Séries entiéres

I Rayons de convergence

Exercice 1 [/Solution

Déterminer le rayon de convergence des séries entieres suivantes

2
o )M L 2 @),
St (e 5E) e
Exercice 2 (Mines-Ponts PSI 2017) |/Solution

2n + 1)!
Déterminer le rayon de convergence de E ((—;2) n
n!
n=0

Exercice 3 (Mines-Télécom PSI 2018) |/Solution|
!

n!
Rayon de convergence de E —nz” ?
n
n>1

Exercice 4 (Mines-Télécom PSI 2023) |/Solution|

1. Définir le rayon de convergence d’une série entiere a coefficients complexes.

2. Soit (a,) une suite bornée telle que Z an diverge. Déterminer le rayon de convergence de Z anz™.

n 1
3. Déterminer le rayon de convergence de Z(\/ﬁ)(_l) In (1 + \f> 2"
n

Exercice 5 (CCP PSI 2022) |[Solution/

+oo 1

On note a,, = Z T
k=n+1 +

1. Prouver l'existence de a,,.

1
2. Montrer que a, ~ —.
n

3. Déterminer le domaine de convergence de g anpx™.
n=0

Exercice 6 (Régle de Cauchy) |/Solution
Soit (a,) une suite complexe telle que 1irJrrl |an|% =1 € R" U{+co}. Quel est le rayon de convergence de Z anz"™?
n——+oo

indication : utiliser la définition de limite avec €.

Exercice 7 (CCP PSI 2016) |[Solution/
1

Lr14+62\"
1. Soit a,, = / < ) dt. Montrer que Vn € N,a, > ——.
0 2 n+1

indication : vérifier que 1 + t> > 2t.

2. Rayon de convergence et domaine de définition de Z anx™?
n=0

Exercice 8 (Mines-Ponts PSI 2023) |/Solution/

. /+°° dt
Soit a,, =
1 ch(t™)

1. Déterminer un équivalent de a.,.
indication : poser u =t"

2. Déterminer le rayon de convergence de la série entiere E anx™. Y a-t-il convergence en £R?

n>=1
3. Exprimer a,, a l'aide de la somme d’une série
Exercice 9 [/Solution
n n+1
1
Soit (a,) une suite complexe telle que le rayon de convergence de Z a, 2" est 1. On pose S, = Z aget T, = —— Z Sk.
k=0 nt+li=

Montrer que les rayons de convergence de Z Spz" et Z T,z" valent 1.
indication : montrer que 1 = R, < Rg < Rp et puis, exprimer S, et fonction de T,, puis a,, en fonction de S,,.

Exercice 10 (Centrale PSI 2009) |/Solution|

On suppose Z anz" de rayon de convergence R > 0; donner le rayon de convergence de Z anP(n)z", ou P € C[X].



IT Calculs de sommes

Exercice 11 (CCP PSI 2014) W

Rayon de convergence et somme de E
n>=1

TL

n+2

Exercice 12 (Mines-Télécom PSI 2018) |/Solution|

Xn?4+4n—1
Domaine de définition et somme de Z %
n

n

Exercice 13 (CCP PSI 2018) |/Solution|

Rayon de convergence et somme de g n(=D" g
n=0

Exercice 14 (Mines- Telecom PSI 2023) |[Solution W
Soit 6 €10, 7] et f(z Zsm (k0)x

1. Montrer par I’ absurde que uy = sin(kf) ne converge pas vers 0.
2. Déterminer le rayon de convergence R de la série de définition de f(z).
3. Calculer f(x).

Exercice 15 (/Solution| W
+oo 3+l

" 2
Rayon de convergence et somme de Z/ sin™ tdtz™ Z Y cos % ; Z (3 1! Z 2P 9
n n

n=0 n>1 n>0

Exercice 16 (CCINP PSI 2021) |/Solution
Soit f(x) =

T2 ——= powrz €] —1-1[.

a n br +c
1+2 1—z+22

1. Déterminer a, b, ¢ tels que f(z) = et déterminer une primitive de f.

D" s
2. Calculer S(z) = Z x

(e}

= (="
3. Calculer Z

n=0

Exercice 17 (Mlnes—Telecom PSI 2019) |[Solution|

Soit f(x Z it
0 4n —|— 1

3n+1

1. Déterminer le rayon de convergence R de cette série entiere.
2. Calculer f(x) pour |z| < R.
3. Calculer f(R).

Exercice 18 (ENSAM PSI 2007) |/Solution)
(_1)nx2n+1

Calculer le rayon de convergence de Z Exprimer la somme a ’aide de fonctions usuelles et étudier le

< @2n-D2n+ 1)’

comportement de f aux bornes de son intervalle de définition.

Exercice 19 (CCP PSI 2010) |/Solution|

Calculer le rayon de convergence et la somme de Z ap,x™ avec a, = m
n>1
Exercice 20 (Mines-Ponts PSI 2017)
Domaine de définition et somme de f(z) = ; T DEn 1)
Exercice 21 (Mines-Ponts PSI 2007)
Etude de f(z) = —i):o ( / ' tan"tdt) x". (domaine de définition et Pexprimer avec des fonctions usuelles)
n=0 0

indication : calculer a, + any2.



Exercice 22 (CCINP PSI 2021) |/Solution

1
1. Définir le rayon de convergence d’une série entiére puis déterminer celui de S(z g u, T avec u, = /
0

n=0
1 at+b c
2. T b, ¢ tel = '
rouver a, b, ¢ tels que (1+12)(1—tz) 1412 T

3. Déterminer S(x) pour z €] — R, R[ puis la valeur de S(—1).

Exercice 23 (ENSEA/ENSIIE PSI 2024) |/Solution/

1
tTL
On pose : Vn € N,a,, = /0 e dt et on définit la fonction f par f(z) = Z apx”

1. Donner le rayon de convergence de la série entiere E anx™.

2. Donner une autre expression de f(z) pour tout z tel que |z| < R.

Exercice 24 (Mines-Ponts PC 2015) [/Solution

n!)?
Rayon de convergence et somme de Z ()

1
————1"; (calculer / t"(1—t)" de).
= (2n+1)! ( 0 (1= )

Exercice 25 (Mines-Ponts PSI 2011) |/Solution/
S~ (DA
1. Donner le rayon de convergence R de ; apx", ol a, = ,CZ 3
n= =n

1 1
2. Faire ’étude en £R puis calculer la somme pour |z| < R (remarquer que 7= / th=1dt).
0

Exercice 26 (ENSEA PC 2007) |/Solution/

Rayon de convergence et calcul de Z sin(n)z".

Exercice 27 (Mines-Ponts PSI 2024) W
Soit (Fy, )nen définie par Fy =0, F;y =letVn e N, F40 = Fy1 + Fy

1. Déterminer la valeur de F,, en fonction de n
2. Calculer S(z Z Foa"

3. Quel est le rayon de convergence de cette série entiere 7

Exercice 28 (CCP PC 2009) [/Solution 0 1 1
1. Déterminer les valeurs propres réelles et complexesde A= =2 1 1
-2 1 3

A est-elle diagonalisable sur R? sur C?

2. On pose t, = Tr(A™); exprimer ¢,3 en fonction de t,12, t,t1 €t t,.

3. Déterminer le rayon de convergence et la somme de E thx™.

Exercice 29 (Centrale PSI 2014) |/Solution|
n

x

1. Montrer que I’équation Z —— =1 admet une unique solution z,, sur R¥.
k=1

2. Montrer que (x,) converge et déterminer sa limite.

tn

14 ¢2

indication : montrer que x,, € [0,3/4] et utiliser la convergence normale de la série entiére sur ce segment.

III Calculs de séries numériques

Exercice 30 (CCP PSI 2016) |/Solution|

2 1
Calculer Z n? ;i?—’_ .
n=0

Exercice 31 |/Solution|

Mont ™ *2” (-1)"
ontrer que — = .
LT S

dt.



Exercice 32 (CCINP PSI 2021) |/Solution

2t
1. Montrer, lorsque toutes les quantités existent que tan(2a) = 1{17“?
—tan‘a
1)7l 9
2. Mont =38 2 — 1) tt
ontrer que m = g 1 (V2 -1)
- 8
3. Mont - et 8
ontrer que |7 2 ) 13
Exercice 33 (Mines-Ponts PSI 2023) [/Solution|
+oo
(=)™ T 1
1. Mont =———1In(2
ontrer que nZ:% GniDEnt2) 4 2 n(2)
+00 1
2. Calculer Z
= (2n+1)(2n+2)
Exercice 34 |/Solution|
_1)" n +o0o
Soient a,, = 2(n -5-) 1 et b, = ;Oakan_k. Montrer la convergence et calculer nz:%bn.
400
indication : reconnaitre f(x Z anx™ puis le DSE de f* sur [0,1[ et prendre la limite en 1 (on peut ?)
n=0

Exercice 35 (ENSAM PSI 2014) |/Solution/ W

1. Soit a €]0, 7[. Montrer que Z sin(na) 2™ converge pour x €] — 1, 1] et expliciter sa somme f(x) (dériver).
n

n>1

N N-1 n
i 1 1
2. Montrer que, pour z € [0, 1], E sin(na) " = g (f - ) Sp o Sy, = E sin(ka)z®
n n
n=1 k=1

n+1

+m>;
3. En déduire la convergence et la valeur de Z sin(na Sn) est bornée indépendamment de x € [0,1])

IV Calculs de sommes par equations différentielles

Exercice 36 (CCINP PSI 2023) |/Solution

nl
On considére la série 2t
7l%:ol><3><5><~~><(2114—1)

1. Déterminer le rayon de convergence R de la série entiere.
+oo

2. On pose Vz € |-R, R[, f(z) = 2n+1

n!
le3><5>< X (2n+1)

Donner une équation dlfferentlelle d ordre 1 a coefficients non constants vérifiée par f.

3. Rappeler 'expression de arcsin’ puis résoudre I’équation différentielle. En déduire une expression simplifiée de la
fonction f

Exercice 37 (ENSAM PSI 2018) W

1. Déterminer les x pour lesquels Z #:UQ”H

converge.
2n + 1) &

2. On note S la somme de cette série. Montrer que S est solution de (1 — 2?)y/(z) — zy(z) = 1 en fonction de S et
déterminer S.

