
Séries entières

I Rayons de convergence
Exercice 1 [Solution]
Déterminer le rayon de convergence des séries entières suivantes

∑
nxn2

;
∑Å

1 + (−1)n

n

ãn2

xn ;
∑ (1 + 2i)n − (2i)n

n(n + 1) xn

Exercice 2 (Mines-Ponts PSI 2017) [Solution]

Déterminer le rayon de convergence de
∑
n⩾0

(2n + 1)!
(n!)2 x2n.

Exercice 3 (Mines-Télécom PSI 2018) [Solution]
Rayon de convergence de

∑
n⩾1

n!
nn

zn ?

Exercice 4 (Mines-Télécom PSI 2023) [Solution]
1. Définir le rayon de convergence d’une série entière à coefficients complexes.
2. Soit (an) une suite bornée telle que

∑
an diverge. Déterminer le rayon de convergence de

∑
anzn.

3. Déterminer le rayon de convergence de
∑

(
√

n)(−1)n

ln
Å

1 + 1√
n

ã
zn

Exercice 5 (CCP PSI 2022) [Solution]

On note an =
+∞∑

k=n+1

1
1 + k2 .

1. Prouver l’existence de an.

2. Montrer que an ∼ 1
n

.

3. Déterminer le domaine de convergence de
∑
n⩾0

anxn.

Exercice 6 (Règle de Cauchy) [Solution]
Soit (an) une suite complexe telle que lim

n→+∞
|an| 1

n = l ∈ R+ ∪ {+∞}. Quel est le rayon de convergence de
∑

anzn ?
indication : utiliser la définition de limite avec ε.

Exercice 7 (CCP PSI 2016) [Solution]

1. Soit an =
∫ 1

0

Å1 + t2

2

ãn

dt. Montrer que ∀n ∈ N, an ⩾
1

n + 1.

indication : vérifier que 1 + t2 ⩾ 2t.
2. Rayon de convergence et domaine de définition de

∑
n⩾0

anxn ?

Exercice 8 (Mines-Ponts PSI 2023) [Solution]

Soit an =
∫ +∞

1

dt

ch(tn)
1. Déterminer un équivalent de an.

indication : poser u = tn

2. Déterminer le rayon de convergence de la série entière
∑
n⩾1

anxn. Y a-t-il convergence en ±R ?

3. Exprimer an à l’aide de la somme d’une série

Exercice 9 [Solution]

Soit (an) une suite complexe telle que le rayon de convergence de
∑

anzn est 1. On pose Sn =
n∑

k=0
ak et Tn = 1

n + 1

n+1∑
k=0

Sk.

Montrer que les rayons de convergence de
∑

Snzn et
∑

Tnzn valent 1.
indication : montrer que 1 = Ra ⩽ RS ⩽ RT et puis, exprimer Sn et fonction de Tn puis an en fonction de Sn.

Exercice 10 (Centrale PSI 2009) [Solution]
On suppose

∑
anzn de rayon de convergence R > 0 ; donner le rayon de convergence de

∑
anP (n)zn, où P ∈ C[X].



II Calculs de sommes
Exercice 11 (CCP PSI 2014) [Solution]
Rayon de convergence et somme de

∑
n⩾1

3n

n + 2xn.

Exercice 12 (Mines-Télécom PSI 2018) [Solution]

Domaine de définition et somme de
+∞∑
n=0

n2 + 4n − 1
n + 2 xn.

Exercice 13 (CCP PSI 2018) [Solution]
Rayon de convergence et somme de

∑
n⩾0

n(−1)n

xn.

Exercice 14 (Mines-Télécom PSI 2023) [Solution]

Soit θ ∈ ]0, π[ et f(x) =
+∞∑
k=0

sin(kθ)xk.

1. Montrer par l’absurde que uk = sin(kθ) ne converge pas vers 0.
2. Déterminer le rayon de convergence R de la série de définition de f(x).
3. Calculer f(x).

Exercice 15 [Solution]

Rayon de convergence et somme de
∑
n⩾0

∫ π
2

0
sinn t dtxn ;

∑
n⩾1

xn

n
cos 2nπ

3 ;
+∞∑
n=0

x3n+1

(3n + 1)! et
∑
n⩾0

xE(
√

n) ?

Exercice 16 (CCINP PSI 2021) [Solution]
Soit f(x) = 1

1 + x3 pour x ∈] − 1 − 1[.

1. Déterminer a, b, c tels que f(x) = a

1 + x
+ bx + c

1 − x + x2 et déterminer une primitive de f .

2. Calculer S(x) =
+∞∑
n=0

(−1)n

3n + 1x3n+1

3. Calculer
+∞∑
n=0

(−1)n

3n + 1

Exercice 17 (Mines-Télécom PSI 2019) [Solution]

Soit f(x) =
∑
n⩾0

(−1)n

4n + 1x4n+1

1. Déterminer le rayon de convergence R de cette série entière.
2. Calculer f(x) pour |x| < R.
3. Calculer f(R).

Exercice 18 (ENSAM PSI 2007) [Solution]

Calculer le rayon de convergence de
∑
n⩾1

(−1)nx2n+1

(2n − 1)(2n + 1) . Exprimer la somme à l’aide de fonctions usuelles et étudier le

comportement de f aux bornes de son intervalle de définition.

Exercice 19 (CCP PSI 2010) [Solution]
Calculer le rayon de convergence et la somme de

∑
n⩾1

anxn avec an = 1
1 + 2 + · · · + n

.

Exercice 20 (Mines-Ponts PSI 2017) [Solution]
Domaine de définition et somme de f(x) =

∑
n⩾1

xn

n(n + 1)(2n + 1) .

Exercice 21 (Mines-Ponts PSI 2007) [Solution]

Étude de f(x) =
+∞∑
n=0

Ç∫ π
4

0
tann t dt

å
xn. (domaine de définition et l’exprimer avec des fonctions usuelles)

indication : calculer an + an+2.



Exercice 22 (CCINP PSI 2021) [Solution]

1. Définir le rayon de convergence d’une série entière puis déterminer celui de S(x) =
∑
n⩾0

unxn avec un =
∫ 1

0

tn

1 + t2 dt.

2. Trouver a, b, c tels que 1
(1 + t2)(1 − tx) = at + b

1 + t2 + c

1 − tx
.

3. Déterminer S(x) pour x ∈] − R, R[ puis la valeur de S(−1).

Exercice 23 (ENSEA/ENSIIE PSI 2024) [Solution]

On pose : ∀n ∈ N, an =
∫ 1

0

tn

2 + t2 dt et on définit la fonction f par f(x) =
+∞∑
n=0

anxn

1. Donner le rayon de convergence de la série entière
∑

anxn.

2. Donner une autre expression de f(x) pour tout x tel que |x| < R.

Exercice 24 (Mines-Ponts PC 2015) [Solution]

Rayon de convergence et somme de
∑
n⩾0

(n!)2

(2n + 1)!x
n ; (calculer

∫ 1

0
tn(1 − t)n dt).

Exercice 25 (Mines-Ponts PSI 2011) [Solution]

1. Donner le rayon de convergence R de
∑
n⩾1

anxn, où an =
+∞∑
k=n

(−1)k−1

k
.

2. Faire l’étude en ±R puis calculer la somme pour |x| < R (remarquer que 1
k

=
∫ 1

0
tk−1 dt).

Exercice 26 (ENSEA PC 2007) [Solution]
Rayon de convergence et calcul de

∑
sin(n)xn.

Exercice 27 (Mines-Ponts PSI 2024) [Solution]
Soit (Fn)n∈N définie par F0 = 0, F1 = 1 et ∀n ∈ N, Fn+2 = Fn+1 + Fn

1. Déterminer la valeur de Fn en fonction de n

2. Calculer S(x) =
+∞∑
n=0

Fnxn

3. Quel est le rayon de convergence de cette série entière ?

Exercice 28 (CCP PC 2009) [Solution]
1. Déterminer les valeurs propres réelles et complexes de A =

Ñ
0 1 1

−2 1 1
−2 1 3

é
.

A est-elle diagonalisable sur R ? sur C ?
2. On pose tn = Tr(An) ; exprimer tn+3 en fonction de tn+2, tn+1 et tn.

3. Déterminer le rayon de convergence et la somme de
∑

tnxn.

Exercice 29 (Centrale PSI 2014) [Solution]

1. Montrer que l’équation
n∑

k=1

xk

k
= 1 admet une unique solution xn sur R+.

2. Montrer que (xn) converge et déterminer sa limite.
indication : montrer que xn ∈ [0, 3/4] et utiliser la convergence normale de la série entière sur ce segment.

III Calculs de séries numériques
Exercice 30 (CCP PSI 2016) [Solution]

Calculer
+∞∑
n=0

2n2 + 3n + 1
2n+1 .

Exercice 31 [Solution]

Montrer que π

4 =
+∞∑
n=0

(−1)n

2n + 1.



Exercice 32 (CCINP PSI 2021) [Solution]

1. Montrer, lorsque toutes les quantités existent que tan(2a) = 2 tan(a)
1 − tan2 a

2. Montrer que π = 8
+∞∑
n=0

(−1)n

2n + 1(
√

2 − 1)2n+1

3. Montrer que
∣∣∣∣∣π − 8

n∑
k=0

(−1)k

2k + 1(
√

2 − 1)2k+1

∣∣∣∣∣ ⩽ 8
2n + 3

Exercice 33 (Mines-Ponts PSI 2023) [Solution]

1. Montrer que
+∞∑
n=0

(−1)n

(2n + 1)(2n + 2) = π

4 − 1
2 ln(2)

2. Calculer
+∞∑
n=0

1
(2n + 1)(2n + 2)

Exercice 34 [Solution]

Soient an = (−1)n

2n + 1 et bn =
n∑

k=0
akan−k. Montrer la convergence et calculer

+∞∑
n=0

bn.

indication : reconnaître f(x) =
+∞∑
n=0

anxn puis le DSE de f2 sur [0, 1[ et prendre la limite en 1 (on peut ?)

Exercice 35 (ENSAM PSI 2014) [Solution]

1. Soit a ∈]0, π[. Montrer que
∑
n⩾1

sin(na)
n

xn converge pour x ∈] − 1, 1[ et expliciter sa somme f(x) (dériver).

2. Montrer que, pour x ∈ [0, 1],
N∑

n=1

sin(na)
n

xn =
N−1∑
n=1

Å 1
n

− 1
n + 1

ã
Sn où Sn =

n∑
k=1

sin(ka)xk.

3. En déduire la convergence et la valeur de
+∞∑
n=1

sin(na)
n

. ((Sn) est bornée indépendamment de x ∈ [0, 1])

IV Calculs de sommes par equations différentielles
Exercice 36 (CCINP PSI 2023) [Solution]
On considère la série

∑
n⩾0

n!
1 × 3 × 5 × · · · × (2n + 1) x2n+1.

1. Déterminer le rayon de convergence R de la série entière.

2. On pose ∀x ∈ ]−R, R[ , f(x) =
+∞∑
n=0

n!
1 × 3 × 5 × · · · × (2n + 1) x2n+1.

Donner une équation différentielle d’ordre 1 à coefficients non constants vérifiée par f .
3. Rappeler l’expression de arcsin′ puis résoudre l’équation différentielle. En déduire une expression simplifiée de la

fonction f

Exercice 37 (ENSAM PSI 2018) [Solution]

1. Déterminer les x pour lesquels
∑
n⩾0

4n(n!)2

(2n + 1)!x
2n+1 converge.

2. On note S la somme de cette série. Montrer que S est solution de (1 − x2)y′(x) − xy(x) = 1 en fonction de S et
déterminer S.

Exercice 38 (Mines-Télécom PSI 2018) [Solution]

1. Donner les variations de la suite définie par wn =
∫ π/2

0
cosn t dt.

2. Calculer lim wn et montrer que wn+2 = n + 1
n + 2wn.

3. Déterminer le rayon de convergence et la somme S de
∑
n⩾0

wnxn. Calculer
∑
n⩾0

(−1)nwnxn.



Exercice 39 (CCINP PSI 2024) [Solution]

Soit an =
∫ 1

0

Å1 + t2

2

ãn

dt.

1. Montrer que (an) converge et déterminer sa limite.

2. Montrer que
∑

(−1)nan converge.

3. On note R le rayon de convergence de la série entière
∑
n⩾0

anxn et f sa somme.

a) Montrer que an ⩾
1

2n + 1 et déterminer R.

b) Montrer que f est solution d’une équation différentielle et résoudre cette équation.

Exercice 40 (CCINP PSI 2022) [Solution]
Soient (E) : x2(1 − x)y′′ − x(1 + x)y′ + y = 0 et f une solution de (E) DSE sur ] − r, r[ telle que f(x) =

∑
n⩾0

anxn si |x| < r.

1. Justifier que f est C2 sur ] − r, r[ et écrire f ′ et f ′′ sous forme de séries entières.

2. Montrer qu’il existe (bn)n⩾1 telle que x2(1 − x)f ′′(x) − x(1 + x)f ′(x) + f(x) = a0 +
∑
n⩾1

bn(an − an−1)xn.

3. Déterminer a0 et une relation entre an et an−1.
4. En déduire une expression simple de f .

V DSE sans équations différentielles
Exercice 41 (Mines-Télécom PSI 2021) [Solution]
Développer en série entière la fonction f définie par : f (s) = s

2 − s2 .

Exercice 42 [Solution]

Développer en série entière les fonctions f1(x) = arctan
Å 1

1 + x

ã
et f2(x) =

…
1 + x

1 − x

Exercice 43 (Mines-Ponts PSI 2017) [Solution]

1. Donner le domaine de définition de f(x) =
∫ x

0

ln |1 − t|
t

dt

2. f est-elle DSE au voisinage de 0 ? Quel est le rayon de convergence ?
3. Calculer f(1) et étudier la dérivabilité de f en 1.

Exercice 44 (ENSEA-EIVP PC 2014) [Solution]

DSE de f(x) =
∫ x2

0

t

1 + t3 dt.

Exercice 45 (Mines-Télécom série 2 PSI 2022) [Solution]

Soit F (x) =
∫ x

0

1 − t

1 + t2 dt

1. Montrer que F est C1 sur R et calculer F ′(x)
2. Exprimer F à l’aide de fonctions usuelles
3. Déterminer le développement en série entière de F .

4. Justifier l’existence et calculer
+∞∑
n=0

(−1)n

(2n + 1)(2n + 2)

Exercice 46 (Mines-Ponts MP 2011) [Solution]
DSE de f(x) = ln

(
x2 − 5x + 6

)
et rayon de convergence ?

