mm = 0,41 mm 

On en a déduit la longueur d'onde 𝜆 = 2𝐿/4 = 𝐿/2, d'où 

𝑢(𝜆) =
𝑢(𝐿)

2
= 0,21 mm 

La fréquence est donnée par 𝑓 =
c

𝜆
, d'où 

𝑢(𝑓)

𝑓
=

𝑢(𝜆)

𝜆
 

On en déduit 

𝑢(𝑓) = 𝑢(𝜆)
𝑓

𝜆
= 0,21

10,9

27,5
 

soit 𝑢(𝑓) = 0,08GHz. 
L'écart normalisé entre la valeur mesurée et celle donnée par le constructeur est donné par 

𝜎 =
11,0 − 10,9

√(0,6)2 + (0,08)2
= 0,17 

La condition 𝜎 < 2 est largement vérifiée : la valeur mesurée est bien compatible avec la valeur du 
constructeur. 
 
C - Le four à micro-ondes 
Q 29. Le champ électrique étant nul dans les parois métalliques, la continuité de sa composante 
tangentielle (relation de passage) implique la nullité de cette composante sur les parois du four. 
Compte tenu de la forme du champ, cette condition est déjà vérifiée pour les parois 𝑥 = 0, 𝑦 = 0 et 
𝑧 = 0. 
Sur la paroi 𝑥 = 𝑎, on doit avoir 

𝐸𝑦(𝑥 = 𝑎, 𝑦, 𝑧, 𝑡) = 0  et  𝐸𝑧(𝑥 = 𝑎, 𝑦, 𝑧, 𝑡) = 0                  ∀𝑦, 𝑧, 𝑡 

soit 

𝐸2 sin(𝑘𝑥𝑎) cos(𝑘𝑦𝑦) sin(𝑘𝑧𝑧) cos(𝜔𝑡) = 0                       ∀𝑦, 𝑧, 𝑡 

Et                𝐸3 sin(𝑘𝑥𝑎) sin(𝑘𝑦𝑦) cos(𝑘𝑧𝑧) cos(𝜔𝑡) = 0            ∀𝑦, 𝑧, 𝑡. 

On en déduit sin (𝑘𝑥𝑎) = 0, soit 𝑘𝑥𝑎 = 𝑚𝜋 avec 𝑚 ∈ 𝐍. 
 ou 𝐸2 = 0 et 𝐸3 = 0 
 
De même sur la paroi 𝑦 = 𝑏, on doit avoir 

𝐸𝑥(𝑥, 𝑏, 𝑧, 𝑡) = 0  et  𝐸𝑧(𝑥, 𝑏, 𝑧, 𝑡) = 0         ∀𝑥, 𝑧, 𝑡 
soit 

𝐸1 cos(𝑘𝑥𝑥) sin(𝑘𝑦𝑏) sin(𝑘𝑧𝑧) cos(𝜔𝑡) = 0         ∀𝑥, 𝑧, 𝑡 

et 

𝐸3 sin(𝑘𝑥𝑥) sin(𝑘𝑦𝑏) cos(𝑘𝑧𝑧) cos(𝜔𝑡) = 0          ∀𝑦, 𝑧, 𝑡. 

On en déduit de même sin (𝑘𝑦𝑏) = 0, soit 𝑘𝑦𝑏 = 𝑛𝜋 avec 𝑛 ∈ 𝐍. Enfin sur la paroi 𝑧 = 𝑑 on doit avoir 

𝐸𝑥(𝑥, 𝑦, 𝑑, 𝑡) = 0  et  𝐸𝑦(𝑥, 𝑦, 𝑑, 𝑡) = 0                 ∀𝑥, 𝑦, 𝑡 

soit 

𝐸1 cos(𝑘𝑥𝑥) sin(𝑘𝑦𝑦) sin(𝑘𝑧𝑑) cos(𝜔𝑡) = 0                 ∀𝑥, 𝑦, 𝑡 

et 

𝐸2 sin(𝑘𝑥𝑥) cos(𝑘𝑦𝑦) sin(𝑘𝑧𝑑) cos(𝜔𝑡) = 0                     ∀𝑥, 𝑦, 𝑡. 
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On en déduit de même sin (𝑘𝑧𝑑) = 0, soit 𝑘𝑧𝑑 = ℓ𝜋 avec ℓ ∈ 𝐍. On conclut donc par 

𝑘𝑥 =
𝑚𝜋

𝑎
,     𝑘𝑦 =

𝑛𝜋

𝑏
  et  𝑘𝑧 =

ℓ𝜋

𝑑
  avec (𝑚, 𝑛, ℓ) ∈ 𝐍3.  