Exercice 38 (Mines-Télécom PSI 2018) |/Solution|
/2
1. Donner les variations de la suite définie par w,, = / cos” tdt.
0

n+1
n+2
3. Déterminer le rayon de convergence et la somme S de Z wpa". Calculer Z(—l)"wnx".

n=0 n=0

2. Calculer lim w,, et montrer que w42 = Wy, -



Exercice 39 (CCINP PSI 2024) |/Solution

1 2\ "
1
Soit an:/ ( nald > dt.
0 2

1. Montrer que (a,) converge et déterminer sa limite.

2. Montrer que Z(—l)”an converge.

3. On note R le rayon de convergence de la série entiere E apx™ et f sa somme.
n>=0

1
a) Montrer que a,, > ——— et déterminer R.
) duean =571

b) Montrer que f est solution d’une équation différentielle et résoudre cette équation.

Exercice 40 (CCINP PSI 2022) |/Solution
Soient (€) : 2%(1 —x)y” —x(1+z)y’ +y = 0 et f une solution de (£) DSE sur | —r,7[ telle que f(x) = Z anx™ si|z| < r.
n=0
1. Justifier que f est C% sur | — r,r[ et écrire f’ et f” sous forme de séries enticres.
2. Montrer qu'il existe (b,)n>1 telle que z2(1 — ) f”(z) — x(1 + z) f'(z) + f(x) = ap + Z bp(an — an_1)x™.
n=1
3. Déterminer aq et une relation entre a,, et a,_1.

4. FEn déduire une expression simple de f.

V DSE sans équations différentielles

Exercice 41 (Mines-Télécom PSI 2021) |/Solution

S
Développer en série entiére la fonction f définie par : f (s) =

2—s2"
Exercice 42 |/Solution)
1 1
Développer en série entiére les fonctions fi(z) = arctan <?> et fo(x) = \/1_‘_73?
x -z

Exercice 43 (Mines-Ponts PSI 2017) |/Solution/

: — “In |1 —t]
1. Donner le domaine de définition de f(z) = _—
0

t
2. f est-elle DSE au voisinage de 07 Quel est le rayon de convergence ?

3. Calculer f(1) et étudier la dérivabilité de f en 1.

Exercice 44 (ENSEA-EIVP PC 2014) |[Solution/

x2 t

dt

Exercice 45 (Mines-Télécom série 2 PSI 2022) |/Solution

. 11—t

1. Montrer que F est C* sur R et calculer F'(x)
2. Exprimer F' a ’aide de fonctions usuelles

3. Déterminer le développement en série entiere de F'.

“+o00 (_1)71
4. Justifier I'existence et calculer Z (2n +1)(2n +2)

n=0

Exercice 46 (Mines-Ponts MP 2011) [/Solution/
DSE de f(z) =In (w2 —bx+ 6) et rayon de convergence 7
Exercice 47 (CCP MP 2015) [/Solution
1— a2
DSE d =In(1 -z —22%) et = arct <7>
e f(x) =In(1 — z — 22°) et g(x) = arctan 72

Exercice 48 (Centrale PC 2011) |/Solution
Donner le DSE de f(z) =In (1 + 2 + 27).



Exercice 49 (Mines-Ponts PSI 2019) |/Solution/
xsh(a)

2?2 — 2z ch(a) +1
Exercice 50 (CCP PSI 2010) |/Solution|

en série enticre.

Développer f(x) =

v 1 1

1. Montrer que f définie par f(x) = # pour z # 0 et f(0) = 3 est de classe C*° sur R.

x
1

2. Montrer que ? est définie et de classe C*° sur R.

Exercice 51 (CCP PSI 2012) |[Solution
— 1

Soit f définie sur R par f(z) = % siz#0et f(0) = 7

1. Montrer que f est continue sur R.

2. Montrer que f est de classe C* sur R et expliciter la valeur de sa dérivée d’ordre n en 0.

Exercice 52 (Mines-Ponts PSI 2011) |/Solution/

Soit f : x> — % En écrivant f(x)g(x) =1 avec g(z) = sin(z)
sin(x)

1

R vérifie —= < R < 7.

V2
Exercice 53 (EIVP PSI 2016) |/Solution)

1. Déterminer le DSE de _r et en déduire celui de 1

V1—2a22 (1 —x2)3/2°
- 2k 2n+1(2
2. Montrer que g 4k< k) = n4+ ( n)
n n

k=0

, montrer que f est DSE et que son rayon de convergence

VI DSE par équation différentielle

Exercice 54 |/Solution
Soit f(z) = arcsm\/f.

z(1—x)
+oo
1. Montrer que f(z) = Z anz™ pour z €]0,1[. Déterminer a,, et le rayon de convergence R. (indication : éq diff)
n=0

2. Etudier la nature de Z(—l)”anR” et ZanR”.

Exercice 55 (CCINP PSI 2021) |/Solution

Soit f(z) = arcsin(z)

V1— 22
1. Sur quel domaine f est-elle C' ? Calculer f'(z) et trouver a, b et ¢ polynomiales telles que a(x) f'(z)+b(z) f(z) = c(x).
2. f est-elle DSE?

3. Déterminer les coefficients du DSE de f.
indication : on peut remarquer que f est impaire (pour simplifier les calculs)

Exercice 56 (Mines-Télécom PSI 2022) |/Solution|

Soit f(z) = (arcsinx)?.
1. Montrer que f est DSE sur | — 1,1]
2. Montrer que f’ est solution sur | — 1,1[ de (1 —2%)y’ —ay =1

3. Déterminer les coefficients du DSE de f
indication : pour simplifier les calculs, remarquer que f’ est impaire

Exercice 57 (Centrale PSI 2011) |/Solution|

arcsin(x)

3 ) est solution d’une équation différentielle d’ordre 2 et déterminer le DSE de f.

Montrer que f : x — sin (

Exercice 58 (Mines-Ponts PSI 2022) [/Solution|

n +oo
1 H
S'tHn—_Ef, >1et —_E—""
oien 2% pour n et f(x) 2

1. Déterminer le rayon de convergence de cette série entiere



e’ —1
x
3. En déduire une autre expression de f

2. Montrer que f'(z) — f(z) =

+oo +oo
Hn (_1)n+1
4. Montrer — —=e -
nz::l n! 7; n X n!

Exercice 59 (Centrale PSI 2015) |/Solution|
Soient A €] — 1,1[, a € Ret f C* sur R telle que f'(z) = af(z) + f(\z).

1. Montrer que f est C* sur R.
2. Déterminer les solutions DSE de cette équation.

3. Montrer que f est DSE.
indication : montrer que pour x € R, il existe C' (dépendant de x) telle que |t| < |z| = |fP(t)| < C(1 + |a])P.

Exercice 60 (Centrale PSI 2022)
Soient a € R, v € [-1,1]\ {0} et So = {f € C'(R,R),Vz € R, f'(z) = f(yz) et f(0) = a}

1. Déterminer S, pour v =1 puis v = —1.
+oo s
2. Soit f(z) = « E A1)/ 2—'. Vérifier que le rayon de convergence de cette série entiere est 400 et montrer que
n!
n=0

feSa

3. Déterminer S,
indication : montrer que si f € Sa alors f est DSE en trowvant la valeur de f™ en fonction de f

Exercice 61 (Mines-Télécom PSI 2016) |/Solution
Déterminer les séries entieres solutions de °y” + 6xy’ + (6 — 2%)y = —1 et déterminer leurs sommes.

VII Etudes de fonctions DSE
Exercice 62 (CCINP PSI 2019)

Soit I = [0, 1]
+oo "
1. Montrer que Vz € I,In(1 +z) = Z(—l)”“—
n
n=1
2n+1 n+1
2. Montrer que Z (;n 1 2?1 m 2) converge simplement sur I.
n=0
3. Déterminer sa somme S.
4. Y a-t-il convergence uniforme sur 17
Exercice 63 (CCINP PSI 2023) |/Solution
Soient F(x) /xln(l_”dt ¢ S(z) iox"o lle que S(1) = =
oien x) = ———~dtet S(z) = — . On rappelle que =—.
0 t n? bpetie d 6

n=1

1. Déterminer le domaine de définition de F.

2. Montrer que si x €] — 1, 1] alors F(z) = —S(x)
2

3. Montrer que si z €]0,1[, F(z) + F(1 —z) = In(x)In(l — z) — %

Exercice 64 (CCINP PSI 2022) |/Solution
+oo
Soit f(x) = Z 2"
n=1
1. Donner le domaine de définition D de f

2. Montrer que f est dérivable sur D

3. Déterminer un équivalent de f(z) quand x tend vers 1; on pourra faire une comparaison série/intégrale et utiliser

+oo 5
/ et dt = ﬁ
O 2

Exercice 65 (ENTPE-EIVP MP 2009) |/Solution]
+oo
1. Domaine de définition de f(z) = Z In(n)z™?
n=1



—In(1 —x)

T (on pourra étudier g(z) = (1 — z) f(x).)

2. Montrer qu’au voisinage de 1, on a f(z) ~

Exercice 66 (CCINP PSI 2024)

Soient = " = — l) "
f(z) T;ln(n)x et g(x) gln (1 o)

Déterminer les rayons des convergence de f et g.

Montrer que g est continue sur [—1,1]

Déterminer une relation entre (1 — z) f(z) et g(x)

Montrer que f peut se prolonger par continuité a [—1,1]

ANl o A

Déterminer des équivalents de f et g en 17

Exercice 67 (Mines-Télécom PSI 2022) |/Solution|

Soit (an)nen une suite de complexes et R le rayon de convergence de Z anz”.

"1
1. Rayon de convergence de Z an(lnn)z" et Z an, <Z k) 2™ 7

n>=1 n=1 k=1
n

1
2. On pose v, = Z 5 In n. Montrer que la suite (,) converge.

k=1
+oo
" In(1 —x) _ . . - s
3. Montrer que : Z(ln n)x” ~ — quand x — 17. On pensera a un produit de Cauchy de séries entiéres.

n=1

Exercice 68 (CCINP PSI 2024) |/Solution
1
Soit I, = / e~ Tt" dt
0
1. Justifier 'existence de I,, et préciser son signe

2. Etudier les variations de (I,,), puis sa convergence et sa limite
-1
e
3. Par IPP, montrer que (n +1)I,, + I,,_1 = e~ * et en déduire I,, ~ —.
n

4. On pose g(x) = Z I,z". Déterminer le domaine de définition de g
n=0

5. Ecrire g(z) sous forme d’une intégrale pour |z| < 1

6. Déterminer un équivalent de g(x) quand x tend vers 1.

—1

indication : considérer Z (In — —) " et sa limite quand x tend vers 1.
n

Exercice 69 (Centrale PSI 2023) |/Solution

n
Soit (an)nen une suite telle que Z an soit absolument convergente. On pose : Vn € N, A,, = Z ap et A= lim A,.
k=0

n—-+oo
—+oo
1. Soit n € N. Montrer la convergence de / t"e~t dt, puis calculer sa valeur.
0

a A
2. Montrer que Z %t" et Z —Tt" ont un rayon de convergence infini.
n! n!