Exercice 47 (CCP MP 2015) [Solution]

DSE de f(x) = ln(1 − x − 2x2) et g(x) = arctan
Å1 − x2

1 + x2

ã
.

Exercice 48 (Centrale PC 2011) [Solution]
Donner le DSE de f(x) = ln

(
1 + x + x2).



Exercice 49 (Mines-Ponts PSI 2019) [Solution]

Développer f(x) = x sh(α)
x2 − 2x ch(α) + 1 en série entière.

Exercice 50 (CCP PSI 2010) [Solution]

1. Montrer que f définie par f(x) = ex − 1 − x

x2 pour x ̸= 0 et f(0) = 1
2 est de classe C∞ sur R.

2. Montrer que 1
f

est définie et de classe C∞ sur R.

Exercice 51 (CCP PSI 2012) [Solution]
Soit f définie sur R par f(x) = 1 − cos x

x2 si x ̸= 0 et f(0) = 1
2.

1. Montrer que f est continue sur R.
2. Montrer que f est de classe C∞ sur R et expliciter la valeur de sa dérivée d’ordre n en 0.

Exercice 52 (Mines-Ponts PSI 2011) [Solution]

Soit f : x 7→ x

sin(x) . En écrivant f(x)g(x) = 1 avec g(x) = sin(x)
x

, montrer que f est DSE et que son rayon de convergence

R vérifie 1√
2
⩽ R ⩽ π.

Exercice 53 (EIVP PSI 2016) [Solution]

1. Déterminer le DSE de x√
1 − x2

et en déduire celui de 1
(1 − x2)3/2 .

2. Montrer que
n∑

k=0
4−k

Ç
2k

k

å
= 2n + 1

4n

Ç
2n

n

å
.

VI DSE par équation différentielle
Exercice 54 [Solution]

Soit f(x) = arcsin
√

x√
x(1 − x)

.

1. Montrer que f(x) =
+∞∑
n=0

anxn pour x ∈]0, 1[. Déterminer an et le rayon de convergence R. (indication : éq diff)

2. Étudier la nature de
∑

(−1)nanRn et
∑

anRn.

Exercice 55 (CCINP PSI 2021) [Solution]

Soit f(x) = arcsin(x)√
1 − x2

1. Sur quel domaine f est-elle C1 ? Calculer f ′(x) et trouver a, b et c polynômiales telles que a(x)f ′(x)+b(x)f(x) = c(x).
2. f est-elle DSE ?
3. Déterminer les coefficients du DSE de f .

indication : on peut remarquer que f est impaire (pour simplifier les calculs)

Exercice 56 (Mines-Télécom PSI 2022) [Solution]
Soit f(x) = (arcsin x)2.

1. Montrer que f est DSE sur ] − 1, 1[
2. Montrer que f ′ est solution sur ] − 1, 1[ de (1 − x2)y′ − xy = 1
3. Déterminer les coefficients du DSE de f

indication : pour simplifier les calculs, remarquer que f ′ est impaire

Exercice 57 (Centrale PSI 2011) [Solution]

Montrer que f : x 7→ sin
Åarcsin(x)

3

ã
est solution d’une équation différentielle d’ordre 2 et déterminer le DSE de f .

Exercice 58 (Mines-Ponts PSI 2022) [Solution]

Soient Hn =
n∑

k=1

1
k

, pour n ⩾ 1 et f(x) =
+∞∑
n=1

Hn

n! xn

1. Déterminer le rayon de convergence de cette série entière



2. Montrer que f ′(x) − f(x) = ex − 1
x

3. En déduire une autre expression de f

4. Montrer
+∞∑
n=1

Hn

n! = e

+∞∑
n=1

(−1)n+1

n × n!

Exercice 59 (Centrale PSI 2015) [Solution]
Soient λ ∈] − 1, 1[, α ∈ R et f C1 sur R telle que f ′(x) = αf(x) + f(λx).

1. Montrer que f est C∞ sur R.
2. Déterminer les solutions DSE de cette équation.
3. Montrer que f est DSE.

indication : montrer que pour x ∈ R, il existe C (dépendant de x) telle que |t| ⩽ |x| ⇒ |f (p)(t)| ⩽ C(1 + |α|)p.

Exercice 60 (Centrale PSI 2022) [Solution]
Soient α ∈ R, γ ∈ [−1, 1] \ {0} et Sα = {f ∈ C1(R,R), ∀x ∈ R, f ′(x) = f(γx) et f(0) = α}

1. Déterminer Sα pour γ = 1 puis γ = −1.

2. Soit f(x) = α

+∞∑
n=0

γn(n−1)/2 xn

n! . Vérifier que le rayon de convergence de cette série entière est +∞ et montrer que

f ∈ Sα

3. Déterminer Sα

indication : montrer que si f ∈ Sα alors f est DSE en trouvant la valeur de f (n) en fonction de f

Exercice 61 (Mines-Télécom PSI 2016) [Solution]
Déterminer les séries entières solutions de x2y′′ + 6xy′ + (6 − x2)y = −1 et déterminer leurs sommes.

VII Études de fonctions DSE
Exercice 62 (CCINP PSI 2019) [Solution]
Soit I = [0, 1]

1. Montrer que ∀x ∈ I, ln(1 + x) =
+∞∑
n=1

(−1)n+1 xn

n

2. Montrer que
∑
n⩾0

Å
x2n+1

2n + 1 − xn+1

2n + 2

ã
converge simplement sur I.

3. Déterminer sa somme S.
4. Y a-t-il convergence uniforme sur I ?

Exercice 63 (CCINP PSI 2023) [Solution]

Soient F (x) =
∫ x

0

ln(1 − t)
t

dt et S(x) =
+∞∑
n=1

xn

n2 . On rappelle que S(1) = π2

6 .

1. Déterminer le domaine de définition de F .
2. Montrer que si x ∈] − 1, 1[ alors F (x) = −S(x)

3. Montrer que si x ∈]0, 1[, F (x) + F (1 − x) = ln(x) ln(1 − x) − π2

6

Exercice 64 (CCINP PSI 2022) [Solution]

Soit f(x) =
+∞∑
n=1

xn2

1. Donner le domaine de définition D de f

2. Montrer que f est dérivable sur D

3. Déterminer un équivalent de f(x) quand x tend vers 1 ; on pourra faire une comparaison série/intégrale et utiliser∫ +∞

0
e−t2

dt =
√

π

2

Exercice 65 (ENTPE-EIVP MP 2009) [Solution]

1. Domaine de définition de f(x) =
+∞∑
n=1

ln(n)xn ?



2. Montrer qu’au voisinage de 1, on a f(x) ∼ − ln(1 − x)
1 − x

. (on pourra étudier g(x) = (1 − x)f(x).)

Exercice 66 (CCINP PSI 2024) [Solution]

Soient f(x) =
∑
n⩾2

ln(n)xn et g(x) =
∑
n⩾2

ln
Å

1 − 1
n

ã
xn

1. Déterminer les rayons des convergence de f et g.
2. Montrer que g est continue sur [−1, 1[
3. Déterminer une relation entre (1 − x)f(x) et g(x)
4. Montrer que f peut se prolonger par continuité à [−1, 1[
5. Déterminer des équivalents de f et g en 1−

Exercice 67 (Mines-Télécom PSI 2022) [Solution]
Soit (an)n∈N une suite de complexes et R le rayon de convergence de

∑
anzn.

1. Rayon de convergence de
∑
n⩾1

an(ln n)zn et
∑
n⩾1

an

(
n∑

k=1

1
k

)
zn ?

2. On pose γn =
n∑

k=1

1
k

− ln n. Montrer que la suite (γn) converge.

3. Montrer que :
+∞∑
n=1

(ln n)xn ∼ − ln(1 − x)
1 − x

quand x → 1−. On pensera à un produit de Cauchy de séries entières.

Exercice 68 (CCINP PSI 2024) [Solution]

Soit In =
∫ 1

0
e− 1

t tn dt

1. Justifier l’existence de In et préciser son signe
2. Étudier les variations de (In), puis sa convergence et sa limite

3. Par IPP, montrer que (n + 1)In + In−1 = e−1 et en déduire In ∼ e−1

n
.

4. On pose g(x) =
∑
n⩾0

Inxn. Déterminer le domaine de définition de g

5. Écrire g(x) sous forme d’une intégrale pour |x| < 1
6. Déterminer un équivalent de g(x) quand x tend vers 1−.

indication : considérer
∑Å

In − e−1

n

ã
xn et sa limite quand x tend vers 1.

Exercice 69 (Centrale PSI 2023) [Solution]

Soit (an)n∈N une suite telle que
∑

an soit absolument convergente. On pose : ∀n ∈ N, An =
n∑

k=0
ak et A = lim

n→+∞
An.

1. Soit n ∈ N. Montrer la convergence de
∫ +∞

0
tne−t dt, puis calculer sa valeur.

2. Montrer que
∑ an

n! tn et
∑ An

n! tn ont un rayon de convergence infini.

3. On pose pour tout réel t, f(t) =
+∞∑
n=0

an

n! tn et g(t) =
+∞∑
n=0

An

n! tn.

a) Montrer que f et g sont dérivables et vérifient ∀t ∈ R, f ′(t) = g′(t) − g(t)

b) Montrer que : ∀t ∈ R,

∫ t

0
f(u)e−u du = e−t(g(t) − f(t)).

4. Montrer que
∫ t

0
f(u)e−u du −−−−→

t→+∞
A.

Exercice 70 (Centrale PSI 2021) [Solution]

Pour n ∈ N∗, on pose an =
∫ +∞

n

th(t)
t2 dt

1. Justifier l’existence de an. Déterminer le rayon de convergence de
∑
n⩾1

anxn et le domaine de définition de sa somme S.



2. S est-elle continue en −1.
3. Déterminer un équivalent de S en 1.

indication : commencer par chercher un équivalent de an

Exercice 71 (Centrale PSI 2022) [Solution]
Soient α > 0 et (E) : xy′ + αy − xy2 = α

1. Montrer que (E) admet une unique solution φ développable en série entière sur ] − 1, 1[

2. Montrer que φ(x) =
1

O

Å 1
1 − x

ã
3. Soit f ∈ C1([0, 1],R) telle que f(1) = 0.

a) Montrer la convergence de
∫ 1

0
tα [f ′(t) + φ(t)f(t)]2 dt

b) En déduire α

∫ 1

0
tα−1f(t)2 dt ⩽

∫ 1

0
tαf ′(t)2 dt

Exercice 72 (ENSAM PSI 2009) [Solution]
Soient deux séries entières

∑
anxn et

∑
bnxn de rayon de convergence infinis, avec b0 ⩾ 0 et bn > 0 pour n ⩾ 1. On

note f et g les sommes de ces séries.
1. Montrer que si an =

n→+∞
o(bn) alors f(x) =

x→+∞
o(g(x)).

indication : si ε > 0, il existe n0 tel que n ⩾ n0 ⇒ 0 ⩽ an ⩽ εbn et remarquer que, pour x > 0, g(x) ⩾ bnxn.
2. Montrer que si an ∼

n→+∞
bn alors f(x) ∼

x→+∞
g(x). (indication : an ∼ bn ssi an − bn = o(bn))

3. Montrer que le RCV de
∑Å

1 + 1
n

ãn2
xn

n! est +∞ et déterminer un équivalent de sa somme en +∞.

VIII Permutations somme/intégrale
Exercice 73 (CCP PSI 2011) [Solution]

Montrer que
∫ +∞

0
ln(th x) dx = −

+∞∑
n=0

1
(2n + 1)2 après avoir justifié la convergence.

Exercice 74 (CCP PSI 2009) [Solution]

1. Calculer Ik =
∫ +∞

0
xke−x dx pour k ∈ N.

2. Montrer que ∀x > 0, e−x cos
√

x =
+∞∑
k=0

e−x(−1)k xk

(2k)! .

3. En déduire la valeur de
∫ +∞

0
e−x cos

√
x dx sous forme d’une somme de série.

Exercice 75 (Mines-Ponts PSI 2021) [Solution]
Soit f(x) = 1√

x3 + x

1. Justifier l’existence de
∫ +∞

0
f(x) dx

2. Montrer que
∫ +∞

0
f(x) dx = 2

∫ 1

0
f(x) dx

3. Rappeler le DSE de 1√
1 + u2

et en déduire une expression de
∫ +∞

0
f(x) dx sous la forme de la somme d’une série.

Exercice 76 (CCINP PSI 2023) [Solution]

1. Convergence et calcul éventuel de Ik,n =
∫ +∞

0
tke−nt dt pour k ∈ N et n ∈ N.

2. Déterminer le rayon de convergence de
∑
n⩾1

n!
nn+1 xn.

3. Justifier que si x ∈] − R, R[,
+∞∑
n=1

n!
nn+1 xn =

∫ +∞

0

tx

et − tx
dt.



Exercice 77 (Mines-Ponts PSI 2019) [Solution]

1. Justifier l’existence de F (x) =
∫ +∞

0
sh(xt)e−t2

dt pour x ∈ R.

2. Justifier que F est DSE.

Exercice 78 (Centrale PSI 2021) [Solution]

1. Calculer In =
∫ π/2

0
sin2n t dt

2. Déterminer les fonctions f DSE paires solutions de x(x2 − 1)y′′ + 3x2y′ + xy = 0

3. Comparer f et g : x 7→
∫ π/2

0

dt

1 − x2 sin2 t

Exercice 79 (Centrale PSI 2019) [Solution]

1. Déterminer le domaine de définition de F (x) =
∫ 1

0

tx

1 + t
dt.

2. Montrer que f est C∞ sur ce domaine.
3. Montrer que f est DSE et donner le rayon de convergence.

Exercice 80 (CCP PSI 2018) [Solution]
Soit (an) ∈ Cn telle que

∑
an est absolument convergente. On pose f(t) =

∑
n⩾0

an

n! xn.

1. Quel est le rayon de convergence de la série entière ?

2. Montrer que
∫ +∞

0
tne−t dt existe, pour n ∈ N, et la calculer.

3. Montrer que
∫ +∞

0
f(t)e−t dt =

+∞∑
n=0

an.

Exercice 81 (CCP PSI 2017) [Solution]

Soit f(x) =
∫ π

0
cos(x cos t) dt.

1. Montrer que f est-elle développable en séries entières.
2. Montrer que f est de classe C∞ sur R et calculer xf ′′(x) + f ′(x) + xf(x).