 
Q 30. On calcule 

∂2𝐸𝑥

∂𝑥2
= −𝑘𝑥

2𝐸𝑥 = − (
𝑚𝜋

𝑎
)

2

𝐸𝑥 

On a de même 
∂2𝐸𝑦

∂𝑦2
= − (

𝑛𝜋

𝑏
)

2

𝐸𝑦  et  
∂2𝐸𝑧

∂𝑧2
= − (

ℓ𝜋

𝑑
)

2

𝐸𝑧 

Le champ 𝐸⃗⃗ vérifie l'équation de propagation 

Δ𝐸⃗⃗ −
1

c2

∂2𝐸⃗⃗

∂𝑡2
= 0⃗⃗ 

soit 

− [(
𝑚𝜋

𝑎
)

2

+ (
𝑛𝜋

𝑏
)

2

+ (
ℓ𝜋

𝑑
)

2

] 𝐸⃗⃗ +
𝜔2

c2
𝐸⃗⃗ = 0⃗⃗ 

La pulsation du mode (𝑚, 𝑛; ℓ) est donc donnée par 

𝜔𝑚,𝑛,ℓ = c√(
𝑚𝜋

𝑎
)

2

+ (
𝑛𝜋

𝑏
)

2

+ (
ℓ𝜋

𝑑
)

2

 = c𝜋√(
𝑚

𝑎
)

2

+ (
𝑛

𝑏
)

2

+ (
ℓ

𝑑
)

2

.

 

Avec 𝜔𝑛,𝑚,ℓ = 2𝜋𝑓𝑛,𝑚,ℓ on en déduit la fréquence du mode (𝑛, 𝑚, ℓ) : 

𝑓𝑚,𝑛,ℓ =
c

2
√(

𝑚

𝑎
)

2

+ (
𝑛

𝑏
)

2

+ (
ℓ

𝑑
)

2

. 

Q 32. Avec 𝐸⃗⃗ = 𝐸(𝑥, 𝑡)𝑢⃗⃗𝑦, l'équation de Maxwell-Faraday donne 

rot⃗⃗ ⃗⃗ ⃗⃗ 𝐸⃗⃗ =
∂𝐸(𝑥, 𝑡)

∂𝑥
𝑢⃗⃗𝑧 =

𝑛𝜋

𝑎
𝐸0cos (

𝑛𝜋𝑥

𝑎
) sin (𝜔𝑡)𝑢⃗⃗𝑧 = −

∂𝐵⃗⃗

∂𝑡
 

d'où 

𝐵⃗⃗ =
𝑛𝜋

𝑎𝜔
𝐸0cos (

𝑛𝜋𝑥

𝑎
) cos (𝜔𝑡)𝑢⃗⃗𝑧 . 

La relation de dispersion, obtenue à partir de l'équation de d'Alembert, donne 𝜔 =
𝑛c𝜋

𝑎
, d'où 

𝐵⃗⃗ = 𝐵0cos (
𝑛𝜋𝑥

𝑎
) cos (𝜔𝑡)𝑢⃗⃗𝑧  avec  𝐵0 =

𝐸0

c
 

Q 33. Calcul non demandé : La densité volumique d'énergie dans la cavité est 
d𝑊

 d𝜏
=

𝜀0𝐸2(𝑥, 𝑡)

2
+

𝐵2(𝑥, 𝑡)

2𝜇0
 =

𝜀0𝐸0
2

2
sin2 (

𝑛𝜋𝑥

𝑎
) sin2 (𝜔𝑡)

 +
𝐸0

2

2𝜇0c2
cos2 (

𝑛𝜋𝑥

𝑎
) cos2 (𝜔𝑡)

 

soit 
d𝑊

 d𝜏
=

𝐵0
2

2𝜇0
[sin2 (

𝑛𝜋𝑥

𝑎
) sin2 (𝜔𝑡) + cos2 (

𝑛𝜋𝑥

𝑎
) cos2 (𝜔𝑡)]. 

L'énergie totale est 
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𝑊(𝑡) = ∫  
d𝑊

 d𝜏
d𝜏 = ∫  

𝑎

0

 
d𝑊

 d𝜏
𝑆 d𝑥

 =
𝑆𝐵0

2

2𝜇0
∫  

𝑎

0

  [sin2 (
𝑛𝜋𝑥

𝑎
) sin2 (𝜔𝑡) + cos2 (

𝑛𝜋𝑥

𝑎
) cos2 (𝜔𝑡)] d𝑥

 =
𝑆𝐵0

2

2𝜇0
[
𝑎

2
sin2 (𝜔𝑡) +

𝑎

2
cos2 (𝜔𝑡)]

 

soit 

𝑊 =
𝐵0

2𝑆𝑎

4𝜇0
 

Simple AD pour nous… 
L'énergie totale dans la cavité est constante au cours du temps. Ce résultat est attendu car il n'y a 
aucun phénomène dissipatif pris en compte avec un conducteur parfait. 
 