+oo a +oo A
3. On pose pour tout réel ¢, f(t) = E Tt et g(t) = g —t"
n! n!
n=0 n=0

a) Montrer que f et g sont dérivables et vérifient Vt € R, f'(t) = g¢'(t) — g(t)

¢
b) Montrer que : Vi € R,/ fw)e™ du= e "(g(t) — f(t)).
0
t
4. Montrer que / flu)e ™ du —— A.
0 t——+o0

Exercice 70 (Centrale PSI 2021) |/Solution|
+o0 th(t)
dt
t2

Pour n € N*, on pose a,, = /
n

1. Justifier 'existence de a,,. Déterminer le rayon de convergence de E anz"” et le domaine de définition de sa somme S.
n>=1



2. S est-elle continue en —1.

3. Déterminer un équivalent de S en 1.
indication : commencer par chercher un équivalent de a.,

Exercice 71 (Centrale PSI 2022) |/Solution|
Soient a > 0 et (€) : 2y + ay — 2y° = «

1. Montrer que (£) admet une unique solution ¢ développable en série entiere sur | — 1,1]

1
2. Montrer que ¢(x) N O <1 )
—z

3. Soit f € C*([0,1],R) telle que f(1) = 0.

1
a) Montrer la convergence de / t* [f(t) + gp(t)f(t)]2 dt
0

1 1
b) En déduire o / o7 ()2 dt < / tf (1) dt
0 0

Exercice 72 (ENSAM PSI 2009) |/Solution)

Soient deux séries entieres Zanx" et Z b,x™ de rayon de convergence infinis, avec by > 0 et b, > 0 pour n > 1. On

note f et g les sommes de ces séries.
1. Montrer que si a, et o(by) alors f(x) T o(g(x)).
indication : si e > 0, il existe ng tel que n > ng = 0 < a, < by, et remarquer que, pour x > 0, g(z) = byx™.

2. Montrer que si a, ~ by alors f(z) ~ g(x). (indication : a, ~ by, ssi an — by, = 0(by))
n—-4o0o Tr— 400
1\" 2"
3. Montrer que le RCV de E (1 + 7> — est o0 et déterminer un équivalent de sa somme en +oo.
n n!
VIII Permutations somme/intégrale

Exercice 73 (CCP PSI 2011) |[Solution

+o0 too 1
Montrer que / In(thz)dx = — ———— apres avoir justifié la convergence.
0 nz:% (2n+ 1)

Exercice 74 (CCP PSI 2009) |[Solution]
“+oo
1. Calculer I}, = / z¥e=% dx pour k € N.
0

400
2. Montrer que Vz > 0,e” % cos/z = Z e (=1 (;k)'
k=0 '

+oo
3. En déduire la valeur de / e~ cos+/z dz sous forme d’une somme de série.
0

Exercice 75 (Mines-Ponts PSI 2021) |/Solution

1
Soit f(z) = ——=—=
0= 7
—+oo
1. Justifier I'existence de / f(z)dz
0

0 1
2. Montrer que /+ flz)dx = 2/ f(x)dx
0 0

+oo
3. Rappeler le DSE de et en déduire une expression de / f(x) dx sous la forme de la somme d’une série.
0

1
V1+u?
Exercice 76 (CCINP PSI 2023) |/Solution

+oo
1. Convergence et calcul éventuel de I}, , = / the "t dt pour k € N et n € N.
0

|
n. n

2. Déterminer le rayon de convergence de E —g
n

n>1

Xl Tty
. . : n __
3. Justifier que si z €] — R, R], ngﬂ ol = /0 p—— dt.



Exercice 77 (Mines-Ponts PSI 2019) |/Solution/
+oo
1. Justifier I'existence de F(z) = / sh(;zct)e_t2 dt pour z € R.
0

2. Justifier que F' est DSE.

Exercice 78 (Centrale PSI 2021) |/Solution|
w/2
1. Calculer I,, = / sin?™ ¢ dt
0

2. Déterminer les fonctions f DSE paires solutions de z(z? — 1)y + 3z%y + zy = 0

dt

w/2
3. Comparer f et g: x> —_—
P Jety /0 1 —22sin?¢

Exercice 79 (Centrale PSI 2019) |/Solution

1
t.’,C
1. Déterminer le domaine de définition de F(x) = /
0

dt.
14+¢

2. Montrer que f est C*° sur ce domaine.

3. Montrer que f est DSE et donner le rayon de convergence.

Exercice 80 (CCP PSI 2018) |[Solution
an

Soit (a,) € C" telle que Zan est absolument convergente. On pose f(t) = Z ﬁx"

n=0
1. Quel est le rayon de convergence de la série entiere ?

+oo
2. Montrer que / t"e~t dt existe, pour n € N, et la calculer.
0
+oo too
3. Montrer que / ft)e tdt = Z .
0 n=0

Exercice 81 (CCP PSI 2017) |/Solution|
Soit f(x) = / cos(x cost) dt.
0

1. Montrer que f est-elle développable en séries entieres.
2. Montrer que f est de classe C* sur R et calculer zf"(z) + f'(z) + = f(z).

Exercice 82 (Centrale PSI 2022) |[Solution|
1 1
Soient A > —3 ea(t) = (1— t2))\ > et In(x) :/ o (t) cos(xt) dt
0

1. @) est-elle intégrable sur [0, 1[?
2. Montrer que I est définie et de classe C? sur R puis exprimer I Y en fonction de Iy1; et Iyio

3. Montrer que Iy est développable en série enticre.

Exercice 83 (Mines-Ponts PSI 2016) |/Solution
+00 —t
1. Montrer que f(z) :/ ¢
0
2. Montrer que f est DSE.

1 — xsin®t
Exercice 84 (Centrale PSI 2015) |/Solution|

1. Si le rayon de convergence de f(z) = Z anx™ est R > 0 et si Z lan|R™ converge, montrer que f € C°([—~R, R]).

dt est définie sur | — oo, 1[.

n>0
2. Soit f(t) = %ln 1;;‘ Exprimer /1 f(t)dt a l'aide de la somme d’une série.
+o0 ’ 1 72
3. Montrer que /0 f(t) dt converge et la calculer, en admettant Z @iy =5

n=0



IX Séries génératrices
Exercice 85 (ENSAM PSI 2009) |/Solution)
On donne ug = u; = 1 et upto = Upr1 + 2u, + (—1)™.

1. Montrer que pour tout n € N, on a |u,| < 2"t — 1.
+o00

2. Que peut-on en déduire pour le rayon de convergence de S(z) = Z Up 2™ ?
n=0

3. Calculer S et en déduire la valeur de u,,.

Exercice 86 (Mines-Ponts PSI 2022) [/Solution|

Soit (un)nen définie par ug = 1 et up41 = 2uy, +n pour n > 0.
1. Trouver deux réels a et b tels que up41 +a(n +1) + b = 2(uy, +an +b)
2. En déduire une expression de u,, en fonction de n.

3. Déterminer le rayon R de convergence de E u,x" et calculer sa somme.
n=0

4. Etudier la convergence de la série pour = R et z = —R.

5. Retrouver I'expression de la somme de la série entiére a partir de la relation initiale définissant (uy,).

Exercice 87 (CCINP PSI 2024) |/Solution

Soit (an)nen telle que ag = —4, a1 =2, ay =4 et apy3 = apta + a1 — an pour n € N.
1. Montrer que |a,| < 2"
2. Soit S(z) = Zanm”. Montrer que le rayon de convergence de cette série entiere est > 0 puis que S(z) =
n>=0
622 + 6z — 4 ol < R
——————— pour |x )
@t )z—12"P
a b c
3. Trouver a, b, ¢ tels que S(z) = + +

x+1 -1 (z—1)2
4. Déterminer a,, en fonction de n.

Exercice 88 (Navale PSI 2022) |/Solution/

Soit (a,) définie par ap = a1 =1 et ap41 = a, + ?an,l pour n > 1.
n

1. Montrer que 1 < a, < n?.

2. Quel est le rayon de convergence de Z anxz"™ ? On note f(z) la somme.
n>=0

3. Trouver une équation différentielle vérifiée par f et en déduire f(x).

Exercice 89 (CCINP PSI 2024) |/Solution

a
Soit (an )nen définie par ag = a; = 1 et Vn € N, ayq0 = anpq + —

n—+2
1. Montrer que a,, > 0 pour tout n € N

2. Etudier la monotonie de (a,,) et en déduire que Z(an+2 — ap41) diverge

3. On pose S(z) = Z anz"”. Déterminer le rayon de convergence de cette série entiere.
n=0

4. Montrer que S est solution de (z — 1)y’ + (z + 1)y =0

5. Déterminer la valeur de S(z) puis de a,

Exercice 90 (CCP PC 2015) |/Solution/

) 1—(n—i+2)7! sii=j
Soit dg =1, di = 3 et d, = det(a; j)i<ij<n avec a; j = Ajit1 = a;_ll,i =(n—-i+ 2)_1/2 sil<ig<n—-1.
0 sinon

1. Calculer dy et montrer que (n + 1)d,, = nd,—1 + d,—2 pour n > 2.

2. Montrer que |d,| < 1; qu’en déduire sur le rayon de convergence de S(z) = Z dpz™ 1 ?
n=0
1—e®

is d,.
-2 puis

3. Trouver une équation différentielle vérifiée par S. En déduire S(z) =



Exercice 91 (CCINP PSI 2024) |/Solution

On définit la suite (ay,) par ag = a1 =1 et apto = ans1 + (n+ ay.
a
1. Montrer que —7: <1
n!

+oo
2. Déterminer une équation différentielle vérifiée par f(z) = Z

n=0

n n

n!