Exercice 82 (Centrale PSI 2022) [Solution]

Soient λ > −1
2 , φλ(t) =

(
1 − t2)λ− 1

2 et Iλ(x) =
∫ 1

0
φλ(t) cos(xt) dt

1. φλ est-elle intégrable sur [0, 1[ ?
2. Montrer que Iλ est définie et de classe C2 sur R puis exprimer I ′′

λ en fonction de Iλ+1 et Iλ+2

3. Montrer que Iλ est développable en série entière.

Exercice 83 (Mines-Ponts PSI 2016) [Solution]

1. Montrer que f(x) =
∫ +∞

0

e−t

1 − x sin2 t
dt est définie sur ] − ∞, 1[.

2. Montrer que f est DSE.

Exercice 84 (Centrale PSI 2015) [Solution]
1. Si le rayon de convergence de f(x) =

∑
n⩾0

anxn est R > 0 et si
∑

|an|Rn converge, montrer que f ∈ C0([−R, R]).

2. Soit f(t) = 1
t

ln
∣∣∣∣1 − t

1 + t

∣∣∣∣. Exprimer
∫ 1

0
f(t) dt à l’aide de la somme d’une série.

3. Montrer que
∫ +∞

0
f(t) dt converge et la calculer, en admettant

∑
n⩾0

1
(2n + 1)2 = π2

8 .



IX Séries génératrices
Exercice 85 (ENSAM PSI 2009) [Solution]
On donne u0 = u1 = 1 et un+2 = un+1 + 2un + (−1)n.

1. Montrer que pour tout n ∈ N, on a |un| ⩽ 2n+1 − 1.

2. Que peut-on en déduire pour le rayon de convergence de S(z) =
+∞∑
n=0

unzn ?

3. Calculer S et en déduire la valeur de un.

Exercice 86 (Mines-Ponts PSI 2022) [Solution]
Soit (un)n∈N définie par u0 = 1 et un+1 = 2un + n pour n ⩾ 0.

1. Trouver deux réels a et b tels que un+1 + a(n + 1) + b = 2(un + an + b)
2. En déduire une expression de un en fonction de n.
3. Déterminer le rayon R de convergence de

∑
n⩾0

unxn et calculer sa somme.

4. Étudier la convergence de la série pour x = R et x = −R.
5. Retrouver l’expression de la somme de la série entière à partir de la relation initiale définissant (un).

Exercice 87 (CCINP PSI 2024) [Solution]
Soit (an)n∈N telle que a0 = −4, a1 = 2, a2 = 4 et an+3 = an+2 + an+1 − an pour n ∈ N.

1. Montrer que |an| ⩽ 2n+2

2. Soit S(x) =
∑
n⩾0

anxn. Montrer que le rayon de convergence de cette série entière est > 0 puis que S(x) =

6x2 + 6x − 4
(x + 1)(x − 1)2 pour |x| < R.

3. Trouver a, b, c tels que S(x) = a

x + 1 + b

x − 1 + c

(x − 1)2

4. Déterminer an en fonction de n.

Exercice 88 (Navale PSI 2022) [Solution]
Soit (an) définie par a0 = a1 = 1 et an+1 = an + 2

n + 1an−1 pour n ⩾ 1.

1. Montrer que 1 ⩽ an ⩽ n2.
2. Quel est le rayon de convergence de

∑
n⩾0

anxn ? On note f(x) la somme.

3. Trouver une équation différentielle vérifiée par f et en déduire f(x).

Exercice 89 (CCINP PSI 2024) [Solution]
Soit (an)n∈N définie par a0 = a1 = 1 et ∀n ∈ N, an+2 = an+1 + an

n + 2
1. Montrer que an > 0 pour tout n ∈ N

2. Étudier la monotonie de (an) et en déduire que
∑

(an+2 − an+1) diverge

3. On pose S(x) =
∑
n⩾0

anxn. Déterminer le rayon de convergence de cette série entière.

4. Montrer que S est solution de (x − 1)y′ + (x + 1)y = 0
5. Déterminer la valeur de S(x) puis de an

Exercice 90 (CCP PC 2015) [Solution]

Soit d0 = 1, d1 = 1
2 et dn = det(ai,j)1⩽i,j⩽n avec ai,j =


1 − (n − i + 2)−1 si i = j

ai,i+1 = a−1
i+1,i = (n − i + 2)−1/2 si 1 ⩽ i ⩽ n − 1

0 sinon
.

1. Calculer d2 et montrer que (n + 1)dn = ndn−1 + dn−2 pour n ⩾ 2.

2. Montrer que |dn| ⩽ 1 ; qu’en déduire sur le rayon de convergence de S(x) =
∑
n⩾0

dnxn+1 ?

3. Trouver une équation différentielle vérifiée par S. En déduire S(x) = 1 − e−x

1 − x
puis dn.



Exercice 91 (CCINP PSI 2024) [Solution]
On définit la suite (an) par a0 = a1 = 1 et an+2 = an+1 + (n + 1)an.

1. Montrer que an

n! ⩽ 1

2. Déterminer une équation différentielle vérifiée par f(x) =
+∞∑
n=0

an

n! xn.

3. Résoudre cette équation en en déduire la valeur de a2p et a2p+1

Exercice 92 (CCINP PSI 2023) [Solution]
Soit (an)n∈N la suite définie par a0 = 0 et, pour n ∈ N, an+1 = 1 + an

n + 1
1. Prouver que 0 ⩽ an ⩽ 1. Que peut-on en déduire pour le rayon de convergence R de la série entière

∑
n⩾0

anxn ?

2. Trouver une équation différentielle vérifiée par la somme S de cette série entière sur ] − r, r[, où r = min(1, R)

3. Donner les solutions de cette équation différentielle en fonction de φ : x 7→
∫ x

0

e−t

1 − t
dt.

Exercice 93 (CCINP PSI 2022) [Solution]

Soit (an)n∈N définie par a0 = 3 et an+1 =
n∑

k=0

Ç
n

k

å
akan−k pour n ⩾ 0.

1. Montrer que 0 ⩽
an

n! ⩽ 4n+1 pour tout n ∈ N.

2. Que peut-on en déduire pour le rayon de convergence de
∑
n⩾0

an

n! xn ?

3. Montrer que la somme f de la série entière précédente vérifie f ′(x) = f(x)2.
4. En déduire la valeur de an.

indication : déterminer f en se plaçant sur un intervalle ] − h, h[ où f ne s’annule pas.

Exercice 94 (ENS PSI 2018) [Solution]

Soit (an) définie par a0 = 1 et an+1 = 1
n + 1

n∑
k=0

ak

n − k + 2. On pose f(x) =
∑
n⩾0

anxn.

1. Montrer que le rayon de convergence de f est ⩾ 1.
2. Trouver (bn) telle que, pour |x| < 1, f ′(x) = f(x)

∑
n⩾0

bnxn puis trouver f .

Exercice 95 (Mines-Ponts PC 2014) [Solution]
On note an = Card{(p, q) ∈ N2, 3p + 2q = n}.

1. Déterminer le domaine de définition de f(x) =
∑
n⩾0

anxn.

2. Déterminer f puis an.
indication : partir des DSE de (1 − x2)−1 et (1 − x3)−1.

Exercice 96 (Mines-Ponts PSI 2016) [Solution]
1. Si R est le rayon de convergence de

∑
bnxn, quel est le mode de convergence de la série sur ] − R, R[ ?

2. On note pn le nombre partitions de [[ 1, n ]] (nombre de façons d’obtenir [[ 1, n ]] comme réunion d’ensembles non vides

2 à 2 disjoints). Montrer que pn+1 =
n∑

k=0

Ç
n

k

å
pk, avec p0 = 1.

indication : compter les partitions de [[ 1, n + 1 ]] en fonction du nombre d’éléments présent dans l’ensemble qui
contient n + 1.

3. Déterminer f(x) =
∑
n⩾0

pn

n! xn.

Exercice 97 (Mines-Ponts PSI 2016) [Solution]
On note dn le nombre de permutations sans point fixe de [[ 1, n ]] .

1. Montrer que n! =
n∑

k=0

Ç
n

k

å
dk avec d0 = 1.

indication : dénombrer les permutations de [[ 1, n ]] en fonction de leur nombre de points fixes.



2. Déterminer f(x) =
∑
n⩾0

dn

n! xn en considérant exf(x) puis déterminer dn.

indication : dn s’exprime à l’aide d’un produit de Cauchy.

Exercice 98 (Mines-Ponts PSI 2022) [Solution]
Soit E un ensemble et I(E) = {g : E → E, g ◦ g = idE}

1. On pose t0 = 1 et tn = Card(I([[ 1, n ]] )). Calculer t1, t2 et t3

2. Montrer que le rayon de convergence de f(x) =
+∞∑
n=0

tn

n!x
n est ⩾ 1.

3. Montrer que tn+2 = tn+1 + (n + 1)tn

indication : distinguer si g(n + 2) = n + 2 où g(n + 2) ∈ [[ 1, n + 1 ]]
4. Déterminer f(x)

X Exercices théoriques
Exercice 99 (Centrale PSI 2015) [Solution]
Soit (an) une suite réelle telle que (nan) tende vers 0 et f(x) =

∑
n⩾0

anxn.

1. Montrer que R ⩾ 1 et f(x) =
x→1

o(ln(1 − x)).
indication : pour ε > 0, couper la somme en N de sorte que |an| ⩽ ε/n si n ⩾ N .

2. Réciproquement, si f(x) =
x→1

o(ln(1 − x)), a-t-on (nan) tend vers 0 ?

indication : non ; avec an = 1
n

s’il existe p tel que n = 2p et 0 sinon par exemple.

Exercice 100 (Centrale PSI 2023) [Solution]
Soit (an)n∈N une suite complexe telle que la série entière

∑
anzn soit de rayon infini. On note f sa somme.

1. Soit r > 0 et p ∈ N. Montrer que
∫ 2π

0
f(reit)e−ipt dt = 2πaprp.

2. On suppose f bornée sur C.

a) Montrer qu’il existe M ⩾ 0 tel que ∀p ∈ N, |ap| ⩽ M

rp
.

b) Montrer que ap = 0 pour tout p ∈ N∗. En déduire que f est constante.
3. On suppose maintenant qu’il existe q ∈ N∗ et (α, β) ∈ (R∗+)2 tels que ∀z ∈ C, |f(z)| ⩽ α|z|q + β. Montrer que f

est une fonction polynôme.

Exercice 101 (Mines-Ponts PSI 2015) [Solution]

Soit f(x) =
∑
n⩾0

anxn une série entière de rayon 1 telle que S =
+∞∑
n=0

an converge.

1. Montrer que pour x ∈] − 1, 1[, f(x) = S −
+∞∑
n=0

Rn

(
xn − xn+1), où Rn =

+∞∑
k=n+1

ak.

2. En déduire que lim
x→1−

f(x) = S et conclure que f est continue sur [0, 1].
indication : couper la somme avec les restes à un rang n0 à partir duquel |Rn| < ε, avant de faire tendre x vers 1.

Exercice 102 (Série de Taylor divergente) [Solution]

Montrer que f(x) =
+∞∑
n=0

exp
(
in2x

)
2n

définit une fonction de classe C∞ sur R dont la série de Taylor possède un rayon de

convergence nul.

Exercice 103 (CCINP PSI 2021) [Solution]

Soit F (x) =
∫ +∞

0
cos(xt2)e−t dt.

1. Montrer que F est définie sur R.
2. Montrer que F est C∞ sur R.
3. Calculer F (n)(0). F est-elle DSE ?

indication : vérifier que le RCV de la série de Taylor est nul.



Solutions

Exercice 1 [sujet] 1. (nrn2
) est bornée si et seulement si r ∈ [0, 1[ donc R = 1.

2. a2n = exp(2n + O(1)) donc (a2nr2n) est bornée si et seulement si r ∈ [0, e−n] ; a2n+1 = exp(−2n + O(1)) donc
(a2n+1r2n+1) est bornée si et seulement si r ∈ [0, e]. La suite (anrn) est donc bornée si et seulement si r ∈ [0, e−1]
donc R = e−1.

3. |1 + 2i| =
√

5 et |2i| = 2 <
√

5 donc par somme (et invariance du rayon par intégration terme à terme), R = 1√
5

.

Exercice 2 [sujet] R = 1
2 par d’Alembert

Exercice 3 [sujet] e par D’Alembert

Exercice 4 [sujet] 1. cours !

2. (an) bornée donc R ⩾ 1 et
∑

an DV donc R ⩽ 1

3. |an| ⩽ 1 (par concavité de ln) donc R ⩾ 1 et lim a2n = 1 (DL) donc
∑

an DV et R = 1

Exercice 5 [sujet] 1.
∑ 1

1 + k2 CV

2.
∫ +∞

n

dt

1 + t2 ⩽ an ⩽
∫ +∞

n−1

dt

1 + t2 donc an ∼ π

2 − arctan(n) = arctan
Å 1

n

ã
∼ 1

n

3. R = 1 par équivalent,
∑

an DV et
∑

an(−1)n CV par CSSA ((an) est bien décroissante et tend vers 0) donc
D = [−1, 1[

Exercice 6 [sujet] Si l ∈ R+∗, on a pour tout ε > 0 et n ⩾ n0, (l − ε)n ⩽ |an| ⩽ (1 + ε)n donc 1
l + ε

⩽ R ⩽
1

l − ε
, ceci

pour tout ε > 0 donc R = 1
l
.

Si l = 0, on trouve de même R ⩾
1
ε

donc R = +∞ et si l = +∞, on a R ⩽
1
l

pour tout l > 0 donc R = 0.

Exercice 7 [sujet] On a tn ⩽
Å1 + t2

2

ãn

⩽ 1 si t ∈ [0, 1] donc 1
n + 1 ⩽ an ⩽ 1 donc R = 1. La série CV si x ∈ [−1, 1[ :

si x = −1, la série vérifie le CSSA car (an) tend vers 0 par TCD avec
∣∣∣∣∣
Å1 + t2

2

ãn
∣∣∣∣∣ ⩽ 1.