Q 34. Si 𝐸0 est l'amplitude du champ électrique, l'amplitude du courant de conduction est donnée par 

𝑗0 = 𝜎𝐸0 

et l'amplitude du courant de déplacement 𝐽d = 𝜀0
∂𝐸⃗⃗

∂𝑡
 est donnée par 

𝑗d,0 = 𝜔𝜀0𝐸0 = 2𝜋𝑓𝜀0𝐸0 
Le courant de déplacement peut être négligé devant le courant de conduction si 

𝑗d,0

𝑗0
=

2𝜋𝜀0𝑓

𝜎
≪ 1 

Avec 𝜎 = 1,5 × 106 S ⋅ m−1, on peut négliger le courant de déplacement si 

𝑓 ≪
𝜎

2𝜋𝜀0
= 2,7 × 1016 Hz 

Cette condition est largement vérifiée dans le four à microondes où 𝑓 = 2,45 × 109 Hz. 
 
Q 35. En négligeant le courant de déplacement, l'équation de Maxwell-Ampère s'écrit 

rot⃗⃗ ⃗⃗ ⃗⃗ 𝐵⃗⃗ = 𝜇0𝐽 
On en déduit 

rot⃗⃗ ⃗⃗ ⃗⃗ (rot⃗⃗ ⃗⃗ ⃗⃗ 𝐵⃗⃗) = 𝜇0rot⃗⃗ ⃗⃗ ⃗⃗ 𝐽 = 𝜇𝜎rot⃗⃗ ⃗⃗ ⃗⃗ 𝐸⃗⃗ 

rot⃗⃗ ⃗⃗ ⃗⃗ (rot⃗⃗ ⃗⃗ ⃗⃗ 𝐵⃗⃗) = grad⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (div 𝐵⃗⃗) − Δ𝐵⃗⃗ = Δ𝐸⃗⃗ 
et l'équation de Maxwell-Faraday 

rot⃗⃗ ⃗⃗ ⃗⃗ 𝐸⃗⃗ = −
∂𝐵⃗⃗

∂𝑡
 

on obtient 

Δ𝐵⃗⃗ = 𝜇𝜎
d𝐵⃗⃗

 d𝑡
 

Il s'agit d'une équation de la diffusion. Sa non invariance par renversement du temps (changement 
de variable 𝑡′ = −𝑡 ), du fait de la dérivée temporelle d'ordre impair en 𝑡 (premier ordre ici), traduit 
l'irréversibilité du phénomène. 
Une telle équation régit l'évolution de la température dans un milieu siège d'un phénomène de 
conduction thermique. 
 
Q 36. Écrivons que le champ proposé vérifie l'équation précédente : 

𝑓′′(𝑥)ei𝜔 = 𝜇0𝜎i𝜔𝑓(𝑥)ei𝜔𝑡 ∀𝑥, 𝑡 

soit comme ei𝜔𝑡 ≠ 0, 
𝑓′′(𝑥) − i𝜔𝜇0𝜎𝑓(𝑥) = 0 

L'équation caractéristique associée à cette équation différentielle linéaire homogène du seconde 
ordre est 

𝑟2 − i𝜔𝜇0𝜎 = 0, 
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soit 

𝑟2 = i𝜔𝜇0𝜎 = 𝜔𝜇0𝜎exp (
i𝜋

2
) 

Ses racines sont 

𝑟1,2 = ±√𝜔𝜇0𝜎exp (
i𝜋

4
) = ±√

𝜔𝜇0𝜎

2
(1 + i) = ±

1 + i

𝛿
 

en posant 

𝛿 = √
2

𝜔𝜇0𝜎
 

homogène à une longueur. 
On en déduit la solution générale de l'équation différentielle 

𝑓(𝑥) = 𝐴1e(1+i)𝑥/𝛿 + 𝐴2e−(1+i)𝑥/𝛿 . 

Le champ magnétique (et donc Re (𝑓) ) ne peut diverger pour 𝑥 → +∞, donc 𝐴1 = 0. 

En 𝑥 = 0, la continuité du champ magnétique impose 

𝐵⃗⃗(𝑥 = 0, 𝑡) = 𝐵0ei𝜔𝑡 𝑢⃗⃗𝑧 = 𝑓(0)ei𝜔𝑡 𝑢⃗⃗𝑧 

d'où 
𝑓(0) = 𝐴1 = 𝐵0. 

On a donc 
𝑓(𝑥) = 𝐵0e−(1+i)𝑥/𝛿  

 
Q 37. Le champ magnétique est donné par la partie réelle de 

𝐵⃗⃗(𝑥, 𝑡) = 𝐵0e−(1+i)𝑥/𝛿ei𝜔𝑡 𝑢⃗⃗𝑧 = 𝐵0e−𝑥/𝛿ei(𝜔𝑡−𝑥/𝛿)𝑢⃗⃗𝑧 
soit 

𝐵⃗⃗(𝑥, 𝑡) = 𝐵0e−𝑥/𝛿cos (𝜔𝑡 −
𝑥

𝛿
) 𝑢⃗⃗𝑧 

Le champ magnétique se propage dans le conducteur dans le sens des 𝑥 croissants, avec une 
amplitude qui décroît exponentiellement sur une longueur caractéristique 𝛿, d'autant plus petite que 
la pulsation est élevée (c'est l'effet de peau; 𝛿 est alors appelée épaisseur de peau). 
 