3. Résoudre cette équation en en déduire la valeur de ag, et azp41

Exercice 92 (CCINP PSI 2023) [/Solution

14+a
Soit (an)nen la suite définie par ag = 0 et, pour n € N, a,,41 = + On

n+1

1. Prouver que 0 < a,, < 1. Que peut-on en déduire pour le rayon de convergence R de la série entiere E anz™?
n=0

2. Trouver une équation différentielle vérifiée par la somme S de cette série entiere sur | — r, [, ot r = min(1, R)

t

e~

T
3. Donner les solutions de cette équation différentielle en fonction de ¢ : x — / il
0

dt.
t

Exercice 93 (CCINP PSI 2022) |/Solution
n
n
Soit (an)nen définie par ag = 3 et ap41 = Z . | @kan—k pour n > 0.
k=0

a
1. Montrer que 0 < —T'L < 4ntt pour tout n € N.
n!

L a
2. Que peut-on en déduire pour le rayon de convergence de E %x" ?
n!
n>0

3. Montrer que la somme f de la série entiere précédente vérifie f'(z) = f(x)?.

4. En déduire la valeur de a,,.
indication : déterminer f en se plagant sur un intervalle | — h, h] ot f ne s’annule pas.

Exercice 94 (ENS PSI 2018) |/Solution|

1
Soit (ay) définie par ap =1 et apy1 = P kZ:O . _akk+ ok On pose f(z) = nz;oanxn.

1. Montrer que le rayon de convergence de f est > 1.

2. Trouver (by,) telle que, pour |z| < 1, f'(z) = f(z) anx” puis trouver f.
n=0

Exercice 95 (Mines-Ponts PC 2014) [/Solution
On note a,, = Card{(p,q) € N?,3p+2q = n}.

1. Déterminer le domaine de définition de f(x) = Z anx”.
n>=0

2. Déterminer f puis a,.
indication : partir des DSE de (1 —2%)™% et (1 —2%)71.

Exercice 96 (Mines-Ponts PSI 2016) |/Solution/

1. Si R est le rayon de convergence de Z bpz™, quel est le mode de convergence de la série sur | — R, R[?

2. On note p,, le nombre partitions de [1,n] (nombre de fagons d’obtenir [[1,n] comme réunion d’ensembles non vides
n

2 & 2 disjoints). Montrer que p,+1 = Z (Z)pk, avec pg = 1.
k=0
indication : compter les partitions de [1,n+ 1] en fonction du nombre d’éléments présent dans l’ensemble qui
contient n + 1.
) . p
3. Déterminer f(x) = Z ﬁx"
n=0

Exercice 97 (Mines-Ponts PSI 2016) |/Solution

On note d,, le nombre de permutations sans point fixe de [1,n].

1. Montrer que n! = Z (Z) dy avec dg = 1.
k=0

indication : dénombrer les permutations de [1,n] en fonction de leur nombre de points fizes.



d
2. Déterminer f(z) = Z —7:10" en considérant e” f(z) puis déterminer d,,.
n!
n=0
indication : d,, s’exprime a l’aide d’un produit de Cauchy.

Exercice 98 (Mines-Ponts PSI 2022) |/Solution/
Soit E un ensemble et I(E)={g: F — E,gog=1idg}
1. On pose tg =1 et t, = Card(I([1,n])). Calculer ¢1, t2 et t3
+oo

t
2. Montrer que le rayon de convergence de f(z) = E —n'x" est > 1.
n!
n=0

3. Montrer que t,40 = tpe1 + (n+ 1)L,
indication : distinguer si gln+2)=n+2 ot g(n+2) €[[1,n+ 1]
4. Déterminer f(x)

X Exercices théoriques

Exercice 99 (Centrale PSI 2015) W

Soit (ay) une suite réelle telle que (na,) tende vers 0 et f(x Z anx"
n=0

1. Montrer que R > 1 et f(x) = o(In(1 — x)).
T—>
indication : pour € > 0, couper la somme en N de sorte que |a,| <e/n sin > N.

2. Réciproquement, si f(x) = o(ln(1 — x)), a-t-on (na,) tend vers 07
r—

indication : non; avec a, = — s’il existe p tel que n = 2P et 0 sinon par exemple.
n

Exercice 100 (Centrale PSI 2023) |/Solution
Soit (an)nen une suite complexe telle que la série entiére Z a,z" soit de rayon infini. On note f sa somme.

2m

1. Soit 7 > 0 et p € N. Montrer que f(re®)e Pt dt = 2ma,r?.
0

2. On suppose f bornée sur C.

M
a) Montrer qu'il existe M > 0 tel que Vp € N, |a,| < —

b) Montrer que a, = 0 pour tout p € N*. En déduire que f est constante.

3. On suppose maintenant qu'il existe ¢ € N* et (a, 3) € (R*T)? tels que Vz € C, |f(2)| < a|z|? + 3. Montrer que f
est une fonction polynome.

Exercice 101 (Mines-Ponts PSI 2015) |/Solution

—+o00
Soit f(x Z anx™ une série entiere de rayon 1 telle que S = Z a, converge.
n=0 n=0

1. Montrer que pour z €] — 1,1[, f(z) =5 — Z R, (2" — 2™, ot R, Z ag.
k=n+1
2. En déduire que lim f(x) =S et conclure que f est continue sur [0, 1].
r—1—

indication : couper la somme avec les restes d un rang ng d partir duquel |R,,| < &, avant de faire tendre x vers 1.
Exercice 102 (Série de Taylor divergente) |/Solution/

exp (in°x
Montrer que f(z) = E %) définit une fonction de classe C*° sur R dont la série de Taylor possede un rayon de
n=0

convergence nul.
Exercice 103 (CCINP PSI 2021)
Soit F(x) = /+<><> cos(zt?)e~t dt.

1. Montreroque F est définie sur R.

2. Montrer que F' est C* sur R.

3. Calculer F("(0). F est-elle DSE ?
indication : vérifier que le RCV de la série de Taylor est nul.



Solutions

Exercice 1 |/sujet/| 1. (nr"2) est bornée si et seulement si r € [0,1] donc R = 1.

2. az, = exp(2n + O(1)) donc (ag,r®") est bornée si et seulement si r € [0,e™"]; agny1 = exp(—2n + O(1)) donc

(a2 172" 1) est bornée si et seulement si r € [0, e]. La suite (a,r™) est donc bornée si et seulement si r € [0, "]
donc R=e"!

3. |1+ 2i| = v/5 et |2i] = 2 < /5 donc par somme (et invariance du rayon par intégration terme & terme), R =

-

1
Exercice 2 R= 5 par d’Alembert

Exercice 3 |[sujet/| e par D’Alembert

Exercice 4 1. cours!
2. (ay) bornée donc R > 1 et Zan DV donc R<1

3. |an| <1 (par concavité de In) donc R > 1 et limas, =1 (DL) donc Zan DVetR=1
1
Exercice 5 [[sujet/| 1. Z T35 CvV

0 /+°° dt - </+°° dt d T tan(n) . (1) 1
. — = X Q —— aonc a,, ~ — — arctan(n) = arctan | — ~ —
n 112 [ S "2 n n

3. R = 1 par équivalent, Zan DV et Z an(—1)" CV par CSSA ((an) est bien décroissante et tend vers 0) donc
D=1[-1,1]
. - . 4ok n n 1
Exercice 6 [[sujet/] Sil € R™™, on a pour tout ¢ > 0 et n > ng, (I —e)" < |a,| < (14 ¢)™ donc 7 <RK T ced
€ -

1
pour tout € > 0 donc R = T

1 1
Sil =0, on trouve de méme R > — donc R = 400 et si | = +00, on a R < - pour tout [ > 0 donc R = 0.
€

< ap, <1donc R=1.Lasérie CVsize|[-1,1]:

(1+t2)”
2

14+62\" 1
Exercice 7 [[sujet/| On a t" < ( J; ) < 1sitel0,1] donc 1
n

si x = —1, la série vérifie le CSSA car (ay) tend vers 0 par TCD avec

<1

E L[ L TCD o ! ( ! )
. 8 0 t 1. n=— ~ < _ = _—
xercice 8 |/sujet] @ n /1 uchu n /1 wchu P W\ uchu| S chu uotoo O\ a2

1
2. a, ~ - I>0d —1etS a, DV (SATP); A, S (=1)a,
a — avec > 0 donc R e Za V (S ); par CSS Z( )"a, CV

1 —t" oo . +o0 . +00
3. - — o 22 (k+Dt" qonc (TITT) a, = 2 Z e~ Ck+1)t" g4 car/ ‘e—(2k+1)t dt < / o~ (2Rt gy —
ch(t ) 1—e" P . )
1 o~ (2k+1)
2k +1

Exercice 9 [[sujet] (S,) est le produit de Cauchy de (a,) et (1) donc Rs > R, ; de méme, ((n+ 1)T,,) est le produit de
Cauchy de (5,,) et (1) puls par invariance par dérivation, Ry > 1.

ap = Sp — Sp—1 donc par comme R, > Rg et S, = (n+ 1)T,, — nT,,_1 donc Rs > Rr.

Exercice 10 Si b, = P(n) alors a,, = O(|b,]) donc Ry, < R, et si 0 < p < Ry, il existe r tel que p < 7 < Ry,
(anr™) est donc bornée puis b, p" = (a,r") X P(n) <

ﬁ\b

) tend vers 0 donc est bornée; on en déduit p < Ry, puis R, = Ry
(ce qui est aussi valable si R, = +00.