Exercice 8 [sujet] 1. an = 1
n

∫ +∞

1

u1/n

u ch u
∼ 1

n

∫ +∞

1

du

u ch u
par TCD avec

∣∣∣∣∣ u1/n

u ch u

∣∣∣∣∣ ⩽ 1
ch u

=
u→+∞

o

Å 1
u2

ã
2. an ∼ I

n
avec I > 0 donc R = 1 et

∑
an DV (SATP) ; par CSSA,

∑
(−1)nan CV

3. 1
ch(tn) = 2e−tn

1 − e−2tn = 2
+∞∑
k=0

e−(2k+1)tn

donc (TITT) an = 2
+∞∑
n=0

e−(2k+1)tn

dt car
∫ +∞

1

∣∣∣e−(2k+1)tn
∣∣∣ dt ⩽

∫ +∞

1
e−(2k+1)t dt =

1
2k + 1e−(2k+1)

Exercice 9 [sujet] (Sn) est le produit de Cauchy de (an) et (1) donc RS ⩾ Ra ; de même, ((n + 1)Tn) est le produit de
Cauchy de (Sn) et (1), puis par invariance par dérivation, RT ⩾ 1.
an = Sn − Sn−1 donc par comme Ra ⩾ RS et Sn = (n + 1)Tn − nTn−1 donc RS ⩾ RT .

Exercice 10 [sujet] Si bn = P (n) alors an = O(|bn|) donc Rb ⩽ Ra et si 0 ⩽ ρ < Ra, il existe r tel que ρ < r < Ra,
(anrn) est donc bornée puis bnρn = (anrn) × P (n)

(ρ

r

)n

tend vers 0 donc est bornée ; on en déduit ρ ⩽ Rb puis Ra = Rb

(ce qui est aussi valable si Ra = +∞.

Exercice 11 [sujet] R = 1 par d’Alembert et, pour |x| < 1, S(x) =
∑
n⩾1

Å
3 − 6

n + 2

ã
xn = 3 x

1 − x
− 6

x2
(
− ln(1 − x) − x − x2).

Exercice 12 [sujet] R = 1 puis D =] − 1, 1[ (DVG en ±1) S(x) =
∑
n⩾0

Å
n + 2 − 5

n + 2

ã
xn = x

(1 − x)2 + 2
1 − x

+

5
x2 (ln(1 − x) + x)



Exercice 13 [sujet] On a 1
n

⩽ n(−1)n

⩽ n donc R = 1 ; si |x| < 1,
2N∑

n=0
n(−1)n

xn =
N∑

n=0
2nx2n +

N∑
n=0

1
2n + 1x2n+1 =

2
N∑

n=0
n(x2)n +

2N∑
n=1

xn

n
−

N∑
n=1

x2n

2n
−−−−−→
N→+∞

2x2
+∞∑
n=0

n(x2)n−1 +
+∞∑
n=1

xn

x
− 1

2

+∞∑
n=1

(x2)n

n
= 2x2

1 − x2 − ln(1 − x) + 1
2 ln(1 − x2)

Exercice 14 [sujet] 1. si ak = sin(kθ) tend vers 0 alors lim
k→+∞

cos2(kθ) = 1 puis ak+1 = ak cos θ + sin θ cos(kθ) ne
tendrait pas vers 0 car sin θ ̸= 0

2. (an) est bornée donc R ⩾ 1 et
∑

an DV donc R ⩽ 1

3. si |x| < 1 alors
∣∣∣xeiθ

∣∣∣ < 1 donc f(x) = Im
(+∞∑

k=0

(
xeiθ

)k

)
= Im 1

1 − xeiθ
= x sin θ

1 − 2x cos θ + x2

Exercice 15 [sujet] 1. Si fn(t) = xn sinn t alors ∥fn∥∞,[0,π/2] = |x|n donc CN si |x| < 1 et on a R ⩾ 1 et pour |x| < 1,

S1(x) =
∫ π/2

0

∑
n⩾0

(x sin(t))n dt =
∫ π/2

0

dt

1 − x sin(t)
u=tan(t/2)=

∫ +∞

0

2 du

1 − 2xu + u2 = 2√
1 − x2

∫ +∞

0

du

1 +
Ä

u−x√
1−x2

ä2 =

2√
1 − x2

Å
π

2 − arctan x√
1 − x2

ã
donc on a bien R = 1 car S1 n’est pas bornée en 1.

2. On a R = 1 (car
Å

cos 2nπ

3 ρn

ã
est bornée si et seulement si |ρ| ⩽ 1) et pour |x| < 1, S′

2(x) = Re

Ñ∑
n⩾1

e2inπ/3xn−1

é
=

Re
Ç

e2iπ/3

1 − xe2iπ/3

å
= −1/2 − x

1 + x + x2 ; on en déduit S2(x) = −1
2 ln(1 + x + x2) car S2(0) = 0

3. R = +∞ puis S3(x) = 1
3
Ä
ex + j2ejx + jej2x

ä
4. La série CV pour |x| < 1 et DV pour x = 1 donc R = 1

N2−1∑
n=0

=
N−1∑
n=0

Ñ
n2+2n∑
k=n2

xn

é
=

N−1∑
n=0

(2n + 1)xn donc

S4(x) = 2x

+∞∑
n=0

nxn−1 +
+∞∑
n=0

xn = 2x

(1 − x)2 + 1
1 − x

= 1 + x

(1 − x)2 .

Exercice 16 [sujet] 1. f(x) = 1
3(1 + x)+ −x + 2

3(1 − x + x2) puis F (x) = 1
3 ln(1+x)−1

6 ln(x2−x+1)+ 1√
3

arctan
Å2x − 1√

3

ã
+

C

2. R = 1 puis, si |x| < 1, f ′(x) =
∑
n⩾0

(−1)nx3n = f(x) donc S(x) = 1
3 ln(1+x)− 1

6 ln(x2−x+1)+ 1√
3

arctan
Å2x − 1√

3

ã
+

π

6
√

3
car S(0) = 0

3. S est continue en 1 par CSSA et ∥Rn∥∞ ⩽
1

3n + 4

Exercice 17 [sujet] 1. R = 1

2. f ′(x) =
∑
n⩾0

(−1)nx4n = 1
1 + x4 et f(0) = 0 donc f(x) =

∫ x

0

dt

1 + t4

3. On prouve la continuité sur [0, 1] : par CSSA, |Rn(x)| ⩽ 1
4n + 5 donc CVU sur [0, 1] et f(1) =

∫ 1

0

dt

1 + t4 .

Exercice 18 [sujet] La série CN sur [−1, 1] (donc f est continue sur [−1, 1]) et DVG si |x| > 1 donc R = 1. Pour |x| < 1,

f(x) = 1
2

+∞∑
n=1

Å (−1)nx2n+1

2n − 1 − (−1)nx2n+1

2n + 1

ã
= 1

2
(
−x2 arctan(x) − (arctan(x) − x

)
Exercice 19 [sujet] an = 2

n(n + 1) = 2
n

− 2
n + 1 donc R = 1 et pour |x| < 1, f(x) = 2

∑
n⩾1

xn

n
− 2

∑
n⩾1

xn

n + 1 =

−2 ln(1 − x) − 2
x

(− ln(1 − x) − x)



Exercice 20 [sujet] Df = [−1, 1] (donc R = 1) et si |x| < 1, f(x) =
∑
n⩾1

xn

n
+

∑
n⩾1

xn

n + 1 − 4
∑
n⩾1

xn

2n + 1 = − ln(1 −

x) + 1
x

(− ln(1 − x) − x) − 4g(x). Puis si x > 0, g(x) =
∑
n⩾1

(
√

x)2n

2n + 1 = 1√
x

Ñ∑
n⩾1

(
√

x)n

n
−

∑
n⩾1

(
√

x)2n

2n
−

√
x

é
=

1√
x

Å
− ln(1 −

√
x) + 1

2 ln(1 − x) −
√

x

ã
. Pour x < 0, on a g(x) =

∑
n⩾1

(−1)n
√

−x
2n

2n + 1 = 1√
−x

(
arctan

√
−x −

√
−x
)

Exercice 21 [sujet] an + an+2 = 1
n + 1 et (an) décroît donc 1

n + 1 ⩽ 2an ⩽
1

n − 1 et R = 1. Si |x| < 1 alors f(x) =

a0 + a1x + x2
∑
n⩾0

an+2xn = a0 + a1x + x2
∑
n⩾0

Å 1
n + 1 − an

ã
xn = a0 + a1x +

(
−x ln(1 − x) − x2 − x2f(x)

)
puis a0 = π

4

et a1 = −1
2 ln(2).

Exercice 22 [sujet] 1. tn

2 ⩽
tn

1 + t2 ⩽ tn donc 1
2(n + 1) ⩽ un ⩽

1
n + 1 et R = 1.

2. 1
(1 + t2)(1 − tx) = 1

1 + x2

Å
xt + 1
1 + t2 + x2

1 − tx

ã
3. si un(t) = tnxn

1 + t2 avec |x| < 1 alors |un(t)| ⩽ |x|n donc CVN sur [0, 1] et S(x) =
∫ 1

0

1
1 + t2

+∞∑
n=0

(tx)n dt =∫ 1

0

dt

(1 + t2)(1 − tx) dt puis S(x) = 1
1 + x2

Å
x ln 2

2 + π

4 + x ln(1 − x)
ã

. S(−t) =
+∞∑
n=0

(−1)nuntn vérifie le CSSA sur

[0, 1] donc |Rn(t)| ⩽ |un+1| ⩽ 1
n + 2 donc CVU sur [0, 1]. On en déduit S(−1) = lim

x→−1+
S(x) = π − 6 ln 2

4 .

Exercice 23 [sujet] 1. si t ∈ [0, 1], 2 ⩽ 2 + t2 ⩽ 3 donc 1
3(n + 1) ⩽ an ⩽

1
2(n + 1) et R = 1.

2. On pose fn(t) = tnxn

2 + t2 , pour |x| < 1 et on vérifie la CVN sur [0, 1] car ∥fn∥∞ ⩽
|x|n

2 donc f(x) =
∫ 1

0
fn(t) dt =∫ 1

0

dt

(2 + t2)(1 − xt) = x

2(1 + 2x2) ln 3
2 + 1√

2(1 + 2x2)
arctan 1√

2
− x ln(1 − x)

1 + 2x2

Exercice 24 [sujet] R = 4 par d’Alembert. Par IPP successives
∫ 1

0
tn(1 − t)n dt = (n!)2

(2n + 1)! ; pour |x| < 4, on pose

fn(t) = xntn(1 − t)n ; ∥fn∥∞ =
Å |x|

4

ãn

donc CN sur [0, 1] et S(x) =
∫ 1

0

∑
n⩾0

fn(t) dt =
∫ 1

0

dt

(1 − xt)(1 − t) = . . .

Exercice 25 [sujet] 1. Par CSSA, on a |an| ⩽ 1
n

donc R ⩾ 1 et 0 ⩽ (−1)n−1an = 1
n

− (−1)nan+1 donc |an+1| ⩾ 1
n

et R = 1.

2. Si SN (t) =
N∑

k=n

(−1)k−1tk−1 alors avec |SN (t)|le 2
1 + t

, le TCD donne an = (−1)n−1
∫ 1

0

tn−1

1 + t
dt ; on en déduit

∑
an

CV par CSSA et
∑

(−1)nan DV par (−1)n+1an ⩾
1

2n
. Pour |x| < 1, on a f(x) =

∫ 1

0

+∞∑
n=1

(−1)n−1tn−1xn

1 + t
dt par CN

(∥un∥∞ ⩽
|x|n

2 si un(t) = (−1)n−1tn−1xn

1 + t
) donc f(x) =

∫ 1

0

x

(1 + t)(1 + xt) dt = x

1 − x

∫ 1

0

Å 1
1 + t

− x

1 + xt

ã
dt =

x

1 − x
ln 2

1 + x

Exercice 26 [sujet] (sin(n)ρn) est bornée si et seulement si ρ ∈ [0, 1] donc R = 1 et pour |x| < 1, S(x) = Im
(+∞∑

n=0
(xei)n

)
=

Im
Å 1

1 − xei

ã
= x sin(1)

2(1 − x cos(1))

Exercice 27 [sujet] 1. Fn =
Ç

1 +
√

5
2

ån

−
Ç

1 −
√

5
2

ån



2. S(x) = 1
1 −
Ä

1+
√

5
2

ä
x

− 1
1 −
Ä

1−
√

5
2

ä
x

pour |x| <

√
5 − 1
2

3. R =
√

5 − 1
2 par somme (avec R1 ̸= R2)

Exercice 28 [sujet] 1. XA = (X − 2)(X − 1 + i)(X − 1 − i) donc A n’est pas DZ sur R, mais DZ sur C.
2. On a A3 − 4A2 + 6A − 4I3 = 0 (C-Ham) donc An+3 = 4An+2 − 6An+1 + 4An et tn+3 = 4tn+2 − 6tn+1 + 4tn.

3. tn = 22 + (1 + i)n + (1 − i)n ∼ 2n donc R = 1
2 et f(x) = 1

1 − 2x
+ 1

1 − (1 + i)x + 1
1 − (1 − i)x ou bien f(x) =

t0 + t1x + t2x2 +
∑
n⩾0

tn+3xn+3 = t0 + t1x + t2x2 + (4x(f(x) − t0 − t1x) − 6x2(f(x) − t0) + 4x3f(x))

Exercice 29 [sujet] 1. fn : x 7→
n∑

k=1

xk

k
est une bijection strictement croissante de R+ sur R+

2. fn+1(xn) = 1 + xn+1
n

n + 1 > 1 donc (xn) décroît donc CV vers l. Puis fn(3/4) −−−−−→
n→+∞

− ln(1 − 3/4) = ln(4/3) > 1
donc xn ∈ [0, 3/4] pour n grand. Par CN de la série entière sur [0, 3/4], on a 1 = fn(xn) −−−−−→

n→+∞
− ln(1 − l) donc

l = 1 − e−1

Exercice 30 [sujet] On pose S(x) =
∑
n⩾0

(2n2 + 3n + 1)xn+1, donc R = 1 et 2n2 + 3n + 1 = 2n(n − 1) + 5n + 1 donc

S(x) = 2 x3

(1 − x)3 + 5 x2

(1 − x)2 + x

1 − x
puis S(1/2) = 10.

Exercice 31 [sujet] Si |x| < 1, arctan(x) =
∑
n⩾0

(−1)n x2n+1

2n + 1 et la série CU sur [0, 1] : par CSSA |Rn(x)| ⩽ 1
2n + 3 −−−−−→

n→+∞

0 donc on obtient le résultat en faisant tendre x vers 1−.