Le vecteur densité de courant électrique est donné par l'équation de Maxwell-Ampère : 

𝐽(𝑥, 𝑡) =
1

𝜇0
rot⃗⃗ ⃗⃗ ⃗⃗ 𝐵⃗⃗ = −

1

𝜇0

∂𝐵

∂𝑥
𝑢⃗⃗𝑦

 =
𝐵0

𝜇0𝛿
e−𝑥/𝛿 [cos (𝜔𝑡 −

𝑥

𝛿
) − sin (𝜔𝑡 −

𝑥

𝛿
)] 𝑢⃗⃗𝑦

 

 
Q 38. La puissance volumique cédée par le champ électromagnétique à un conducteur ohmique a 
pour expression 

𝑝(𝑀, 𝑡) = 𝐽(𝑀, 𝑡) ⋅ 𝐸⃗⃗(𝑀, 𝑡) = 𝜎𝐸⃗⃗(𝑀, 𝑡)2 =
𝐽(𝑀, 𝑡)2

𝜎
 

On a donc 

𝑝(𝑥, 𝑡) =
𝐵0

2

𝜇0
2𝛿2𝜎

e−2𝑥/𝛿 [cos (𝜔𝑡 −
𝑥

𝛿
) − sin (𝜔𝑡 −

𝑥

𝛿
)]

2

 =
𝐵0

2

𝜇0
2𝛿2𝜎

e−2𝑥/𝛿 [cos2 (𝜔𝑡 −
𝑥

𝛿
) + sin2 (𝜔𝑡 −

𝑥

𝛿
)

 − 2cos (𝜔𝑡 −
𝑥

𝛿
) sin (𝜔𝑡 −

𝑥

𝛿
)]

 =
𝐵0

2

𝜇0
2𝛿2𝜎

e−2𝑥/𝛿 [1 − 2cos (𝜔𝑡 −
𝑥

𝛿
) sin (𝜔𝑡 −

𝑥

𝛿
)] =

𝐵0
2

𝜇0
2𝛿2𝜎

e−2𝑥/𝛿 [1 − sin {2 (𝜔𝑡 −
𝑥

𝛿
)}] .

 

La puissance volumique moyenne (temporelle) est donc donnée par 
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⟨𝑝(𝑥)⟩ =
𝐵0

2

𝜇0
2𝛿2𝜎

e−2𝑥/𝛿  

On considère une section 𝑆 de paroi, dans le demi-espace 𝑥 > 0 (avec les données relatives au four, 
on calcule une épaisseur de peau 𝛿 = 8,3𝜇m, très faible devant l'épaisseur des plaques métalliques 
des parois, ce qui justifie de pouvoir les considérées comme semi-infinies).  
 
Q 39. La puissance moyenne dissipée vaut 

𝑃1 = ∫  
+∞

0

  ⟨𝑝(𝑥)⟩𝑆 d𝑥 =
𝑆𝐵0

2

𝜇0
2𝛿2𝜎

∫  
+∞

0

  e−2𝑥/𝛿d𝑥

 =
𝑆𝐵0

2

𝜇0
2𝛿2𝜎

[−
𝛿

2
e−2𝑥/𝛿]

0

+∞

=
𝑆𝐵0

2

2𝜇0
2𝜎𝛿

 

En prenant en compte les deux parois, on obtient la puissance moyenne totale dissipée 𝑃 = 2𝑃1, soit 

𝑃 =
𝑆𝐵0

2

𝜇0
2𝜎𝛿

 

On élimine sigma à partir de l'expression de l'épaisseur de peau, soit 𝜎 =
2

𝜇0𝜔𝛿2 

d'où 

𝑃 =
𝑆𝐵0

2𝜔𝛿

2𝜇0
 

On vérifie par AD. 
Q39bis. Il ya qd même un petit problème : le calcul a été effectué pour une épaisseur infinie ce qui a 
permis d’évacuer une solution possible. Et, juste après, l’épaisseur n’est plus infinie… 
 
Q 40. On a établi à la question 33 l'expression de l'énergie totale portée par le champ 
électromagnétique dans la cavité : 

𝑊 =
𝐵0

2𝑆𝑎

4𝜇0
 

On suppose cette expression toujours valable malgré la conductivité finie des parois. 
L'énergie dissipée dans les parois pendant une période 𝑇 = 2𝜋/𝜔 s'exprime en fonction de la 
puissance 𝑃 dissipée : 

ℰdiss = 𝑃𝑇 =
2𝜋

𝜔
𝑃 =

2𝜋

𝜔

𝑆𝐵0
2𝜔𝛿

2𝜇0
. 