Exercice 11 R = 1 par d’Alembert et, pour |z| < 1, S(z) = Z <3 _ ) ot =32 _5 (-n(l—2z)—z— x2).

n>=1

2
Exercice 12 R =1puis D =] — 1,1 (DVG en 1) S(z) = Z(n—l—Z—ni) " = ( T _ 4 +

%(ln(l —x)+x)



2N N
1 n n
Exercice 13 |/sujet/| On a — < n(=1 <ndonc R =1;si|z] <1, n(=1 Ty = 2naz?™ + — gl =
. EREDY > e
N 2" too n too 2\n 2
x 1 (%) 2x 1

TN o2 Sl = 2 (- “1In(1 — 22

nz:% +Z P — xz ;x 2; n T i M- tgh(-e)
Exercice 14 |/sujet/| 1. si ar = sin(kf) tend vers 0 alors klim cos?(kf) = 1 puis aj,1 = ay cosf + sin @ cos(kf) ne

—+o0

tendrait pas vers 0 car sinf # 0
2. (ay) est bornée donc R > 1 et Zan DV donc R 1

+oo i
o 1 xsin 6
=Im )7 ) =Im 0~
(x) = Im <k_0 (ze'?) ) 1—ze?® 1—2xcosf+ x2

3. si |z < 1 alors ';vew

Exercice 15 [[sujet] 1. Si f,(t) = 2" sin™ t alors || f,]|c0,j0,x/2) = |z|" donc CN'si |z| < 1 et ona R > 1 et pour |z| < 1,

/”/2 3 " — /”/2 dt u=tan(t/2) /+°° 2du /+°° du
x sin(t - = o
1 — xsin(t) 0 1—2zu+u \/1—x2 u—z_\2
n=0 (m)
2 (ﬂ' x ) .
—— | - —arctan —— | donc on a bien R =1 car S| n’est pas bornée en 1.
V1—22 \2 V1-—a? ' P
2nm . . 2inm/3,n—1
2. Ona R =1 (car | cos 5 P est bornée si et seulement si |p| < 1) et pour |z| < 1, Sh(x Z e =
n>1
2im/3 ~1/2 — 1
Re(l—ea:e%”/?’) 1+/$+ 5 ; on en déduit Sz (z )=—§ln(1—|—m+x2) car S2(0) =0
3. R = +oo puis S3(z) = 3 (e"‘ + j2el® —|—j672*)
N?-1 N-1 [/ n’+2n N-1
4. La série CV pour |z|] < 1 et DV pour z = 1 donc R =1 Z = Z Z " ] = Z(?n + 1)z™ donc
k=n2 n=0

1 1+z
) =2 n-t = :
me: —|—Zx (1—2)? +1—x (1—2)

. - 1 —x + 2 . 1 1 1
Exercice 16 1. f(x) = 50+ 2) +3(1 _xx o) puis F(z) = 3 ln(l—l—x)—g ln(xQ—x—H)—&-% arctan < 7

C
2. R=1puis,si|z| <1, f'(z) = Z(fl)"z‘g” = f(x) donc S(z) = 1ln(l+9:)711n(x27373+1)+i arctan (Qz _ 1>+
3 6 3 73

n>=0
T
——=car S(0) =0
6v3 (0)
1
3. S est continue en 1 par CSSA et ||Ry oo <
3n+4

Exercice 17 [[sujet/| 1. R=1
1 Coode
2. / _ —1)" dn _ — —
Flw) = St = o et £(0) = 0 done f(a) = [

n>0
3. On prouve la continuité sur [0, 1] : par CSSA, |R,(z)| < ! donc CVU s [Ol]etf(l)/ldt
. On prouv ntinuité sur [0, 1] : par S g don ur 1% Jo 14+t4

Exercice 18 La série CN sur [—1, 1] (donc f est continue sur [—1,1]) et DVG si || > 1 donc R = 1. Pour |z| < 1,
1 +o00 ((71)nx2n+1 (*1)”I2n+1) B }

f(l")=§Z

(—x*arctan(z) — (arctan(z) — )

ot 2n—1 2n+1 2
Exercice 19 [[sujei] 2 22 domc R =1 et 1z < 1, f(z) = 22“’” 22:0”
xercice sujet]| a, = ——— = = — —— donc R = 1 et pour |z — - =
/ " n(n+1) n n+1 P =i n —in+l

—2In(1 —z) — %(fln(l —xz)—x)



n n n
Exercice 20 Dy = [-1,1] (donc R = 1) et si |z| < 1, f(z) = ZQL + Z a —42 ’ = —In(1 —

n
n>1 n>=1 n>1

2n+1

x 2n

z) + l(—111(1 —z) — x) — 4g(z). Puis si z > 0, g(x) = Z (V)™ _ L Z (\/f)n _ Z (V)™ —Jz | =

‘< 2n+1 N2

n>1 n=1

2n
1 1 1)/ - 1
7 (fln(l — V) + §ln(1 —x)— \/5> Pour z < 0, on a g(x) = 7;1 ( 2)n+ 1m == (arctan v—z — V=)
1
Exercice 21 |[sujet] an + any2 = ] et (ay) décroit donc 1 < 2a, < . et R=1.S5i|z|] <1 alors f(x) =
n n—
ap+a1x +x gan_,_gx = ag + a1z + z° Z ( 1 an) " =ag+ a1z + (—.Z‘hl(l —x) —x? —fo(x)) puis ag = %
1 /
et a; = —5111(2)
Exercice 22 [fujel] 1. =< — < L << tR=1
xercice suje . —< < onc —— < u, < et R =
J 2 5142 2(n + 1) nt1
o 1 1 (:thrl n x? )
T+ 2)(1—tr) 1+22\1+82  1—tx
th 1 1 oo
3. sl up(t) = T Avec || < 1 alors |u,(t)] < |2|® donc CVN sur [0,1] et S(z) = /0 WZ(tx)"dt =

! dt 1 <x1n2 0 )
—— i = —F + —+4+zln(l — - —_E —1)"u,t" vérifie 1 A
/0 T+ 2)(1—t2) dt puis S(z) 1522 5 1 x In( x) ). S(—t) p 0( ) un,t™ vérifie le CSSA sur

1 —6In2

[0,1] done |R,(t)] < |upt1] < —— donc CVU sur [0,1]. On en déduit S(—1) = lim S(z) = T—ome
n-+2 r——1+ 4
1
Exercice 23 [[sujet]] 1. site[0,1],2<2+t* <3 donc 3D <a, < D) et R=1.
tn n
2. On pose fn(t) = 5 —fﬁ’ pour |z| < 1 et on vérifie la CVN sur [0,1] car || fn]lco < |7| donc f(z / fo(t)dt =
/1 dt B x 1n§ n 1 arctan 1 zhh(l -z
o 2+ —at)  2(1+222) 2 21+ 222) V2 14222

1 1)2
Exercice 24 |[sujet/|| R = 4 par d’Alembert. Par TPP successives / t"(1—t)"dt = _m)” pour |z| < 4, on pose
0

(2n+1)17
Falt) = 21— )" || foloo = (m>n donc ON sur [0, 1] et S(z) = /1Zf (t)dt—/ldt _
n b nioo 4 ) 0 n>o n o (1—1’t)(1—t) tt
1 1 1
Exercice 25 1. Par CSSA, on a |a,| < — donc R>1et 0 < (—1)" a, = — — (=1)"an41 donc |a, 1| = —
n n n
et R=1.
N 2 1 tnfl
2. SiSn(t) = Z(fl)k*ltk*1 alors avec | Sy (¢ )|le , le TCD donne a,, = (71)”*1/ dt; on en déduit Zan
k=n 0 1+1
1 1 t+oo ( n Ign—1,n
CV par CSSA et Z(—l)"an DV par (—-1)""a, > " Pour |z| < 1,ona f(x / o1 dt par CN
n -1 nfltnfl n 1 1
Ulunlloo < 2 sty = S 72 Gone Fa) :/ . . - / ( R ) dt =
2 1+t o A+8)(1+at) -z, \1+¢t 1+at
x 2
In
l—-z 1+z

n=0

+oo
Exercice 26 (sin(n)p™) est bornée si et seulement si p € [0, 1] donc R = 1 et pour |z| < 1, S(z) = Im <Z(xei)">
Im( 1 ) _ xsin(1)
1— et 2(1 — zcos(1))

Exercice 27 |/sujet/|| 1. F,

(5°) (%)



1 1 VE—1
2. S(z) = - pour |z| < ——
( 1_(1+2\/5)JU 1_(172\/5)33 | ‘ 2
3. R= \/52_ ! par somme (avec Ry # Ra)

Exercice 28 1. X4 = (X —2)(X —1+44)(X —1—14) donc A n’est pas DZ sur R, mais DZ sur C.
2. Ona A% —4A? + 64 — 413 = 0 (C-Ham) donc A" "3 = 4A™2 — 6A™ T 4 4A™ et t, 43 = 4t yo — 6tpyq + 4ty

1 1 1
L B G e gy ¢ g
to+tx +t2a® + Y tpasa™ =to + ia + taa® + (da(f(2) — to — tix) — 627 (f(x) — to) + 42° f ()

3. t, =224+ (1+4)" +(1—i)" ~ 2" donc R = % et f(x) ou bien f(z) =

n=0
Exercice 29 1. friz— Z - est une bijection strictement croissante de R* sur R
k=1
wn-i—l
2. fori(z,) =1+ :_ 7> 1 donc (z,,) décroit donc CV vers . Puis f,(3/4) P —In(1-3/4) =1n(4/3) > 1
n n—-+oo
donc x,, € [0,3/4] pour n grand. Par CN de la série entiére sur [0,3/4], on a 1 = f,,(z,) P —In(1 —1) donc
n—-+0oo

l=1-¢"
Exercice 30 On pose S(z) = Z(2n2 +3n+1)z""! donc R =1 et 2n? +3n 4+ 1 = 2n(n — 1) + 5n + 1 donc

n>=0

S(x) =2 AR A S, S(1/2) = 10.
(1—2)3 1-2)2 1-z
x2ntl 1
Exercice 31 Si|z| < 1, arctan(z) = go(_l)nm et la série CU sur [0, 1] : par CSSA | R, (2)] < 13 R
0 donc on obtient le résultat en faisant tendrz/x vers 17.