Exercice 33 [sujet] 1. on pose S(x) =
∑
n⩾0

(−1)nx2n+1

(2n + 1)(2n + 2) , R = 1 puis pour |x| < 1, S(x) =
∑
n⩾0

Å (−1)nx2n+1

2n + 1 − (−1)nx2n+1

2n + 2

ã
=

arctan(x) − 1
2x

ln(1 + x) et le résultat par CVN sur [−1, 1] avec x = 1

2. idem avec T (x) =
∑
n⩾0

x2n+1

(2n + 1)(2n + 2) et, si |x| < 1, T (x) =
∑
n⩾0

Å
x2n+1

2n + 1 − x2n+1

2n + 2

ã
=

∑
n⩾1

x

n
−

∑
n⩾0

x2n+2

2n + 2 −

∑
n⩾0

x2n+1

2n + 2 = − ln(1 − x) + 1
2 ln(1 − x2) + 1

2x
ln(1 − x2) = 1 − x

2x
ln(1 − x) + 1 + x

2x
ln(1 + x) −−−→

x→1
ln(2)

Exercice 32 [sujet] 1. Cours

2. Si x = tan π

8 alors x vérifie 1 = tan π

4 = 2x

1 − x2 donc x = −1 +
√

2 (car x > 0) puis π

8 = arctan(
√

2 − 1) =∑
n⩾0

(−1)n

2n + 1(
√

2 − 1)2n+1 car 0 <
√

2 − 1 < 1

3. par CSSA,
∣∣∣∣∣π8 −

n∑
k=0

(−1)k

2k + 1(
√

2 − 1)2k+1

∣∣∣∣∣ ⩽ (
√

2 − 1)2n+3

2n + 3 ⩽
1

2n + 3

Exercice 34 [sujet] Si x ∈ [0, 1[ alors f(x) = arctan
√

x√
x

et f(x)2 =
∑
n⩾0

bnxn ; reste à faire tendre x vers 1 : on

pose un(x) = bnxn et on a bn =
n∑

k=0

(−1)n

(2k + 1)(2n − 2k + 1) = (−1)n

2(n + 1)

n∑
k=0

Å 1
2k + 1 + 1

2n − 2k + 1

ã
= (−1)n

n + 1

n∑
k=0

1
2k + 1

(poser p = n − k dans la deuxième partie de la somme). On en déduit que
∑

un(x) est alternée pour x ∈ [0, 1].

De plus |bn| ⩽
1

n + 1

(
1 +

n∑
k=1

1
k

)
−−−−−→
n→+∞

0 (par comparaison avec une intégrale) ; reste la décroissance de (|bn|) :

|bn+1| − |bn| = 1
(n + 1)(n + 2)

(
n∑

k=0

1
2k + 1 − n + 1

2n + 3

)
⩽

1
(n + 1)(n + 2)

Å
n + 1
2n + 1 − n + 1

2n + 3

ã
⩽ 0 donc (|un(x)|) est aussi

décroissante si x ∈ [0, 1[. On en déduit |Rn(x)| ⩽ |bn+1| −−−−−→
n→+∞

0 donc la série CVU sur [0, 1] et la somme est continue

en 1. On en déduit
+∞∑
n=0

bn = f(1)2 = π2

16 .



Exercice 35 [sujet] 1. Si |x| < 1 alors
∣∣∣∣ sin(na)

n
xn

∣∣∣∣ ⩽ |x|n donc f(x) existe (R ⩾ 1) et f ′(x) = Im

Ñ∑
n⩾1

einaxn−1

é
=

Im
Å

eia

1 − eiax

ã
= sin(a)

1 − 2x cos(a) + x2 =
1

sin(a)

1 +
Ä

x−cos(a)
sin(a)

ä2 donc f(x) = arctan
Å

x − cos(a)
sin(a)

ã
+ C avec C = π

2 − a car

f(0) = 0.
2. Facile avec sin(na)xn = Sn − Sn−1

3. Même calcul que pour f ′(x) : Sn = Im
(

n∑
k=1

eikaxk

)
donc |Sn| ⩽ 2

|1 − xeia|
⩽ C car x 7→ 1

|1 − xeia|
est conti-

nue donc bornée sur le segment [0, 1]. La série
∑
n⩾1

Å 1
n

− 1
n + 1

ã
Sn(x) CN sur [0, 1] donc est continue en 1. La

question2 étant valable aussi pour x = 1, on a
∑
n⩾1

sin(na)
n

= lim
x→1

f(x) = π − a

2 car arctan
Å1 − cos(a)

sin(a)

ã
=

arctan
Å 2 sin2(a/2)

2 sin(a/2) cos(a/2)

ã
= a

2 .

Exercice 36 [sujet] 1. an+1

an
= n + 1

2n + 3 donc (d’Alembert) R =
√

2

2. Et on en déduit que f ′(x) = a0 +
∑
n⩾0

(2n+3)an+1x2n+2 = a0 +
∑
n⩾0

1
2 [(2n+1)an +an]x2n+2 = 1+ x2

2 f ′(x)+ x

2 f(x) ;

f est donc solution de (2 − x2)y′(x) = xy(x) + 1 avec y(0) = 0.

3. On résout cette équation différentielle et on trouve f(x) = 1√
2 − x2

arcsin
Å

x√
2

ã
.

Exercice 37 [sujet] 1. On a an+1

an
= 2(n + 1)

2n + 3 donc R = 1 et par Stirling an ∼
√

π

2
√

n
donc

∑
an et

∑
an(−1)2n+1

DV (signes fixes)

2. Avec la relation entre an+1 et an, on trouve (1 − x2)S′(x) = a0 +
∑
n⩾1

an−1x2n = 1 + xS(x). On en déduit, avec

S(0) = 0, S(x) = 1√
1 − x2

arcsin(x).

Exercice 38 [sujet] 1. (wn) décroît
2. lim wn = 0 par TCD avec | cosn t| ⩽ 1. La relation se trouve par IPP (cf cours intégrales de Wallis)

3. wn ⩾ wn+1 ⩾ wn+2 = n + 1
n + 2wn donc wn+1 ∼ wn donc R = 1 par d’Alembert. Si |x| < 1, on a S(x) = π

2 + x +

sumn⩾0

Å
1 − 1

n + 2

ã
wnxn+2 = π

2 + x + x2S(x) −
∑
n⩾0

wn

n + 2xn+2 donc S′(x) = 1 + x2S′(x) + 2xS(x) − xS(x). Les

solutions de (1 − x2)y′(x) − xy(x) = 1 sont y(x) = α√
1 − x2

+ arcsin(x)√
1 − x2

et comme f(0) = π

2 , on trouve α = π

2 .

Exercice 39 [sujet] 1. (an) tend vers 0 par TCD avec
∣∣∣∣∣
Å1 + t2

2

ãn
∣∣∣∣∣ ⩽ 1

2. CSSA

3. a) 1 + t2

2 ⩾ t2 donc an ⩾
∫ 1

0
t2n dt = 1

2n + 1 ; on en déduit R ⩽ 1 et comme
∑

anxn CV pour x = −1, on a
R ⩾ 1 donc R = 1.

b) On a an
IPP=
ñ
t

Å1 + t2

2

ãnô1

0
−

∫ 1

0
t × nt

Å1 + t2

2

ãn−1

dt = 1 − n(2an − an−1) donc (2n + 1)an = 1 + nan−1 ; on

en déduit x(2 − x)f ′(x) + (1 − x)f(x) = 1
1 − x

. Les solutions de l’équation homogène sont, sur ]0, 1[ ou ] − 1, 0[,

y0(x) = α√
|x|(2 − x)

donc les solutions sur ces intervalles sont y(x) = α√
|x|(2 − x)

+ f(x) et la seule solution

sur ] − 1, 1[ est f (si α ̸= 0, pas de limite finie en 0.

Si on souhaite déterminer la valeur de f(x), par TITT ou CVN de fn : t 7→
Å1 + t2

2

ãn

xn sur [0, 1] (∥fn∥[0,1]
∞ ⩽



|x|n et |x| < 1), on a f(x) =
∫ 1

0

2 dt

2 − (1 + t2)x qui se calcule en décomposant en éléments simples (se-

lon le signe de x) ; tous calculs faits, on trouve f(x) = 1√
x(2 − x)

ln
Ç√

2 − x +
√

x√
2 − x −

√
x

å
si x > 0 et f(x) =

2√
−x(2 − x)

arctan
…

−x

2 − x
si x < 0.

Exercice 40 [sujet] 1. Cours
2. x2(1 − x)f ′′(x) − x(1 + x)f ′(x) + f(x) = a0 +

∑
n⩾1

(n − 1)2(an − an−1)xn

3. a0 = 0 et (n − 1)2(an − an−1) = 0 si n ⩾ 1 donc an = an−1 si n ⩾ 2.
4. R = 1 (si a1 ̸= 0) et f(x) = a1

∑
n⩾1

xn = a1
x

1 − x
pour |x| < 1.

Exercice 41 [sujet] s

2 − s2 = 1
2
√

2

Ç
1

1 − s√
2

− 1
1 + s√

2

å
= 1

2
√

2

∑
n⩾0

(1 − (−1)n) sn

√
2n = 1√

2

∑
p⩾0

s2p+1

√
22p+1 =

∑
p⩾0

s2p+1

2p+1 ,

pour |s| <
√

2.

Exercice 42 [sujet] f ′
1(x) = i

2

Ç 1
1+i

1 + x
1+i

−
1

1−i

1 + x
1−i

å
= i

2

Ñ
1

1 + i

∑
n⩾0

(−1)n xn

(1 + i)n
− 1

1 − i

∑
n⩾0

(−1)n xn

(1 − i)n

é
pour

|x| ⩽
√

2 puis on intègre terme à terme avec f1(0) = π

4 donc f1(x) = π

4 + i

2

Ñ
1

1 + i

∑
n⩾0

(−1)n xn+1

(n + 1)(1 + i)n
− 1

1 − i

∑
n⩾0

(−1)n xn+1

(n + 1)(1 − i)n

é
f2(x) = (1 + x)(1 − x2)−1/2 = (1 + x)

∑
n⩾0

(2n)!
4n(n!)2 x2n = . . . pour |x| < 1.

Exercice 43 [sujet] 1. g : t 7→ ln |1 − t|
t

est continue sur ] − ∞, 1[\{0} et prolongeable par continuité en 0 donc f est
définie sur ] − ∞, 1[ ; de plus g(t) ∼

t→1−
ln(1 − t) donc g est intégrable sur ]0, 1[ et Df =] − ∞, 1].

2. Comme g est continue (prolongée en 0) sur ] − ∞, 1[, f est C1 et f ′(x) = ln(1 − x)
x

= −
∑
n⩾1

xn−1

n
pour |x| < 1

(R = 1) ; f est elle aussi DSE sur ] − 1, 1[ comme primitive d’une fonction DSE (et R = 1 aussi)

3. g(t) =
∑
n⩾1

fn(t) avec fn(t) = − tn−1

n
sur ]0, 1[ donc par TITT, avec

∫ 1

0
|fn(t)| dt = 1

n2 , on a f(1) = −
∑
n⩾1

1
n2 .

Comme f est continue sur [0, 1[ et f ′(x) = ln(1 − x)
x

−−−→
x→1

−∞, f n’est pas dérivable en 1 (TAF)

Exercice 44 [sujet] t 7→ t

1 + t3 est continue sur R donc f est C1 et f ′(x) = x

1 + x3 ; pour |x| < 1, f ′(x) = x
∑
n⩾0

(−1)nx3n

donc f(x) = f(0) +
∑
n⩾0

(−1)n x3n+2

3n + 2 (R = 1)

Exercice 45 [sujet] 1. t 7→ 1 − t

1 + t2 ∈ C0(R) donc F ′(x) = 1 − x

1 + x2

2. F (x) = arctan(x) − 1
2 ln(1 + x2)

3. si |x| < 1, F ′(x) = (1 − x)
+∞∑
n=0

(−1)nx2n donc F (x) =
+∞∑
n=0

(−1)n

2n + 1x2n+1 −
+∞∑
n=0

(−1)n

2n + 2x2n+2

4. On vérifie la CVN de la série
∑
n⩾0

(−1)2
ï

x2n+1

2n + 1 − x2n+2

2n + 2

ò
sur [0, 1] (étude de fct par ex) donc S = f(1)

Exercice 46 [sujet] f(x) = ln(2 − x) + ln(3 − x) = − ln(2)
∑
n⩾1

x2

n2n
− ln(3)

∑
n⩾1

xn

n3n
pour |x| < 2.

Exercice 47 [sujet] Si |x| <
1
2 , on a f(x) = ln(1 − x) + ln(1 − 2x) = −

∑
n⩾1

xn

n
−

∑
n⩾1

(2x)n

n
.

g est C1 sur R et g′(x) = −2x

1 + x4 donc si |x| < 1, g′(x) = −2x
∑
n⩾0

(−1)nx4n puis g(x) = π

4 − 2
∑
n⩾0

(−1)n x4n+2

4n + 2 (R = 1)



Exercice 48 [sujet] f est C1 sur R et f ′(x) = −j

1 − jx
+ −j2

1 − j2x
donc si |x| < 1, f ′(x) = −j

∑
n⩾0

(jx)n − j2
∑
n⩾0

(
j2x
)n

puis f(x) = −
∑
n⩾0

jn+1 + j2(n+1)

n + 1 xn+1 = −2
+∞∑
p=1

cos
Å2pπ

3

ã
xp

p

Exercice 49 [sujet] f(x) = 1
2

Å 1
1 − xeα

− 1
1 − xe−α

ã
= 1

2

+∞∑
n=0

(
enαxn − e−nαxn

)
=

+∞∑
n=0

sh(nα)xn pour |x| <
1
e

.

Exercice 50 [sujet] 1. f(x) =
∑
n⩾2

xn−2

n! est DSE sur R.

2. f est C∞ sur R et on vérifie que f(x) ne s’annule pas (étudier le numérateur pour vérifier qu’il ne s’annule que en
0)

Exercice 51 [sujet] f(x) =
∑
n⩾1

(−1)n+1 x2n−2

(2n)! pour tout x ∈ R donc f est C∞ sur R et f (2n)(0) = (−1)n

(2n + 2)! (les

impaires sont nulles)

Exercice 52 [sujet] g(x) =
∑
n⩾0

bnxn avec a2n+1 = 0 et a2n = (−1)n

(2n + 1)! . On pose f(x) =
∑
n⩾0

anxn pour |x| < R

(on suppose R > 0) ; on a fg = 1 sur ] − R, R[ si et seulement si
n∑

k=0
akbn−k = δ0,n donc a0 = 1, a2n+1 = 0 (rec)

et a2n = −
n−1∑
k=0

a2kb2n−2k = −
n−1∑
k=0

a2k
(−1)n−k

(2n − 2k + 1)! . On montre alors par récurrence que pour une telle suite on a

∣∣∣a2n

2n

∣∣∣ ⩽ 1 : pour n = 0 OK et si l’HR est vraie pour k ⩽ n − 1 alors
∣∣∣a2n

2n

∣∣∣ ⩽ n−1∑
k=0

∣∣∣a2k

2k

∣∣∣ (1/2)n−k

(2n − 2k + 1)!
HR
⩽

n∑
p=1

(1/2)p

(2p + 1)! ⩽

√
2(sh(1/

√
2) − 1/

√
2) ⩽ 1. On a donc bien f DSE et R ⩾

1√
2

. Par contre R ⩽ π car f n’est pas bornée en π.