Le facteur de qualité vaut donc 

𝑄 = 2𝜋
𝑊

𝜀diss 
= 2𝜋

𝐵0
2𝑆𝑎

4𝜇0

𝜔

2𝜋

2𝜇0

𝑆𝐵0
2𝜔𝛿

 

soit 

𝑄 =
𝑎

2𝛿
 

Q 41. On calcule 𝛿 = 8,3𝜇m pour le four, d'où 
𝑄 = 2,2 × 104 

On remarque que 𝑄 ≫ 1 : l'atténuation est faible. 
 
Q 42. En l'absence de rayonnement, la variation de l'énergie électromagnétique contenue dans la 
cavité est donnée par l'énergie absorbée dans les parois. Entre 𝑡 et 𝑡 + 𝑇, le bilan d'énergie pour la 
cavité s'écrit donc 

𝑊(𝑡 + 𝑇) − 𝑊(𝑡) = −𝜀diss = −2𝜋
𝑊(𝑡)

𝑄
 

Comme 𝑄 ≫ 1, la variation relative d'énergie sur une période est très faible et on peut assimiler le 
taux de variation à une dérivée : 

d𝑊

 d𝑡
≈

𝑊(𝑡 + 𝑇) − 𝑊(𝑡)

𝑇
= −2𝜋

𝑊(𝑡)

𝑄𝑇
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Avec 𝑇 = 2𝜋/𝜔, on obtient 
d𝑊

 d𝑡
+

𝜔

𝑄
𝑊(𝑡) = 0 

L'énergie décroît de façon exponentielle selon la loi 
𝑊(𝑡) = 𝑊(0)e−𝑡/𝜏 

avec une constante de temps 

𝜏 =
𝑄

𝜔
 

Q 43. On calcule 𝜏 = 1,4𝜇s. 
La décroissance du champ présent dans la cavité lorsque l'on coupe le klystron se fait avec une durée 
bien plus faible que la durée typique d'un péritio. Le champ restant dans la cavité après ouverture de 
la porte ne permet pas d'expliquer l'observation des péritios. 
Une étude plus poussée a montré que la source des péritios était le magnétron du four (source du 
champ magnétique) : un certain type de magnétron provoquerait l'émission des péritios. Cependant, 
la variation fréquentielle observée lors de l'émission reste inexpliquée. 

 
Problème 3.Dosage du glucose contenu dans une boisson isotonique 

Q4. Réaction de combustion du glucose : 

𝐂𝟔𝐇𝟏𝟐𝐎𝟔 (𝐬) + 𝟔 𝐎𝟐 (𝐠)  ⟶ 𝟔 𝐂𝐎𝟐 (𝐠) +  𝟔 𝐇𝟐𝐎(𝓵)  

D’après la loi de Hess : 

Δ𝑟𝐻𝑜 = ∑ 𝜈𝑖Δ𝑓𝐻𝑖
𝑜

𝑖

= 1274 − 0 + 6 × (−393,5) + 6 × (−285,8) = 1274 − 6 × 679,3 

D’où :  Δ𝑟𝐻𝑜 ≈ 1,3. 103 − 6 × 6,8. 102 = 1,3. 103 − 4,1. 103 = −2,8. 103 𝑘𝐽. 𝑚𝑜𝑙−1 

Dans la liste proposée, on choisit donc :  𝚫𝒓𝑯𝒐 = −𝟐𝟖𝟎𝟐 𝒌𝑱. 𝒎𝒐𝒍−𝟏  

Q5. L'énergie libérée par la combustion est intégralement fournie aux muscles et, en définissant le 

rendement musculaire par 𝜂 =
𝑃𝑚é𝑐𝑎

𝑃𝑚𝑢𝑠𝑐𝑙𝑒
 , on obtient en raisonnant une durée t : 

 𝑃𝑚é𝑐𝑎. Δ𝑡 = 𝜂. |𝑄𝑐𝑜𝑚𝑏| 

Or en considérant la réaction de combustion du glucose isotherme et isobare, on a : 