—1)" 2n+1 —1)" 2n+1 —1)" 2n+1
Exercice 33 |[sujet|| 1. onposeS(z) = T;) (27(1 n )1)?271 ey R = 1puispour |z| < 1, S(z) = 7;0 <( 221 i T (=)=
1 =z =z
arctan(z) — By In(1 + z) et le résultat par CVN sur [—1,1] avec z =1
x
x2n+1 ( x2n+1 x2n+1 > T x2n+2
2. 'd T = t’ i < 1’ T = U — = - — —
idem avec T'(z) Z(2n+1)(2n+2)e st 2] @ =2 g1 amr3) = 2 2omiz
n=0 n=>0 n=1 n=0
p2ntl 1 9 1 o, l—z 1+
;}2”” =—In(l — ) + 5 In(1 = 2%) + —In(l = 2) = ——In(1 - 2) + ——In(1 +2) — In(2)
Exercice 32 1. Cours
2
2. Six = tang alors z vérifie 1 = tan% = 17332 donc z = —1+ V2 (car > 0) puis g = arctan(v2 — 1) =
-z
_1)n
Z (=) (V22— caro<v2-1<1
n=0 2n + 1

(\/5_1)2n+3< 1
2n+3  2n+3

i _Z (=1)* (V3 — 1)2+1
8 <2k + 1 )

3. par CSSA, <

n

t
Exercice 34 |[sujet/| Si x € [0,1] alors f(z) = arc\a/li\/i et f(z)? = g bpx™; reste & faire tendre x vers 1 : on
z
n=0

pose U, () = bya™ et on a b :Zn: (" = (=1)" zn:( 1 + 1 ):(_1)nzn: 1
n n n k=0(2k+1)(2n72k+1) 2(n+1)k:0 2k+1  2n-2k+1 n+1 &2k +1

(poser p = n — k dans la deuxiéme partie de la somme). On en déduit que Zun(aj) est alternée pour z € [0,1].

1 n
lengilng——»O i intégrale) ; reste la décroi de (|by]) :
e plus |b,] ] < +k:1 k;) p—— (par comparaison avec une intégrale); reste la décroissance de (|by|)
1 Z” 1 n+1 1 (n+1 n+1
— g —
(n+1)(n+2) = 2k+1 2n+3 m+1)(n+2) \2n+1 2n+3

décroissante si z € [0,1[. On en déduit |R,(x)| < |bp+1] e 0 donc la série CVU sur [0, 1] et la somme est continue
n—-+oo

|bnt1| — |bn] = ) < 0 donc (Jun(z)|) est aussi

400 2
en 1. On en déduit an = f(1)? = —.

n=0



sin(na)

" < |z|™ donc f(z) existe (R > 1) et f/(z) = Im Z einagn=1

Exercice 35 1. Si|z| < 1 alors x
n>1
eie sin(a) o) x — cos(a) ™
I < . > _ _ sin(a) d — t (;) C C=——
m\ T 1 — 22 cos(a) + 22 o cos(a) )2 OMC f(x) = arctan sin(a) + C avec 5 —acar
1 +< sin(a) )
f(0)=0.
2. Facile avec sin(na)z"” = S,, — Sp—1
1
3. Méme calcul que pour f'(z) : = Im (Z ethay k) donc |S,| < 1= zeia] em| < Cecarz— =z est conti-
1
nue donc bornée sur le segment [0, 1]. La série — 1) n(z) CN sur [0,1] donc est continue en 1. La
1 n n -+
. _ 1_
question2 étant valable aussi pour x = 1, on a Z sin(na) = lim f(z) = T—a car arctan (ﬂ) =
~on 51 2 sin(a)
.2
arctan( - 2sin (a/2) > = g.
2sin(a/2) cos(a/2) 2
. - Ap+1 n+1 ,
Exercice 36 1. = omt3 donc (d’Alembert) R = v/2
an n
1
2. Et on en déduit que f'(z) = ap + Z(2n+3)an+1x2"+2 =ap+ Z 5[(2n—|— Day, +ay|z?" ™2 = -1+ f (x)+ gf(x) ;
n=0 n=0
f est donc solution de (2 — 2%)y/(z) = zy(z) + 1 avec y(0) = 0.
1 T
3. On résout cette équation différentielle et on trouve f(x) = —— arcsin (—)
N 2(n +1
Exercice 37 1. On a aazl = 2(2 i 3) donc R =1 et par Stirling a,, ~ 2\57% donc Zan et Zan(—l)Q”H
DV (signes fixes)
2. Avec la relation entre a1 et a,, on trouve (1 — )S’ = ag + Z Ap_12?™ =1+ xS (z). On en déduit, avec
n>=1
1
S(0) =0, S(x) = ——— arcsin(x).
1— 22
Exercice 38 1. (wy) décroit
2. lim w, = 0 par TCD avec |cos™ t| < 1. La relation se trouve par IPP (cf cours intégrales de Wallis)
1
3. wy = Wpy1 = Wpao = L::—_an donc wp41 ~ w, donc R = 1 par d’Alembert. Si |z| < 1, on a S(z) = g—l— x +
n
SUMp> (1 - L) pa =T z2S(x) — Z Pn_2n+2 done S'(x) =1+ 228" (z) + 22S(x) — xS(x). Les
n20 +2 2 Zin+2 '
! arcsin(x)

solutions de (1 — z%)y'(x) — zy(z) = 1 sont y(z) = et comme f(0) = g, on trouve o = g

+
V1i—22 V1 - 22

1+¢2\"
Exercice 39 |[sujet| 1. (a,) tend vers 0 par TCD avec ( —; ) <1
2. CSSA
1+ t2 2 ! 2n 1 4 ) n
3. a) > t* donc a,, > t“*dt = ——; on en déduit R < 1 et comme E apx”™ CV pour x = —1, on a
0 2n+1

R >1donc R=1.

1 n—1

1+¢2 ! 142

b) OnaanlgP {t( —; )} —/ txnt( —; ) dt = 1—n(2a, — an—1) donc (2n+1)a, = 14+na,_1; on
0 0

1
en déduit (2 —x)f'(z) + (1 —2)f(z) = T Les solutions de I’équation homogeéne sont, sur ]0,1[ ou | —1,0],
-z
yo(z) = — % donc les solutions sur ces intervalles sont y(z) = a
V]l(2 = x)

sur | — 1,1[ est f (si a # 0, pas de limite finie en 0.

————— + f(x) et la seule solution
|z[(2 - )

(1+t2

“0) e sur 0.1] (17190 <

Si on souhaite déterminer la valeur de f(z), par TITT ou CVN de f, : t —



1
2dt
|z|™ et |z] < 1), on a f(x) = /0 (1t qui se calcule en décomposant en éléments simples (se-
1 oy
lon le signe de x); tous calculs faits, on trouve f(x) = TV siz > 0et f(z) =
Vo2 - ) V2—x—\x

2 - .
————— arctan six <O0.
—z(2—x) 2-x

Exercice 40 1. Cours
2. 22(1 —a)f"(x) —x(1 + 2) f'(x) + f(z) = ap + Z(n —1)*(ay — ap_1)z"
n=1
3. ap=0¢t (n—1)*(ap —an_1)=0sin> 1d0ncan—an 1sin>2.

4. R=1(siay #0) et f(z —alzx

n=1

|z < 1.

s 1 1 1 g2p+1 §2p+1
Exercice 41 |[/sujet/ = — - = = ,
/s 2—32 2\@ 1— = s 2\[7;) \[ \[;)\[Qpﬂ ngﬂ

7z 1t 750
pour |s| < V2.

) 1 1 .
Exercice 42 fi(z) = % ( e e ) S - Z(—l)n% - Z(_l)n(liiz)n pour
>0

I+15 1+15 2\ 141 (144) 1—1 &=~
71' T 1 antt 1 B
|z| < V/2 puis on intégre terme & terme avec f;(0) = 1 donc fi(x) = Z+§ T T;)(—l)n DA+ 1—i 7;)(_1)71 (n+1
fol@)=Q+z)(1 -2 V2 =14z Z4n . pour |z| < 1.
. . In |1 —¢| . N
Exercice 43 1. g:t+— ——— est continue sur | — oo, 1[\{0} et prolongeable par continuité en 0 donc f est
définie sur | — oo, 1[; de plus g(t) ~ In(1 —t) donc g est intégrable sur ]0,1[ et Dy =] — o0, 1].
t—1-
. ) 1 , In(1—x) gt
2. Comme g est continue (prolongée en 0) sur | — oo, 1[, f est C* et f'(z) = ——— = — Z pour |z| < 1

x
n>1

(R=1); f est elle aussi DSE sur | — 1, 1] comme primitive d’une fonction DSE (et R = 1 aussi)

1 ! 1 1
t) = Z fn(t) avec fr(t) = — sur ]0, 1[ donc par TITT, avec / |fn(t)|dt = =, ona f(1 Z o
n>1 n 0 n=1
) , In(1 —x)
Comme f est continue sur [0,1] et f'(z) = ———= — %, f n’est pas dérivable en 1 (TAF)
X xT—r
t
Exercice 44 |[sujet/| t — T8 est continue sur R donc f est C' et f'(z) = T g3+ pour 2] < 1, f(z) = a:T;) )i
3n+2
donc f(z )+ Z (R =1)
n=0
Exercice 45 1.t 270 ¢ COR) done Fi(z) = ~— %
xerci suje . onc
J 1412 1+22
1
2. F(x) = arctan(z) — B In(1 + 2?)
. 1 F/ - (1 = 1) 2n d F _ = (_1)n 2n+1 = (_1)71 2n+2
3. 81|zl <1, Fl(z) = ( —x)g(—)x onc (x)_nz:%QnJrlx —g}mm

2n+1 2n+2
4. On vérifie la CVN de la série Z(— 2 {m v

1 s 2} sur [0,1] (étude de fct par ex) done S = f(1)

n=0

. : 22 on

Exercice 46 |[sujet] f(z) =1In(2 —z) +In(3 —2) = —In(2) Z om In(3) Z —3n pour |z] < 2.
n>1 n>1

R _ . 1 .17” (2,’1})”

Exercice 47 [[sujet] Si |z] < g ona flz)=In(1 —z)+In(l — 2z) = — Z — - Z —
n
n>1 n>1
—2z pAn+2

gestClsurRetg’(m):ﬁdoncs1|x|<1,g :f2xz D™z*" puis g(z) :7—22 4n+2(R:1)

n>=0




Exercice 48 [[sujet]] f est C' sur R et f'(z) = A :jjzx donc si |z] < 1, f'(z) = —jz (jz)" —j2z (j2x)n

jn+1 + j2(n+1)

2pm\ P
is f —_—E —"1—_—22 <—>—
puis f(x) —— T : 1cos 3

n=0

1/ 1 1 1 = 1
Exercice 49 |/sujet/ f(x) = 3 <1 El xe*o‘> =3 (e"a™ — e "¥a") = Zsh(na)x” pour |z| < -
0

x
n= n=0

n—2

Exercice 50 1. f(x) = Z T — est DSE sur R.

n>2
2. f est C*° sur R et on vérifie que f(x) ne s’annule pas (étudier le numérateur pour vérifier qu’il ne s’annule que en
0)
. - n+1 xQ -2 ) (271) (_1)"
Exercice 51 |[[sujet] f(z) = Z( 1) pour tout z € R donc f est C*™ sur R et f“(0) = ——— (les
—~ (2n)! (2n + 2)!
impaires sont nulles)
. - n (=™
Exercice 52 |[sujet] g(x) = anx avec agn+1 = 0 et ag, = ————. On pose f(x Zanz pour |z| < R
n=0 (27’L + 1) n>=0

n

(on suppose R > 0); on a fg = 1 sur | — R, R[ si et seulement si Zakbn_k = Jp,n donc ap = 1, agpy1 = 0 (rec)

k=0
n—1 )n k
et as, = — Zagkbgn_gk = Z gk mpTE On montre alors par récurrence que pour une telle suite on a
. (1/2)»F  HR N (1/2)P
(;i: < 1:pourn =0 OK et si 'HR est vraie pour k£ < n — 1 alors ‘ Zn Z‘a% 2n—/2k+1)' < 2(2(]9/4-)1)' <

V2(sh(1/v/2) — 1/v/2) < 1. On a donc bien f DSE et R >

Par contre R < m car f n’est pas bornée en 7.