Exercice 53 [sujet] 1. Si |u| < 1, (1+u)−1/2 =
∑
n⩾0

(−1)n (2n)!
(2nn!)2 un donc, si |x| < 1, x√

1 − x2
=

∑
n⩾0

4−n

Ç
2n

n

å
x2n+1 ;

en dérivant, on trouve 1
(1 − x2)3/2 =

∑
n⩾0

4−n

Ç
2n

n

å
(2n + 1)x2n.

2. Il suffit de retrouver le DSE de 1
(1 − x2)3/2 = 1

1 − x2 × (1 − x2)−1/2 par produit de Cauchy et d’identifier les

coefficients de ces 2 DSE

Exercice 54 [sujet] 1. x 7→ 1√
1 − x

est DSE sur ]0, 1[, de même x 7→ 1√
1 − x2

donc, par primitive, arcsin est DSE

sur ]0, 1[ puis x 7→ arcsin(
√

x)√
x

aussi (car le DSE de arcsin est impair) et par produit de Cauchy, f est DSE sur

]0, 1[. De plus f est solution de 2x(1 − x)y′(x) − (2x − 1)y(x) = 1 avec y(0) = lim
0

f = 1. La seule solution DSE de

cette eq diff est y(x) =
∑
n⩾0

4n(n!)2

(2n + 1)!x
n et R = 1

2.
∑

(−1)nan vérifie le CSSA car an+1

an
= 2n

2n + 1 ⩽ 1 et, avec Stirling, an ∼ 1
2
√

πn
donc lim an = 0. Par contre∑

an DV avec l’équivalent précédent.

Exercice 55 [sujet] 1. f est C1 sur ] − 1, 1[ et f ′(x) = 1
1 − x2 + x arcsin(x)

(1 − x2)3/2 donc (1 − x2)f ′(x) − xf(x) = 1

2. x 7→ (1 − x2)−1/2 est DSE sur ] − 1, 1[ donc arcsin aussi (primitive) donc f aussi (produit de Cauchy)

3. Mieux vaut utiliser l’eq diff : par C-Lip (les fct b

a
et c

a
sont continues sur ] − 1, 1[) f est la seule solution de l’éq diff

telle que y(0) = 0 ; si y(x) =
∑
n⩾0

anx2n+1 (f est impaire donc on peut se limiter à chercher les sol DSE impaires)

on a (1 − x2)y′(x) + xy(x) = a0 +
∑
n⩾1

[(2n + 1)an − 2(n − 1)an−1]x2n donc an = (2nn!)2

(2n + 1)!



Exercice 56 [sujet] 1. arcsin′(x) = (1 − x2)−1/2 est DSE sur ] − 1, 1[ donc arcsin aussi par primitive puis f par
produit

2. facile
3. par C-Lip (les fct x

1 − x2 et 1
1 − x2 sont continues sur ] − 1, 1[) f ′ est la seule solution de l’éq diff telle que

y(0) = 0 ; si y(x) =
∑
n⩾0

anx2n+1 (f ′ est impaire donc on peut se limiter à chercher les sol DSE impaires) on a

(1−x2)y′(x)+xy(x) = a0 +
∑
n⩾1

[(2n+1)an −2(n−1)an−1]x2n donc an = (2nn!)2

(2n + 1)! puis f(x) =
+∞∑
n=0

(2nn!)2

(2n + 2)!x
2n+2

Exercice 57 [sujet] f est C2 sur ] − 1, 1[ et vérifie 9(1 − x2)f ′′(x) − 9xf ′(x) + f(x) = 0 avec f(0) = 0 et f ′(0) = 1
3

(f est la seule solution de ce problème de Cauchy sur ] − 1, 1[). On cherche une solution DSE impaire sous la forme
y(x) =

∑
n⩾0

anx2n+1 et on suppose R > 0. On a 9(1 − x2)y′′(x) − 9xy′(x) + y(x) =
∑
n⩾0

[9(2n + 1)(2n + 2)an−1 − 4(3n +

1)(3n + 2)an]x2n+1 donc y est solution sur ] − R, R[ si et seulement si an = 4(3n + 1)(3n + 2)
9(2n + 1)(2n + 2)an−1 = 4n(3n + 2)!

33n(2n + 2)!n!a0 ;

on vérifie R = 1 par d’Alembert donc f(x) = 1
3

∑
n⩾0

4n(3n + 2)!
33n(2n + 2)!n!x

2n+1 pour |x| < 1.

Exercice 58 [sujet] 1. 0 ⩽
Hn

n! ⩽
1

(n − 1)! donc R = +∞

2. f ′(x) − f(x) =
+∞∑
n=0

xn

(n + 1)! = ex − 1
x

3. On résout l’éq diff et on trouve (avec f(0) = 0) f(x) = ex

∫ x

0

1 − e−t

t
dt (l’intégrale ne pose pas de pb car la fct est

prolongeable par continuité en 0)

4. 1 − e−t

t
=

+∞∑
n=0

(−1)n

(n + 1)! t
n donc f(x) = ex

+∞∑
n=0

(−1)n

(n + 1)!
xn+1

n + 1 pour tout x ∈ R puis prendre x = 1.

Exercice 59 [sujet] 1. f est Cn sur R par récurrence.
2. Si f(x) =

∑
n⩾0

anxn alors f est solution si et seulement si (n + 1)an+1 = (α + λn)an pour tout n ∈ N. et on a alors∣∣∣∣an+1xn+1

anxn

∣∣∣∣ = |α + λn|
n + 1 |x| −−−−−→

n→+∞
0 donc R = +∞ et toute série entière de cette forme est solution.

3. f est continue donc bornée sur [−|x|, |x|] (|f | ⩽ C sur cet intervalle) puis f (p+1)(t) = αf (p)(t)+λpf (p)(λt) et |λ| ⩽ 1

donnent par récurrence |f (p)| ⩽ C(1 + |α|)p. On a alors
∣∣∣∣∫ x

0

(x − t)n

n! f (n+1)(t) dt

∣∣∣∣ ⩽ |x|n+1

n! C(1 + |α|)n+1 −−−−−→
n→+∞

0
donc f est DSE sur R.

Exercice 60 [sujet] 1. Pour γ = 1, f(x) = αex. Pour γ = −1 on a f ′(x) = f(−x) donc f ′ est C1 et on a f ′(0) =
f(−0) = α et f ′′(x) = −f ′(−x) = −f(x) donc f(x) = α(cos(x) + sin(x))

2. R = +∞ par d’Alembert par ex, vérification de f ′(x) = f(γx) facile
3. si f ′(x) = f(γx) alors par récurrence, f est C∞ et f (n)(x) = γn(n−1)/2f(γnx). Sur [−A, A], on a |f (n)(x)| ⩽

∥f∥∞,[−A,A] donc
∣∣∣∣∫ x

0

(x − t)n

n! f (n+1)(t) dt

∣∣∣∣ ⩽ |x|n+1

(n + 1)!∥f∥∞,[−A,A] −−−−−→
n→+∞

0 donc f est DSE sur [−A, A] pour tout

A donc sur R. En posant f(x) = α

+∞∑
n=0

an
xn

n! , on trouve que f est alors la fonction de 2) donc Sα est un singleton

composé de la fonction définie en 2)

Exercice 61 [sujet] On cherche y(x) =
∑
n⩾0

anxn avec R > 0 : x2y′′(x)+6xy′(x)+(6−x2)y(x) = 6a0 +12a1x+
∑
n⩾2

[(n+

2)(n + 3)an − an−2]xn donc y est solution sur ] − R, R[ si et seulement si a0 = −1
6 , a1 = 0 et an = an−2

(n + 2)(n + 3) ; on en

déduit a2p+1 = 0 et a2p = −1
(2p + 3)! donc R = +∞ et y(x) =

∑
p⩾0

−1
(2p + 3)!x

2p = x − sh(x)
x3 .

Exercice 62 [sujet] 1. Par CSSA sur I, on a |Rn(x)| ⩽ 1
n + 1 donc CVU sur I qui permet d’étendre l’égalité en 1

par continuité.



2. o (xn) donc ACV si x ∈ [0, 1[ et ∼ 1
4n2 si x = 1 (donc ACV aussi)

3. Si x ∈ [0, 1[, S′(x) =
∑
n⩾0

Å
x2n − 1

2xn

ã
= 1

1 − x2 − 1
2(1 − x) = 1

2(1 + x) donc S(x) = 1
2 ln(1 + x). Puis S(1) =

lim
n→+∞

n∑
k=0

Å 1
2k + 1 − 1

2k + 2

ã
= lim

n→+∞

2n∑
k=1

(−1)k+1

k + 1 = ln(2)

4. S n’est pas continue en 1 donc pas de CVU sur [0, 1].

Exercice 63 [sujet] 1. t 7→ ln(1 − t)
t

est CM0 sur ] − ∞, 1[ (prolongeable par continuité en 0) et intégrable sur [0, 1[
donc D =] − ∞, 1] et F est même C1 sur D

2. si |t| < 1, ln(1 − t)
t

=
+∞∑
n=1

tn−1

n
et on intègre terme à terme sur le segment [0, x] ⊂] − 1, 1[.

3. On a F (x) = ln(1 − x)
x

; vérifier que x 7→ F (x) + F (1 − x) et x 7→ ln(x) ln(1 − x) ont les mêmes dérivées. On a

donc F (x) + F (1 − x) = ln(x) ln(1 − x) + C ; par continuité de F (et S par CVN) en 1, on a C = F (1) = −π2

6 car
ln(x) ln(1 − x) ∼

0
−x ln(x) −−−→

x→0
0

Exercice 64 [sujet] 1. si |x| < 1, xn2
= o(xn) et si |x| ⩾ 1, DVG

2. c’est une série entière (lacunaire) donc f est C∞ sur ] − 1, 1[

3. t 7→ exp t2 ln(x) décroît sur R+ si x ∈ [0, 1[ ; on trouve
∫ +∞

1
exp(t2 ln(x)) dt ⩽ f(x) ⩽

∫ +∞

0
exp(t2 ln(x)) dt donc

(poser u = t
√

− ln x) puis f(x) ∼
1−

√
−π ln x

2
Exercice 65 [sujet] 1. Df =] − 1, 1[ car R = 1 et la série DVG en ±1

2. (1 − x)f(x) + ln(1 − x) =
∑
n⩾1

ï
− ln
Å

1 − 1
n

ã
− 1

n

ò
xn qui CVN sur [0, 1] car − ln

Å
1 − 1

n

ã
− 1

n
= O

Å 1
n2

ã
donc

(1 − x)f(x) + ln(1 − x) =
x=1

C + o(1), ce qui donne l’équivalent.

Exercice 66 [sujet] 1. Rf = Rg = 1 car 1 ⩽ ln(n) ⩽ n et ln
Å

1 − 1
n

ã
∼ −1

n
par ex

2. si x ∈] − 1, 0],
∑

ln
Å

1 − 1
n

ã
xn est alternée et vérifie le CSSA donc |Rn(x)| ⩽ − ln

Å
1 − 1

n

ã
(indép de x) donc

CVU sur [−1, 0] et g est continue sur [−1, 0]

3. si |x| < 1, (1−x)f(x) =
+∞∑
n=2

ln(n)xn −
+∞∑
n=2

ln(n)xn+1 k=n+1=
+∞∑
n=2

ln(n)xn −
+∞∑
k=3

ln(k−1)xk =
+∞∑
n=2

[ln(n)−ln(n−1)]xn =

−g(x)

4. f(x) = g(x)
1 − x

−−−−−→
x→−1+

g(−1)
2

5. on prouve g(x) ∼
1

h(x) =
+∞∑
n=2

−1
n

xn = − ln(1 − x) + x

x
: si |x| < 1, g(x) − h(x) =

∑
n⩾2

ï
ln
Å

1 − 1
n

ã
xn + 1

n

ò
xn qui

CVN sur [−1, 1] car
∣∣∣∣ïlnÅ1 − 1

n

ã
xn + 1

n

ò
xn

∣∣∣∣ ⩽ ï− ln
Å

1 − 1
n

ã
xn − 1

n

ò
∼ 1

2n2 ; on en déduit lim
x→1

g(x) − h(x) =

ℓ ∈ R et g(x) ∼
1

h(x) ∼
1

ln(1 − x). On en déduit f(x) = g(x)
1 − x

∼
1

− ln(1 − x)
x − 1

Exercice 67 [sujet] 1. On prouve Hn ∼ ln(n) (par la question 2 par exemple) donc anHn ∼ an ln n

2. Fait en cours (dualité suite/série)

3. On pose g(x) =
∑
n⩾1

Hnxn et on a R = 1 ; (Hn) est le produit de Cauchy des suites
Å 1

n

ã
et (1) donc g(x) =

− ln(1 − x)
1 − x

. On vérifie, avec f(x) =
∑
n⩾1

ln nxn que R = 1 puis f(x) − g(x) =
∑
n⩾1

(ln(n) − Hn)xn. La suite

(ln(n) − Hn) est bornée donc |g(x) − f(x)| ⩽ C
∑
n⩾1

xn = Cx

1 − x
; on a donc f(x) =

x→1
g(x) + O

Å 1
1 − x

ã
et comme

1
1 − x

=
x→1

o(g(x)), on a f(x) ∼
x→1

g(x) ∼
x→1

− ln(1 − x)
1 − x

.