Δ𝐻 = 𝑄𝑐𝑜𝑚𝑏 ⟺ 𝜉𝑓Δ𝑟𝐻𝑜 = 𝑄𝑐𝑜𝑚𝑏 avec :  𝜉𝑓 =
𝑚𝑔𝑙𝑢𝑐

𝑀𝑔𝑙𝑢𝑐
 

D’où :  𝑚𝑔𝑙𝑢𝑐 = 𝜉𝑓 . 𝑀𝑔𝑙𝑢𝑐 =
𝑄𝑐𝑜𝑚𝑏

Δ𝑟𝐻𝑜 𝑀𝑔𝑙𝑢𝑐 ⟺ 𝒎𝒈𝒍𝒖𝒄 = −
𝑴𝒈𝒍𝒖𝒄.𝑷𝒎é𝒄𝒂.𝚫𝒕

𝜼.𝚫𝒓𝑯𝒐  

AN : 𝑀𝑔𝑙𝑢𝑐 = 6 × 12 + 12 × 1 + 6 × 16 = 72 + 12 + 96 = 180 𝑔. 𝑚𝑜𝑙−1 

𝑚𝑔𝑙𝑢𝑐 =
180 × 180 × 4 × 3,6. 103

0,25 × 2,8. 106
≈ 670𝑔 

Dans la liste proposée, on choisit donc :  𝒎𝒈𝒍𝒖𝒄 = 𝟔𝟕𝟎 𝒈  

 
Q6. Sachant que no(O) = −II et en respectant les règles usuelles, on obtient : 

espèces I2 IO3
− I− 

no(I) 0 +V -I 

Les espèces étant placées dans le diagramme E-pH par nombre d’oxydation croissant selon l’axe 
des ordonnées, on peut associer les domaines : 

I  𝐈− II  I2 III  𝐈𝐎𝟑
−  

 
Au-delà de pH=7,4, le diode n’est plus stable et dismute pour former les deux auttres ions. On écrit 
les deux couples : 
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(IO3
−/I2)           2 IO3

− + 12 H+ + 10 e− = I2 + 6 H2O (a) 
(I2/I−)              I2 + 2 e− = 2 I− (b) 

D’où   5(b) – (a) :     6 I2 + 6 H2O ⟶ 10 I− + 2 IO3
− + 12 H+ 

 
3 I2 + 3 H2O ⟶ 5 I− +  IO3

− + 6 H+ 
 
Q7. Le segment BD sépare les domaines I et III, il faut donc considérer le couple (IO3

−/I−) dont la 
demi-équation électronique est : IO3

− + 6 H+ + 6e− =  I− + 3 H2O 
La formule de Nersnt s’écrit alors : 

𝐸 = 𝐸𝑜 +
0,06

6
log (

[IO3
−][H+]6

[I−]
) = 𝐸𝑜 +

0,06

6
log([H+]6) + ⋯ = 𝐸𝑜 − 0,06 𝑝𝐻 + ⋯ 

La pente du segment BD est donc  −0,06 V/pH 
 

Le segment CB sépare les domaines II et III, il faut donc considérer le couple (IO3
−/𝐼2) dont la demi-

équation électronique est : IO3
− + 6 H+ + 5e− =  

1

2
𝐼2 + 3 H2O 

La formule de Nersnt s’écrit alors : 

𝐸 = 𝐸𝑜 +
0,06

6
log (

[IO3
−][H+]6

√[𝐼2]
) = 𝐸𝑜 +

0,06

5
log([H+]6) + ⋯ = 𝐸𝑜 −

6

5
× 0,06 𝑝𝐻 + ⋯ 

La pente du segment CB est donc  −0,072 V/pH 
 
Q8. On passe en milieu basique, où le diiode est instable et dismute  
Demi-équations électroniques : 

(IO3
−/I2)           2 IO3

− + 12 H+ + 10 e− = I2 + 6 H2O (a) 
(I2/I−)              I2 + 2 e− = 2 I− (b) 

D’où   5(b) – (a) :  6 I2 + 6 H2O ⟶ 10 I− + 2 IO3
− + 12 H+ 

Or on se place en milieu basique, on utilise alors l’autoprotolyse de l’eau (H2O = H+ + OH−) pour 
obtenir  et on divise par 2: 

𝟑 𝐈𝟐 + 𝟔 𝐎𝐇− ⟶  𝟓 𝐈− +  𝐈𝐎𝟑
− + 𝟑 𝐇𝟐𝐎  réaction de dismutation du diiode (I2) 

 
Bilan de matière : la réaction est totale et on a au départ 𝐶1𝑉1 mol de  I2. On obtient donc  

𝑛(IO3
−)𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =

𝑛(I2)𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑖𝑡

3
=

𝐶1𝑉1

3
 

 
Q9. La réaction qui se produit lors de cette étape est lente, il faut donc attendre suffisamment 

longtemps afin que la réaction soit finie avant de passer à l’opération suivante. 
Demi-équations électroniques : 

 
(C6H11O7

−/C6H12O6         C6H11O7
− + 3 H+ + 2 e− = C6H12O6 + H2O (a) 

(IO3
−/I−)            IO3

− + 6 H+ + 6 e− =  I− + 3 H2O (b) 
D’où   (b) – 3(a) :   IO3

− + 3 C6H12O6 ⟶ I− + 3 C6H11O7
− +  3 H+ 

Or on se place en milieu basique, on utilise alors l’autoprotolyse de l’eau (H2O = H+ + OH−) pour 
obtenir : 