L
7

. - . _ (2n)! . T af2n\ oniq
Exercice 53 [[sujet] 1. Siju| <1, (14+u)"Y2 =Y (-1)" u™ dong, si x| < 1, ——— = 4" 2t
7; (2nnl)? V1—22 7%;) n
en dérivant, on trouve = 3/2 24_ ( ) (2n + 1)2?
1 1
2. 11 suffit de retrouver le DSE de = x (1 - xZ)_l/Q par produit de Cauchy et d’identifier les

(1 — 22)3/2 1— 22
coefficients de ces 2 DSE

1
Exercice 54 |/sujet 1. x » ——— est DSE sur |0, 1], de méme x —
— 10,11
arcsin(y/x)

X
10, 1[. De plus f est solution de 2z(1 — x)y'(z) — (2z — 1)y(z) = 1 avec y(0) = li(r)nf = 1. La seule solution DSE de

1
———— dongc, par primitive, arcsin est DSE
V1—z?

sur |0, 1] puis x +— aussi (car le DSE de arcsin est impair) et par produit de Cauchy, f est DSE sur

cette eq diff est y(x) E A1()* et R=1
1 = B r——— —
4 v — (2n+1)!
2 (=" érifie le CSSA car —+! 2n < 1 et, avec Stirli ! donc li 0. Par contre
.E— ayp véri r = < , av irling, a,, ~ —— donc lima, = 0. Par contr
" an, 2n+1 & n 2\/mn "

Z a, DV avec I’équivalent précédent.

1 x arcsin(z)
1—22  (1—22)3/2
2. x> (1—2%) Y2 est DSE sur | — 1, 1] donc arcsin aussi (primitive) donc f aussi (produit de Cauchy)

Exercice 55 1. festClsur]—1,1[et f'(z) = donc (1 —2?)f'(z) — xf(x) =

b
3. Mieux vaut utiliser I’eq diff : par C-Lip (les fct — et £ sont continues sur ] —1,1]) f est la seule solution de I’éq diff
a a

telle que y(0) = 0; si y(z) = Z a1 (f est impaire donc on peut se limiter & chercher les sol DSE impaires)
n>0

ona (1 —z?)y (z) + zy(z) = ap + Z[(Qn + Da, —2(n — 1)a,_1]=*" donc a, =
n>1

(2nn!)?
(2n+ 1)!



Exercice 56 [[sujet] 1. arcsin’(z) = (1 — 2?)7'/2 est DSE sur | — 1,1[ donc arcsin aussi par primitive puis f par

produit
2. facile
1
3. par C-Lip (les fct T et sont continues sur | — 1,1[) f’ est la seule solution de 1'éq diff telle que
1— a2 1—2a2
y(0) = 0; si y(z) = Z anz®™ 1 (f' est impaire donc on peut se limiter & chercher les sol DSE impaires) on a
n>=0
n too n 2
2n _ (@ nl)? : _ 2"n)* onio
(1—2)y/ (z) +zy(z) = ao+n§[(2n+ 1an, —2(n—1)ap—1]z“" donc a,, = s 1 puis f(z) = ,;) mx
1
Exercice 57 [ est C? sur | — 1,1] et vérifie 9(1 — 2)f”(x) — 9z f'(z) + f(z) = 0 avec f(0) = 0 et f'(0) = 3
(f est la seule solution de ce probléeme de Cauchy sur | — 1,1[). On cherche une solution DSE impaire sous la forme
y(z) = Z anz®" Tt et on suppose R > 0. On a 9(1 — z?)y" (x) — 9zy/(z) + y(z) = 2[9(211 +1)(2n + 2)a,—1 — 4(3n +
n>=0 n=0
4(3 1)(3 2 4™(3 2)!
1)(3n + 2)a,]z?" " donc y est solution sur | — R, R[ si et seulement si a,, = (8n + 1)(3n + )an_l = (n—+)'ao;

9(2n +1)(2n + 2)
1 4™(3 2)!
on vérifie R = 1 par d’Alembert donc f(z) = = E u 20+ pour |z| < 1.

337 (2n + 2)In!

3 = 337 (2n + 2)!n'
. . H, 1
Exercice 58 |[sujel/] 1. 0< —& < o1 donc R = +o0
n! n—1)!
2 o) = fla) = 3 o -
— (n+1)! x

T]—et

3. On résout 'éq diff et on trouve (avec f(0) =0) f(z) = e””/ dt (Pintégrale ne pose pas de pb car la fct est
0

prolongeable par continuité en 0)

. ; 77;)(n+1)!t onc f(z)=e ;(n+1)!n+lp0urtoutx€ puis prendre z = 1.

Exercice 59 |/sujet/|| 1. f est C" sur R par récurrence.

2. Si f(x) = Z anx” alors f est solution si et seulement si (n + 1)an41 = (@ + A™)a,, pour tout n € N. et on a alors
n>0
n+1

Ap 41T |a + /\”

Apx™
3. f est continue donc bornée sur [—|z|, |z|] (|f| < C sur cet intervalle) puis £V () = af P (£) + AP fP) (L) et [N <
T — " n+1
[ e al < Em o japt —— 0
0 n:

| |z] - 0 donc R = +o00 et toute série entiere de cette forme est solution.
n—-+0o0

donnent par récurrence || < C(1+ |a|)P. On a alors

donc f est DSE sur R.

n! n—+00

Exercice 60 1. Pour v = 1, f(z) = ae”. Pour v = —1 on a f'(z) = f(—x) donc f" est C' et on a f'(0) =
f(=0) = aet f'(x) = —f'(-2) = = f(z) donc f(z) = a(cos(x) + sin(z))
2. R = +oo par d’Alembert par ex, vérification de f'(z) = f(yz) facile
3. si f'(z) = f(yz) alors par récurrence, f est C et f("(x) = v V/2f(4"z). Sur [-A, A, on a [f™(z)| <

FEo )" |z
Tf (t)dt| < 1) Tl1f oo, (- 4,4 R~ 0 donc f est DSE sur [—A, A] pour tout
0 .

[|.fllso,[— 4, 4] donc

+00 n
T
A donc sur R. En posant f(z) = « g an—, on trouve que f est alors la fonction de 2) donc S, est un singleton
n!
n=0

composé de la fonction définie en 2)

Exercice 61 [[sujet] On cherche y(x Z anx™ avec R > 0 : 2%y (x) +6xy’ (x) + (6 — 2%)y(x) = 6ag+12a12+ Z[(n—f—
n=0 nz=2
2)(n+ 3)a, — ap—2]x™ donc y est solution sur | — R, R| si et seulement si ag = . a1=0eta,=—2""2_ . onen
n n—2 I 0 6) 1 n (n+2)(n+3)7
-1 -1 x — sh(x)
déduit =0 et agy = -—— donc R = t = = :
éduit aspt1 et agp T 3] onc +o0 et y(x) z% o 3)!;10 -

1
Exercice 62 |[sujet| 1. Par CSSA sur I, on a |R,(z)| < T donc CVU sur I qui permet d’étendre I’égalité en 1
n

par continuité.



1
2. o(z") donc ACV si z € [0,1] et ~ e siz =1 (donc ACV aussi)
1 1 1 1 1
g 1 () — <2n_ n): _ _ = ZIn(1 + ). Puis S(1) =
3. Six e 0,1[, S'(z) n§>0 x 5% =22 20-2)  20+2) donc S(x) 5 n(1 4 ). Puis S(1)

n 2n

1 1 ) (_1)k+1

1 ( ) = 1 ——— =1In(2
HJTOOZ 2k+1 2k+2) ool kt1 n(2)

4. S n’est pas continue en 1 donc pas de CVU sur [0, 1].

In(1—t¢
Exercice 63 |[sujet/]| 1. t+— ¥ est CM" sur | — oo, 1[ (prolongeable par continuité en 0) et intégrable sur [0, 1]
donc D =] — 00, 1] et F est méme C* sur D
In(l—t) Xt
2. s |t < 1, ¥ = Z et on intégre terme & terme sur le segment [0, 2] C] — 1, 1].
n=1
In(1—=2 L. R e
3. On a F(z) = ——; vérifier que z — F(z) + F(1 — z) et  — In(z)In(1 — z) ont les mémes dérivées. On a

2

donc F(z) + F(1 —z) = In(z)In(1 — z) + C; par continuité de F' (et S par CVN) en 1, on a C = F(1) = —% car

In(x)In(1 — ) v In(x) — 0

Exercice 64 |[sujet]| 1. si|z| <1, " = o(z™) et si |z| > 1, DVG
2. c’est une série entiere (lacunaire) donc f est C* sur | — 1, 1]
+oo —+oo
3. t — expt?In(z) décroit sur R si 2 € [0,1[; on trouve / exp(t®In(x))dt < f(z) < / exp(t?In(x)) dt donc
1 0

(poser u = tv/ —Inz) puis f(z) ~ y-rinz
=

2
Exercice 65 1. Dy =] —1,1[ car R =1 et la série DVG en +1
N 1], . 1y 1 1
2. 1—2)f(x)+In(l —2) = Z |:—hl <1— ﬁ) - ﬁ} 2™ qui CVN sur [0,1] car —In (1— ﬁ) - = O(n2) donc

n>1
(1—-2)f(x)+In(l —2) = C+o(1), ce qui donne I'équivalent.