Exercice 68 [sujet] 1. lim
0

fn = 0 et In ⩾ 0

2. In+1 − In =
∫ 1

0
e− 1

t tn(t − 1) dt ⩽ 0 donc (In) décroît, minorée par 0 donc CV puis 0 ⩽ In ⩽ e−1
∫ 1

0
tn dt = e−1

n + 1
donc lim In = 0

3. facile puis lim In−1 = 0 donc (n + 1)In → e−1

4. R = 1 (par equiv),
∑

In DV (par equiv SATP) et
∑

(−1)nIn CV par CSSA donc Dg =] − 1, 1]

5. g(x) =
∫ 1

0

e− 1
t

1 − xt
dt par TITT avec

∫ 1

0
|xt|ne− 1

t dt ⩽ e−1|x|n par ex

6. In − e−1

n
= −In + In−1

n
= O

Å 1
n2

ã
donc g(x)−

+∞∑
n=1

e−1

n
xn = I0 +

+∞∑
n=1

Å
In − e−1

n

ã
xn −−−→

x→1
I0 +

+∞∑
n=1

Å
In − e−1

n

ã
= ℓ

par CVN sur [0, 1]. On a donc g(x) − e−1x

1 − x
=

x→1
ℓ + o(1) donc g(x) ∼

x→1

e−1

1 − x

Exercice 69 [sujet] 1. Γ(n + 1) = n!

2.
(an

n! ρn
)

et
Å

An

n! ρn

ã
tendent vers 0 pour tout ρ ⩾ 0 car (an) et (An) convergent

3. a) g′(t) − g(t) =
+∞∑
n=0

An+1 − An

n! tn =
+∞∑
n=0

an+1

n! tn = f ′(t)

b) Les deux fonctions ont la même dérivée et sont toutes les deux nulles en 0

4.
∫ +∞

0
f(u) du = A par TITT avec fn(u) = an

n! une−u et
∫ +∞

0
|fn(u)| du = |an| puis

∑
|an| CV par hypothèse.

Exercice 70 [sujet] 1. th(t)
t2 ∼

t→+∞

1
t2 donc an existe (si n ⩾ 1) puis si t ⩾ n, th(n)

t2 ⩽
th(t)

t2 ⩽
1
t2 donc th(n)

n
⩽

an ⩽
1
n

. On en déduit an ∼ 1
n

donc R = 1 puis
∑

an DV et
∑

(−1)nan CV par CSSA (lim an = 0 car c’est le
reste d’une intégrale convergente) donc DS = [−1, 1[.

2. Si x ∈ [−1, 0], le CSSA est vérifié donc |Rn(x)| ⩽ an+1 −−−−−→
n→+∞

0 donc CVU sur [−1, 0] et S est continue en −1.

3. an ∼ 1
n

=
∫ +∞

n

dt

t2 puis S(x) −
∑
n⩾1

xn

n
=

∑
n⩾1

∫ +∞

n

th(t) − 1
t2 dtxn. On a ensuite 1 − th(t) = 2e−2t

1 + e−2t
⩽ 2e−2t donc∣∣∣∣an − 1

n

∣∣∣∣ ⩽ ∫ +∞

n

2e−2t

t2 dt ⩽ 2e−2n

∫ +∞

n

dt

t2 = 2e−2n

n
. On en déduit la CVN sur [0, 1] de

∑
n⩾1

Å
an − 1

n

ã
xn donc

lim
x→1

∑
n⩾1

Å
an − 1

n

ã
xn = ℓ est finie. On a S(x) =

x→1

∑
n⩾1

xn

n
+ℓ+o(1) = − ln(1−x)+ℓ+o(1) donc S(x) ∼

x→1
− ln(1−x).

Exercice 71 [sujet] 1. xy′(x) + αy(x) − xy(x)2 = αa0 +
+∞∑
n=1

[
(n + α)an −

n−1∑
k=0

akan−1−k

]
xn donc y est solution ssi

a0 = 1 et an = 1
n + α

n−1∑
k=0

akan−1−k puis on vérifie par récurrence 0 ⩽ an ⩽ 1 donc R ⩾ 1

2. on a 0 ⩽ an ⩽ 1 donc, pour 0 ⩽ x < 1, 0 ⩽ φ(x) ⩽
+∞∑
n=1

xn = 1
1 − x

3. a) avec T-Y, comme f(1) = 1, on a f(t) =
1

f ′(1)(t − 1) + o(t − 1) donc φ × f est bornée au voisinage de 1

b) On a I ⩾ 0 et I =
∫ 1

0
tαf(t)2 + 2

∫ 1

0
tαφ(t)f ′(t)f(t) dt +

∫
0

p1tαf ′(t)2 dt. On a tαφ(t)f(t)2 =
1

O(1 − t)

donc 2
∫ 1

0
tαφ(t)f ′(t)f(t) dt

IPP= −
∫ 1

0
tα−1 [tφ′(t) + αφ(t)] dt

(E)= −
∫ 1

0
tα−1 [α + tφ(t)2] f(t)2 dt donc on a

I =
∫ 1

0
tαf(t)2 dt − α

∫ 1

0
tα−1f ′(t)2 dt.

Exercice 72 [sujet] 1. |f(x)| ⩽
∣∣∣∣∣
n0−1∑
k=0

akxk

∣∣∣∣∣ + ε

+∞∑
k=n0

bkxk ⩽ |P (x)| + εg(x) avec P (x) =
n0−1∑
k=0

akxk. Comme g(x) ⩾

bn0xn0 et bn0 > 0, on a lim
x→+∞

P (x)
g(x) = 0 donc il existe A tel que, pour x ⩾ A, on a |P (x)| ⩽ εg(x). On en déduit,

pour x ⩾ A, |f(x)| ⩽ 2εg(x).



2. an − bn = o(bn) donc f(x) − g(x) = o(g(x)) avec la première question

3.
Å

1 + 1
n

ãn2

= exp
ï
n2 ln

Å
1 + 1

n

ãò
= exp

ï
n − 1

2 + o(1)
ò

∼ en

√
e

donc an ∼ 1√
e

en

n! . On en déduit que R = +∞ et,

avec la question précédente, f(x) ∼
x→+∞

1√
e

∑
n⩾0

(ex)n

n! = 1√
e

eex.

Exercice 73 [sujet] ln(th(x)) = ln(1 − e−2x) − ln(1 + e−2x) = −
∑
n⩾0

2
2n + 1e−2(2n+1)x pour x > 0 et on applique le

TITT avec fn(x) = 2
2n + 1e−2(2n+1)x et

∫ +∞

0
|fn(x)| dx = 1

(2n + 1)2 .

Exercice 74 [sujet] 1. Ik = Γ(k + 1) = k!
2. DSE de cos(u) avec u =

√
x

3. On applique le TITT avec fn(x) = (−1)ne−x xk

(2k)! et
∫ +∞

0
|fn(x)| dx = k!

(2k)! qui est le terme général d’une série

CV (par d’Alembert) ; on trouve
∫ +∞

0
e−x cos(

√
x) dx =

∑
k⩾0

(−1)k k!
(2k)! .

Exercice 75 [sujet] 1. f(x) ∼
0

1√
x

et f(x) ∼
+∞

1
x3/2

2. poser u = 1
x

3. pour |u| < 1, 1√
1 + u2

=
∑
n⩾0

(−1)n (2n)!
(2nn!)2 u2n donc (TITT)

∫ 1

0
f(x) dx =

∑
n⩾0

(−1)n (2n)!
(2nn!)2

1
2n + 1/2 car (2n)!

(2nn!)2
1

2n + 1/2 ∼

1
2
√

πn3/2 par Stirling.

Exercice 76 [sujet] 1. Ik,n existe si n ⩾ 1 et dans ce cas Ik,n
IPP= k!

nk+1

2. R = e par d’Alembert

3. tx

et − tx
=

+∞∑
n=1

tne−ntxn si |txe−t| < 1 donc comme max
R+

te−t = 1
e

, si |x| < e. On a alors
∫ +∞

0

tx

et − tx
dt

TITT=

+∞∑
n=1

In,nxn pour |x| < e.

Exercice 77 [sujet] 1. sh(xt)e−t2
=

t→+∞
o

Å 1
t2

ã
2. F (x) TITT=

+∞∑
n=0

x2n+1

(2n + 1)!In avec In =
∫ +∞

0
t2n × te−t2

dt
IPP= n!I0 = n!

√
π

2 (donc DSE pour tout x ∈ R)

Exercice 78 [sujet] 1. In =
∫ π/2

0
sin(t)×sin2n−1(t) dt

IPP= (2n−1)
∫ π/2

0
cos(t)×cos(t) sin2n−2(t) dt = (2n−1)(In−1−

In) donc In = 2n − 1
2n

In−1 puis In = (2n)!
(2nn!)2

π

2

2. si |x| < R et y(x) =
∑
n⩾0

anx2n, x(x2−1)y′′(x)+3x2y′(x)+xy(x) =
∑
n⩾0

[(2n+1)2an−(2n+2)(2n+1)an+1]x2n+1 donc

f est solution sur ]−R, R[ si et seulement si an+1 = 2n + 1
2n + 2an donc R = 1 et si |x| < 1, on a f(x) = a0

∑
n⩾0

(2n)!
(2nn!)2 x2n

3. si |x| < 1,
∑
n⩾0

(2n)!
(2nn!)2 x2n = 2

π

∑
n⩾0

Inx2n = 2
π

∫ π/2

0

∑
n⩾0

sin2n(t)x2n dt = 2
π

g(x) car | sin2n(t)x2n| ⩽ |x|2n donc CVN

sur
[
0,

π

2

]
(variable t).

Exercice 79 [sujet] 1. f(x, t) = tx

1 + t
∼

t→0

1
t−x

donc DF =] − 1, +∞[.

2. Si a > −1,
∣∣∣∣∂nf

∂xn
(x, t)

∣∣∣∣ = | ln t|ntx

1 + t
⩽

| ln t|nta

1 + t
=

t→0
o

Å 1
t

1−a
2

ã
et 1 − a

2 < 1.



3. tx =
+∞∑
n=0

(ln t)nxn

n! puis, si |x| < 1, F (x) TITT=
+∞∑
n=0

In

n! xn avec In =
∫ 1

0

(ln t)n

1 + t
dt par

∫ 1

0

| ln t|n

1 + t
dt ⩽

∫ 1

0
(− ln t)n dt

IPP=

n!. De plus 1
2

∫ 1

0
(− ln t)n dt ⩽ |In| ⩽

∫ 1

0
(− ln t)n dt donne R = 1.

Exercice 80 [sujet] 1. (an) tend vers 0 donc an

n! = o

Å 1
n!

ã
et R = +∞.

2. Par IPP (c’est Γ(n + 1)) = n!.

3. TITT avec
∫ +∞

0

∣∣∣∣an
tn

n!

∣∣∣∣ dt = |an|.

Exercice 81 [sujet] 1. cos(x cos t) =
∑
n⩾0

fn(t) avec fn(t) = (−1)n x2n cos2n t

(2n)! et on applique le TITT avec
∫ π

0
|fn(t)| dt ⩽

π
x2n

(2n)! (série CV) ce qui donne
∫ π

0
cos(x cos t) dt =

∑
n⩾0

(−1)n

Å∫ π

0
cos2n t dt

ã
x2n

(2n)!

2. On trouve 0 (soit en dérivant terme à terme deux fois et en utilisant les relations entre les intégrales de Wallis, soit
avec le théorème de dérivation des intégrales à paramètres et en faisant une IPP sur f ′(x)).

Exercice 82 [sujet] 1. φλ(t) ∼
t→1

2λ−1/2

(1 − t)1/2−λ
et 1

2 − λ < 1.

2. |g(x, t)| ⩽ φλ(t) puis ∂g

∂x
(x, t) = −tφλ(t) sin(xt) donc

∣∣∣∣∂g

∂x
(x, t)

∣∣∣∣ ⩽ tφλ(t) ∼
1

φλ(t) et
∣∣∣∣∂2g

∂x2 (x, t)
∣∣∣∣ ⩽ t2φλ(t) indép de

x et intégrable sur [0, 1[.

I ′′
λ(x) = −

∫ 1

0
t cos(xt) × tφλ(t) dt

IPP= −
∫ 1

0
[cos(xt) − x sin(xt)] (1 − t2)λ+1/2

2λ + 1 dt puis
∫ 1

0
sin(xt)(1 − t2)λ+1/2 dt

IPP=∫ 1

0
x cos(xt) (1 − t2)λ+3/2

2λ + 3 dt

3. pour (x, t) ∈ R × [0, 1[, cos(xt)φλ(t) =
+∞∑
n=0

(−1)n t2nφλ(t)
(2n)! x2n puis TITT, avec x ∈ R fixé, (H4)

∫ 1

0
|fn(t)| dt ⩽

x2n

(2n)!

∫ 1

0
φλ(t) dt

Exercice 83 [sujet] 1. g : t 7→ e−t

1 − x sin2 t
est CM0 sur R+ pour x < 1 et g(t) =

t→+∞
o

Å 1
t2

ã
.

2. Si |x| < 1, g(t) =
∑
n⩾0

un(t) avec un(t) = xn sin2n te−t et on applique le TITT avec
∫ +∞

0
|un(t)| dt ⩽ |x|n

∫ +∞

0
e−t dt =

|x|n (donc série CV) ; on trouve f(x) =
∑
n⩾0

Ç∫ +∞

0
e−t sin2n t dt

å
xn.

Exercice 84 [sujet] 1. La série CVN sur [−R, R]

2. f(t) = 1
t

[ln(1 − t) − ln(1 + t)] = −
∑
n⩾0

t2n

2n + 1 et on intègre terme à terme avec le TITT car
∫ 1

0

∣∣∣∣ t2n

2n + 1

∣∣∣∣ dt =

1
(2n + 1)2 (ce qui prouve aussi l’intégrabilité de f sur ]0, 1[)

3. En posant u = 1
t
, on vérifie que

∫ f

0
(t) dt =

∫ +∞

1
f(t) dt

Exercice 85 [sujet] 1. récurrence

2. On en déduit R ⩾
1
2

3. Si |x| <
1
2 , on a S(x) = 1 + x +

+∞∑
n=0

(un+1 + 2un + (−1)n] xn = 1 + x + x(S(x) − 1) + 2x2S(x) + x2

1 + x
; on en

déduit S(x) = 1
1 − x − 2x2

Å
1 + x2

1 + x

ã
= 1 + x + x2

(1 + x)2(1 − 2x) = 4
9

1
1 − 2x

+ 2
9

1
1 + x

+ 1
3

1
(1 + x)2 = 4

9
∑
n⩾0

2nxn +

2
9

∑
n⩾0

(−1)nxn + 1
3

∑
n⩾0

(−1)n+1(n + 1)xn. Au final, comme an ∼ 4
9 × 2n, on a bien R = 1

2.