𝐈𝐎𝟑
− + 𝟑 𝐂𝟔𝐇𝟏𝟐𝐎𝟔 + 𝟑 𝐎𝐇−  ⟶  𝐈− + 𝟑 𝐂𝟔𝐇𝟏𝟏𝐎𝟕

− +  𝟑 𝐇𝟐𝐎  réaction (1) 

 
 
Q10.Il s’agit de la réaction inverse de celle écrite à la Q8 : 

𝟏𝟎 𝐈− + 𝟐 𝐈𝐎𝟑
− + 𝟔 𝐇𝟐𝐎 ⟶  𝟔 𝐈𝟐 + 𝟏𝟐 𝐎𝐇−  réaction (2) 

 
Q11. Demi-équations électroniques : 

(I2/I−)       I2 + 2 e− = 2 I− (a) 
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(S4O6
2−/S2O3

2−) S4O6
2− + 2 e− = 2 S2O3

2− (b) 

D’où   (a) – (b) :            𝐈𝟐 + 𝟐 𝐒𝟐𝐎𝟑
𝟐−  ⟶  𝟐 𝐈− + 𝐒𝟒𝐎𝟔

𝟐−  réaction (3) 

 
La règle du gamma est vérifiée, de plus  E°(I2/I−) – E°(S4O6

2−/S2O3
2−) = 0,59 V > 0,3 V  Donc la 

réaction est quasi-totale. 
 
Q12. Bilans de matières successifs : toutes les réactions sont totales, le corps en défaut à 

reconnaître disparaît : 
Opération 2 : 𝟑 𝐈𝟐 + 𝟔 𝐎𝐇− ⟶  𝟓 𝐈− +  𝐈𝐎𝟑

− + 𝟑 𝐇𝟐𝐎 réaction de dismutation du diiode (I2) 
Bilan de matière : la réaction est totale et on a au départ 𝐶1𝑉1 mol de  I2. On obtient donc  

𝑛(IO3
−)𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =

𝑛(I2)𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑖𝑡

3
=

𝐶1𝑉1

3
 

Opération 3 : 
 

                                  𝐈𝐎𝟑
−               +     𝟑 𝐂𝟔𝐇𝟏𝟐𝐎𝟔      + 𝟑 𝐎𝐇−  ⟶  𝐈− + 𝟑 𝐂𝟔𝐇𝟏𝟏𝐎𝟕

− +  𝟑 𝐇𝟐

 𝑡 = 0                  
𝐶1𝑉1

3
                          𝑛𝑔𝑙𝑢𝑐 =

𝐶0𝑉2

10
                                                                      

   é𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑒                            
𝐶1𝑉1

3
− 𝜉3             𝑛𝑔𝑙𝑢𝑐 − 3𝜉3 = 0  𝑐𝑎𝑟 𝑒𝑛 𝑑é𝑓𝑎𝑢𝑡                                                      

 

L’ion iodate est partiellement consommée par la réaction (1) supposé totale. Le bilan de matière 
donne si on suppose le glucose en défaut (sinon, on ne le dose pas) : 

𝑛(IO3
−)𝑟𝑒𝑠𝑡𝑎𝑛𝑡 = 𝑛(IO3

−)𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜉3 =
𝐶1𝑉1

3
−

𝑛𝑔𝑙𝑢𝑐

3
 

 
Opération 4 :D’après la réaction (2),  

𝟏𝟎 𝐈− + 𝟐 𝐈𝐎𝟑
− + 𝟔 𝐇𝟐𝐎 ⟶  𝟔 𝐈𝟐 + 𝟏𝟐 𝐎𝐇− 

la quantité de diiode formée vaut : 

  𝑛(I2)𝑓𝑜𝑟𝑚é = 3 𝑛(IO3
−)𝑟𝑒𝑠𝑡𝑎𝑛𝑡 = 𝐶1𝑉1 − 𝑛𝑔𝑙𝑢𝑐  

Par ailleurs en tenant compte de la dilution, à l’opération 3, on a introduit :  𝑛𝑔𝑙𝑢𝑐 =
𝐶0𝑉2

10
 

Opération 6 : 
Enfin, la réaction (3) correspond à la réaction de dosage. Or à l’équivalence d’un dosage, les réactifs 
ont été introduits dans les proportions stœchiométriques donc il n’en reste plus si la réaction est 
totale, et le bilan de  matière donne : 

𝑛(I2)𝑓𝑜𝑟𝑚é − 𝜉6 = 0  𝑒𝑡  𝑛(S2O3
2−)𝑣𝑒𝑟𝑠é à é𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 − 2𝜉6 = 0 → 𝑛(I2)𝑓𝑜𝑟𝑚é =

𝐶3𝑉é𝑞

2
 

Finalement, on obtient en éliminant  𝑛(I2)𝑓𝑜𝑟𝑚é : 

𝐶3𝑉é𝑞

2
= 𝐶1𝑉1 −

𝐶0𝑉2

10
⟺ 𝑪𝟎 =

𝟏𝟎

𝑽𝟐
(𝑪𝟏𝑽𝟏 −

𝑪𝟑𝑽é𝒒

𝟐
)  

 
 
Q13. Pour que ce dosage soit valide, il faut que l’ion iodate soit effectivement en excès à la réaction 

(1) (voir Q9). Ainsi, il faut que : 

𝐶1𝑉1 > 𝑛𝑔𝑙𝑢𝑐 ⟺ 𝐶1𝑉1 >
𝐶0𝑉2

10
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Problème 4. Extrait mines ponts 2025 psi. 

9. Les nombres d'oxydation de l'élément zirconium dans les différentes espèces : 

 𝐙𝐫(𝐬) 𝐙𝐫𝐎𝟐(𝐬) 𝐙𝐫𝟒+ 𝐚𝐪 𝐇𝐙𝐫𝐎𝟑 − 𝐚𝐪 

n.o(Zr) dans 0 +IV +IV +IV 

 
10. On classe selon les nombres d'oxydation et l’acido basicité et on trace un diagramme 

préliminaire : 
𝐙𝐫𝟒+ 𝐚𝐪 acide associé à 𝐙𝐫𝐎2(𝐬)  Zr4+ aq + 2 𝐻2𝑂 =   ZrO2(s) + 4 𝐻+ 

𝐙𝐫𝐎2(𝐬) acide associé à 𝐇𝐙𝐫𝐎3 − 𝐚𝐪 ZrO2(s) + 𝐻2𝑂 =  HZrO3 − aq +   𝐻+  

 

+𝐈𝐕 𝐙𝐫𝟒+ 𝐚𝐪 𝐙𝐫𝐎2(𝐬) 𝐇𝐙𝐫𝐎3 − 𝐚𝐪 

𝟎 𝐙𝐫(𝐬) 

 
Par identification : 

A: Zr(s)       B: Zr4+       C: ZrO2( s)         (HZrO3
−aq  ne figure pas; on va justifier plus tard).  

Les domaines A et C : domaines d'existence (espèces solides). 
Le domaine B : Domaine de prédominance ( espèce soluble). 
 

11. La frontière qui sépare 𝐴 et 𝐵 est déterminée par le couple redox : Zr4+/Zr(s) : 
La demi-équation redox : Zr4+ + 4𝑒− ⇌ Zr(𝑠) 

 

Le potentiel de Nernst : 𝐸 = 𝐸𝑜 +
0,06

4
log [𝑍𝑟4+]  A la frontière : 𝐸𝑓 = 𝐸𝑜 +

0,06

4
log 𝐶𝑜 

On trouve : 𝐶𝑜 = 10−4 mol/L 
La droite de la frontière entre les domaines A et C a pour équation E = a + b. pH. 
 

12. Le couple C/A est le couple redox : ZrO3 −aq /Zr(s) : 
La demi-équation redox : HZrO3

− + 5𝑒− + 5H+ ⇌ Zr(𝑠) + 3H2O 

La pente : b = −0,06 ⋅
𝛼(𝐻+)

𝛼(𝑒−)
= −0,06 V/ unité de 𝑝𝐻 

 
13. La frontière verticale entre les espèces HZrO3 −(aq) et ZrO2( s) : 

ZrO2( s) + OH− = HZrO3
−(aq) ∶  𝐾2 =

[HZrO3
−]

[OH−]
 

A la frontière : 𝐾2 =
𝐶𝑜

[OH−]𝑓
 on trouve pHf = 15 (> 14) donc HZrO3

−ne figure pas. 

 
14. Les deux couples de l'eau: 

2H+ + 2𝑒− ⇌ 𝐻2(𝑔) ;  𝐸H+/H2
= 0,00 +

0,06

2
log 

[H+]2

𝑃H2

; 𝐸H+/H2
= −0,06𝑝𝐻

𝑂2(𝑔) + 4H+ + 4𝑒− ⇌ 2H2O; 𝐸O2/H2O = 1,23 +
0,06

4
log [H+]4𝑃O2

; 𝐸O2/H2O = 1,23 − 0,06𝑝𝐻

 

15.Le zirconium et l'eau sont disjoints dans le diagramme, donc il n'est pas stable dans l'eau. 
Il réagit avec l'eau si pH < 1,25 pour donner Zr4+ ou pour donner ZrO2 si pH > 1,25 suivant : 

 
Zr( s) + 4H+ ⇌ Zr4+ + 2H2( g)  si 𝑝𝐻 < 1,25

Zr( s) + 2H2O ⇌ ZrO2( s) + 2H2( g)  si 𝑝𝐻 > 1,25
 