Exercice 86 [sujet] 1. un+1 + (n + 1) + 1 = 2(un + n + 1)
2. un = 2n+1 − n − 1

3. R = 1
2 et S(x) = 2

1 − 2x
− x

(1 − x)2 − 1
1 − x

4.
∣∣∣un

2n

∣∣∣ −−−−−→
n→+∞

1
2 donc DVG en ±1

2

5. Pour |x| < R, on a S(x) = u0 + x
∑
n⩾0

un+1xn = 1 + x
∑
n⩾0

(2un + n)xn = 1 + 2xS(x) + x2

(1 − x)2 (qui donne bien le

même résultat !)

Exercice 87 [sujet] 1. récurrence (triple)

2. On en déduit R ⩾
1
2 . S(x) = −4+2x+4x2 +

∑
n⩾0

an+3xn+3 = −4+2x+4x2 +x(S(x)+4−2x)+x2(S(x)+4)−x3S(x)

3. S(x) = −1
1 + x

− 7
1 − x

+ 4
(1 − x)2

4. S(x) = −
∑
n⩾0

(−1)nxn − 7
∑
n⩾0

xn + 4
∑
n⩾0

(n + 1)xn donc an = −7 + 4(n + 1) + (−1)n+1

Exercice 88 [sujet] 1. Par récurrence
2. Avec l’encadrement précédent, on trouve R = 1.

3. Si |x| < 1, f(x) = 1 + x +
∑
n⩾1

Å
an + 2

n + 1an−1

ã
xn+1 = 1 + x + x(f(x) − 1) + 2

∑
n⩾1

an−1

n + 1xn+1 donc f ′(x) =

1 + f(x) − 1 + xf ′(x) + 2xf(x) puis (1 − x)f ′(x) = (1 + 2x)f(x) et f(x) = e−2x

(1 − x)3 car f(0) = 1.

Exercice 89 [sujet] 1. réc

2. an+2−an+1 = an

n + 2 > 0 donc (an) est croissante. On en déduit an ⩾ 1 et an+2−an+1 ⩾
1

n + 2 donc
∑

(an+2−an+1)
DV

3. an+2

an+1
= 1 + an

(n + 2)an+1
donc 1 ⩽

an+2

an+1
⩽ 1 + 1

n + 2 puis lim an+2

an+1
= 1 et R = 1

4. xS′(x) =
∑
n⩾0

nanxn = a1x +
∑
n⩾0

(n + 2)an+2xn+2 = x +
∑
n⩾0

[(n + 2)an+1 + an]xn+2 = x +
∑
n⩾0

(n + 1)an+1xn+2 +∑
n⩾0

an+1xn+2 +
∑
n⩾0

anxn+2 = x + x2S′(x) + x(S(x) − a0) + x2S(x) = x2S′(x) + x(x + 1)S(x) d’où le résultat pour

x ̸= 0 et en x = 0 par continuité en 0

5. x + 1
x − 1 = 1 + 2

x − 1 donc S(x) = e−x

(x − 1)2 car S(0) = a0 = 1

6. e−x =
∑
n⩾0

(−1)n xn

n! et 1
(x − 1)2 =

∑
n⩾0

(n + 1)xn donc, par produit de Cauchy, an =
n∑

k=0
(−1)n−k k + 1

(n − k)!

Exercice 90 [sujet] 1. d2 = 2/3 ; pour la relation de récurrence, il suffit de développer le déterminant successivement
par la première colonne et par la première ligne du second déterminant qui est apparu.

2. |dn| ⩽ 1 par récurrence donc R ⩾ 1.
3. S est C1 sur ] − 1, 1[ et S′(x) = d0 + 2d1x

∑
n⩾2

(ndn−1 + dn−2)xn = 1 + x + x(S′(x) − 1) + xS(x) ; on en déduit la

valeur de S(x) (et R = 1 car S n’est pas bornée en 1). Puis S(x) = x

Ñ∑
n⩾0

xn

é
×

Ñ∑
n⩾0

(−1)n xn

(n + 1)!

é
donc par

produit de Cauchy et unicité des coefficients, on a dn =
n∑

k=0

(−1)k

(k + 1)!

Exercice 91 [sujet] 1. Récurrence

2. Comme an ⩾ 1, on en déduit R ⩾ 1 ; on pose bn = an

n! et on a (n + 2)bn+2 = bn+1 + bn donc f ′(x) =
∑
n⩾0

(n +

1)bn+1xn = b1 +
∑
n⩾0

(n + 2)bn+2xn+1 = b1 +
∑
n⩾0

(bn+1 + bn)xn+1 = b1 + (f(x) − b0) + xf(x) donc f est solution de

y′(x) = (1 + x)y(x) avec y(0) = 1.



3. On en déduit f(x) = ex+x2/2 = ex × ex2/2 =

Ñ∑
n⩾0

xn

n!

é
×

Ñ∑
n⩾0

αnxn

é
avec α2n = 1

2nn! et α2n+1 = 0. Par

produit de Cauchy, on a an

n! =
n∑

k=0

αk

(n − k)! puis on distingue les cas n pair/impair. (En fait on a R = +∞)

Exercice 92 [sujet] 1. récurrence puis R ⩾ 1

2. f ′(x) = 1
1 − x

+ f(x)

3. y(x) = αex + exφ(x) avec α ∈ R.

Exercice 93 [sujet] 1. récurrence

2. R ⩾
1
4

3. f(x)2 =
∑
n⩾0

cnxn avec cn =
n∑

k=0

ak

k! an−k(n − k)! = (n + 1) an+1

(n + 1)!

4. f(0) = 3 donc f > 0 sur ] − h, h[ (avec h < R) ; sur cet intervalle f ′(x)
f(x)2 = 1 donc f(x) = 3

1 − 3x
=

∑
n⩾0

3n+1xn

Exercice 94 [sujet] 1. On vérifie |an| ⩽ 1 par récurrence.

2. Si |x| < 1, f(x) = 1 +
∑
n⩾0

an+1xn+1 donc on trouve f ′(x) = f(x)
∑
n⩾0

xn

n + 2 (produit de Cauchy) donc f ′(x) =

− ln(1 − x) + x

x2 f(x) et en résolvant cette éq diff, avec f(0) = 1, on trouve f(x) = x2

1 − x
exp
Å ln(1 − x)

x

ã
.

Exercice 95 [sujet] 1. (p, q) ∈ [[ 1, n ]] 2 donc an ⩽ (n + 1)2 et R ⩾ 1 comme (an) ne tend pas vers 0 la série est GDV
en ±1 et Df =] − 1, 1[.

2. Pour |x| < 1, on écrit 1
1 − x2 =

∑
n⩾0

αnxn et 1
1 − x3 =

∑
n⩾0

βnxn et on a 1
(1 − x2)(1 − x3) =

∑
n⩾0

γnxn avec

γn =
n∑

k=0
αkβn−k = an car αkβn−k = 1 si et seulement si k = 2p est pair et n − k = 3q est un multiple de 3. On

détermine ensuite an avec le DSE de 1
(1 − x)(1 − x3)

= 1
(1 − x)2(1 + x)(1 − jx)(1 − j2) qui s’obtient à partir de la

décomposition en éléments simples.

Exercice 96 [sujet] 1. CVS seulement et CVNTS de ] − R, R[.
2. Pour construire une partition de [[ 1, n + 1 ]] , on commence par construire un ensemble contenant n + 1 : le nombre

d’ensemble contenant n + 1 et de cardinal k + 1 est
Ç

n

k

å
(il reste à choisir les k autres éléments parmi [[ 1, n ]] ) puis il

reste à constituer une partition de l’ensemble des n+1− (k +1) = n−k entiers restants, il y a pn−k choix possibles.
Le nombre de partitions pour lesquelles n + 1 appartient à un ensemble de cardinal k + 1 (avec k ⩾ 0) est doncÇ

n

k

å
pn−k. En faisant varier k ∈ [[ 0, n ]] , on obtient pn+1 =

n∑
k=0

Ç
n

k

å
pn−k

h=n−k=
n∑

h=0

Ç
n

h

å
ph

3. On pose bn = pn

n! et on a (n+1)bn+1 =
n∑

k=0

bk

(n − k)! ; on vérifie 0 ⩽ bn ⩽ 1 donc R ⩾ 1 et f ′(x) =
+∞∑
n=0

(n+1)bn+1xn =

f(x) × ex par produit de Cauchy. On a donc f(x) = f(0) exp(ex) = exp(ex − 1) car f(0) = p0 = 1.

Exercice 97 [sujet] 1. On compte le nombre de permutation de [[ 1, n ]] en fonction de leur nombre de points fixes : pour

créer une permutation ayant k points fixes, on choisit l’ensemble de ses k points fixes (il y a
Ç

n

k

å
choix possible) et

pour chaque choix de cet ensemble, la restriction à l’ensemble des autres n−k points est une permutation sans point

fixe (il y a dn−k choix possibles) ; le nombre de permutations ayant k points fixes est donc
Ç

n

k

å
dn−k =

Ç
n

n − k

å
dn−k.

L’égalité s’obtient en ajoutant ces quantité et en utilisant que le nombre total de permutations de [[ 1, n ]] est n!.

2. Par définition, on a 0 ⩽ dn ⩽ n! donc R ⩾ 1 ; exf(x) =
∑
n⩾0

anxn avec an =
n∑

k=0

dk

k!(n − k)! (produit de Cauchy)

donc an = 1. On a donc f(x) = e−x

1 − x
=

Ñ∑
n⩾0

(−1)n xn

n!

é
×

Ñ∑
n⩾0

xn

é
donc dn =

n∑
k=0

(−1)k

k! (encore produit de

Cauchy).



Exercice 98 [sujet] 1. I({1}) = {id} donc t1 = 1 ; I({1, 2}) = {id, (12)} ((12) est l’appl qui échange 1 et 2) donc
t2 = 2 et I({1, 2, 3}) = {id, (12), (13), (23)} donc t3 = 4

2. I([[ 1, n ]] ) ⊂ Sn (ensemble des permutations de [[ 1, n ]] ) donc tn ⩽ n!
3. Si g(n + 2) = n + 2 alors g|[[ 1,n ]] ∈ I([[ 1, n ]] ) donc il y a tn+1 applications de ce type. Sinon g(n + 2) = k ∈ [[ 1, n + 1 ]]

(il y a n + 1 choix pour k) puis g(k) = n + 2 et g|Ek
∈ I(E|Ek

) où Ek = [[ 1, n + 1 ]] \ {k} donc il y a (n + 1)tn

applications de ce type

4. si an = tn

n! , on a an+2 = 1
(n + 2)! (an+1 + an) donc f est solution de f ′(x) = (1 + x)f(x) avec f(0) = t0 = 1 donc

f(x) = ex+x2/2

Exercice 99 [sujet] 1. an = o

Å 1
n

ã
donc R ⩾ 1 ; pour x ∈ [0, 1[, on a

∣∣∣∣∣f(x) −
n0∑

n=0
anxn

∣∣∣∣∣ ⩽ ε
∑

n⩾n0+1

xn

n
= ε

(
− ln(1 − x) −

n0∑
n=1

xn

n

)
;

on en déduit
∣∣∣∣ f(x)
− ln(1 − x) − 1

∣∣∣∣ ⩽ ε + |Pε(x)|
− ln(1 − x) où Pε est un polynôme qui ne dépend que du choix de ε (donc

fixé) ; Comme lim
x→1

Pε(x)
− ln(1 − x) = 0, il existe r > 0 tel que 1 − r < x < 1 ⇒ |Pε(x)|

− ln(1 − x) ⩽ ε donc on a bien

l’équivalent demandé.

2. Pour l’exemple donné, (nan) ne tend pas vers 0 et f(x) =
+∞∑
p=0

1
2p

x2p

donc |f(x)| ⩽
∑
p⩾0

1
2p

est bornée donc f(x) =
x→1

o(ln(1 − x)).

Exercice 100 [sujet] 1. f(reiθ)e−inθ =
∑
k⩾0

akrkei(k−n)θ et on intègre terme à terme car
∫ 2π

0
|akrkei(k−n)theta| dθ =

2π|ak|rk (série CV) ; on ne déduit le résultat car
∫ 2π

0
ei(k−n)θ dθ = 2πδn,k

2. a)
∣∣∣∣∣
∫ 2π

0
f(reit)e−ipt dt

∣∣∣∣∣ ⩽ 2π∥f∥∞

b) Quand r tend vers +∞ et p ⩾ 1, on en déduit ap = 0 donc f = a0 est constante

3. On a cette fois
∣∣∣∣∣
∫ 2π

0
f(reit)e−ipt dt

∣∣∣∣∣ ⩽ 2π(αrq + β) donc |ap| ⩽ αrq−p + βr−p −−−−−→
r→+∞

0 si p ⩾ q + 1. Il reste donc

f(x) =
q∑

n=0
aqxq ∈ Cq[X].

Exercice 101 [sujet] 1. Utiliser an = Rn − Rn+1

2. |f(x) − S| ⩽ (1 − x)
n0∑

n=0
|Rn|xn + ε

∑
n⩾n0+1

(xn − xn+1) ⩽ (1 − x)(n0 + 1)C + ε car (Rn) tend vers 0 donc est bornée

et xn0+1 ⩽ 1. n0 étant fixé, il existe r > 0 tel que 1 − r < x < 1 ⇒ (1 − x)(n0 + 1)C < ε donc |f(x) − S| < 2ε pour
x proche de 1, ce qui donne le résultat.

Exercice 102 [sujet] Si un(x) = exp(in2x)
2n

alors ∥u(p)
n ∥∞ = n2p

2n
= o

Å 1
n2

ã
donc

∑
u(p)

n CVN sur R ce qui donne

f ∈ C∞(R) et f (p)(0) =
+∞∑
n=0

n2p

2n
; on a donc (en ne gardant que le terme d’indice p, les autres étant positifs) f (p)(0) ⩾ p2p

2p

donc 1
p!f

(p)(0) ⩾
p2p

2pp! −−−−−→
p→+∞

+∞ donc
∑ f (p)(0)

p! xp diverge pour tout x ̸ 0 ; le rayon de convergence de la série de
Taylor de f est donc nul.

Exercice 103 [sujet] 1. |g(x, t)| ⩽ e−t

2. Avec
∣∣∣∣∂kg

∂xk
(x, t)

∣∣∣∣ = t2k
∣∣∣cos

(
xt2 + k

π

2

)∣∣∣ e−t ⩽ t2ke−t =
t→+∞

o

Å 1
t2

ã
3. On a F (2k+1)(0) = 0 et F (2k)(0) = (−1)k

∫ +∞

0
t4ke−t dt = (−1)k(4k)!. La série de Taylor de F est donc

∑
k⩾0

(−1)k (4k)!
(2k)!x

2k

dont le RCV est nul donc F n’est pas DSE.
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