=1

1
Exercice 66 [[sujet/| 1. Rfy=R;=1carl<In(n)<netln <1 - 7) ~ — par ex
n n

1 1
2. si z €] —1,0], E In (1 - 7) 2™ est alternée et vérifie le CSSA donc |R,(z)] < —In (1 - 7) (indép de x) donc
n n
CVU sur [—1,0] et g est continue sur [—1, 0]

+oo —+oo +oo —+oo
3. siz| <1, Zln n)x —Zln(n)gc”'|r1 et Zln(n)x”—Zln(k—l)xk = Z[ln(n)—ln(n—l)]x” =
n=2 n=2 k=3 n=2
—9()
g(x) 9(=1)
4. =
I =1 oo 2
+o0
-1 In(l—x)4+x { ( 1) 1} )
. ~h(z) =3 g = S THTE 1 @) =S (1= )+ 2|
5. on prouve g(z) - (x) nz:; — . si |z < 1, g(x) (x) ; n S + ] 2" qui
1 1 1 1 1 e s
CVN sur [—1,1] car {ln (1 - f) "+ f} 2" < {—ln (1 — 7) " — f} ~ ——; on en déduit lim g(x) — h(z) =
n n n n 2n? z—1
glr) ~—In(l—=x)
EERetg(m)Th(m)Tln(l—x) On en déduit f(z) = e

Exercice 67 |[sujet| 1. On prouve H, ~ In(n) (par la question 2 par exemple) donc anH, ~ a,lnn
2. Fait en cours (dualité suite/série)

1
3. On pose g(z ZH 2" et on a R = 1; (H,) est le produit de Cauchy des suites (f) et (1) donc g(z) =

n>1 "

—In(1—2x) : n i
- On vérifie, avec f(x Zlnnx que R = 1 puis f(z) — g(z) = Z(ln(n) — Hp)z". La suite
-7 n>1 n>1
1
(In(n) — H,,) est bornée donc |g(x) C’;x f ; on a donc f(x) = g(x)+ O (m> et comme
n
1 —In(1 —x)

= olg(x)), ona f(z) ~ g(x) ~

1—x z—1 rz—1 r—1 1—x



E i j 1. i = I, >
xercice 68 |/sujet] %nfn Oet I, >0

1 1 -1
2. Iy — I, = e_%t"(t —1)dt < 0 done (I,,) décroit, minorée par 0 donc C'V puis 0 < I, < e_l/ t"dt = 1
0 0 n
donc lim1,, =0
3. facile puis lim I,,_; = 0 donc (n + 1)I,, — e !
4. R =1 (par equiv), ZI” DV (par equiv SATP) et Z(fl)”ln CV par CSSA donc D, =] —1,1]
11 1
5. g(x) = / le dt par TITT avec / |3:t|"e_% dt < e t|z|™ par ex
o 1— 0
e—l I +I 4 < ) +oo 6_1 +oo e—l +oo 6_1
6. I, = Tl d € an=1 (In——> n <In——):£
n n one g(x) = nzl n 0+; A O+; n
1z } N e ! -
par CVN sur [0,1]. On a donc g(z) — T2 oo £+ o(1) donc g(x) ST

Exercice 69 |[sujet]| 1.T(n+1)=

n A”L
2. (a—'p”) et (—'p”> tendent vers 0 pour tout p > 0 car (a,) et (A,) convergent
n! n!

/ = Apy1 — Ap n = an+1 ,p /
3. a) g(1)—glt) =D T =D S = (1)
n=0 ' n=0 .

b) Les deux fonctions ont la méme dérivée et sont toutes les deux nulles en 0

(7%

+oo +oo
4. / f(u)du = A par TITT avec fp,(u) = —'u"e*“ et / | fr(w)| du = |ay| puis Z |an| CV par hypothese.
0 n: 0

. ' th(t) 1 . th(n) _ th(t) 1 th(n)
. > > < < <
Exercice 70 [[sujet/| 1 2 t—>+oo 2 donc a,, existe (si n > 1) puis si t > n, 2 S @ Sg donc LS
1
an, < —. On en déduit a,, ~ — donc R =1 puis Zan DV et Z(—l)"an CV par CSSA (lima, = 0 car c’est le
n n
reste d’une intégrale convergente) donc Dg = [—1, 1].
2. Siz € [-1,0], le CSSA est vérifié donc |Ry,(z)| < ant1 —+> 0 donc CVU sur [—1,0] et S est continue en —1.
1 oo dt O th(t 2e~ 2
3. a, ~ o= /n 2 puis S(z Z Z/ dtm". On a ensuite 1 —th(t) = ﬁ < 2e2t done

n>1 n>1

ap, — —
n

+o0 26—2t +oo dt 26—2n 1
< / 5—dt < 26_2”/ - = . On en déduit la CVN sur [0, 1] de Z (an — 7> 2™ donc
n t n t n et n

lim <an - l) ™ = L est finie. Ona S(x) = Z £+€+0(1) = —In(l—2)+£+o0(1) donc S(x) ~ —In(l—=x).
n

r—1 n r—1 z—1
n>1 n>=1
“+oo n—1
Exercice 71 [[sujet]] 1. zy/(z) + ay(z) — zy(x)? = aag + Z (n+ a)a, — Z akanlk] z" donc y est solution ssi
n=1 k=0
n—1
ag=1eta, = Z aray,_1_k puis on vérifie par récurrence 0 < a,, < 1 donc R > 1
n—+« o
2.onal0<a, <ldonc, pour0<ae<1,0 Zx
1—=x

3. a) avec T-Y, comme f(1) =1,0na f(t) = f (1)(t — 1)+ o(t — 1) donc ¢ x f est bornée au voisinage de 1

T

b) Onal > 0et I = / t*f ()% + 2 to‘go(t)f (t)f(t)dt + /pltaf/(t)2dt. On a t%p(t)f(t)? = 0(1-1)
0 0
donc 2/1 t*o(t) f'(t) f( / t* [t () + cup(t)] dt - —/1t"_1 [+ tp(t)?] f(t)*dt donc on a
Jo 0
I = « 2 dt — a—1 d
/Otf(t) t a/ot F()*dt
no—1 ng—1
Exercice 72 Z apx®| 4+ ¢ Z bra® < |P(x)| + eg(x) avec P(x Z arz®. Comme g(x) >
k=n k=0
P(w‘)

bpox™ et by, >0, 0ona lim = 0 donc il existe A tel que, pour z > A, on a |P(z)| < eg(x). On en déduit,

z—+oo g(x)
pour x > A, |f(x)| < 2eg(x).




2. a, — b, = o(by,) donc f(z) — g(z) = o(g(x)) avec la premiére question

2
1\" 1 1 n 1 e
3. (1 + E) = exp {nQ In (1 + ﬁ)} = exp {n —3 +0(1)} ~ % donc a, ~ %%. On en déduit que R = 400 et,

Z‘%‘FOO N/i j{: 71' B \/E

avec la question précédente, f(x)

2

Exercice 73 [[sujet]| In(th(z)) = In(1 — e 2*) —In(1 + e %*) = — Z me_z(%ﬂ)x pour z > 0 et on applique le
n=0
TITT avec fi(z) = — 2 e—2@n+Dr of / R TR P —
2n+1 0 (2n+1)2
Exercice 74 1. I, =T(k+1) =k
2. DSE de cos(u) avec u = /z
k +o0 k!
3. On applique le TITT avec f,(z) = (—1)"e™" (;Ck)' et / | fr(x)|dz = o qui est le terme général d’une série
: 0
+oo k!
CV (par d’Alembert) ; on trouve / e " cos(vz)dr = Z(—l)k ~-
0 = (2k)!
. - 1
Exercice 75 1. f(z) o et f(x) oty
1
2. poser u = —
x
1 ! ! (2n)! 1 (2n)! 1
3. 1 u*™ donc (TITT de =) (-1)" ~
pour [u} <1, Zz=== Z anl onc (TITT) /0 f(w)dz T;( S a1z N a1 12

par Stirling.

1
2,/mn3/2

k!
Exercice 76 [[sujet]| 1. Iy, existe sin > 1 et dans ce cas I, IZP —
n

2. R = e par d’Alembert

+oo
3. = Zt”e_mx" si [tre”'| < 1 donc comme maxte ' = 1, si |z] < e. On a alors / tta: de BT
R+ e 0 et —tx
+oo
Z I, nz™ pour |z| < e.
n=1

1
Exercice 77 1. sh(ar:t)eft2 = o(—)

t——+o0 t2

2n+1 “+o0
TITT x 2
2. F(z) = g mln avec I, = /0 27 s te= At "2 nlly = n'g (donc DSE pour tout = € R)
n=0

/2 m/2
Exercice 78 1. I, = / sin(t) xsin2" 1 (¢) dt "2 (2n—1) / cos(t) x cos(t) sin?"2(t) dt = (2n—1)(In_1—
0 0

2n —1 ) 2n)! 7
In) donc ITL = In_l puis In = (2"T)2§
2. si|z| < Rety(z Z anz®" —1)y" (x)+32%y (2) +ay(z) = Z[(2n+1)2an—(2n+2)(2n+1)an+1]x2"+1 donc
n=0 n=0
f est soluti ]— R, R[ si et seulement si nrl g R=1letsi|z|<1,ona f(z Z
est solution sur | — si et seulement si a,, 41 = a, donc R = 1letsi|z ona =a
’ T 242 0 2”n'

2 2
3. siz| < 1, Z 2”n' n — - Zlnx% / Zsm e dt = - g(z) car |sin®"(t)2?"| < |2[*" donc CVN
n>0

n=0
sur [0, g] (Varlable t).

t.’t
Exercice 79 |[sujet/|| 1. f(x,t) = (it
— xr

a"f( ) |Int"t" _ |In"s ( 1 ) Jloa
x,t)| = < =o|l—]e .
ox™ 1+t 1+t =0 \t%35 2

donc D =] — 1, +o0].

2. Sia>—1,




+0o0 +00 1 1 1
In¢)"z" I, In¢)™ In¢|”
3.t = E %puis, si|z| <1, F(x) TaT g Ea:" avec I, :/0 (1n+)tdtpar/0 |1I:_‘t dt g/o (=Ilnt)"d¢ 1=

n=0 n=0

11 1
n!. De plus 5/ (—Int)*dt < |I,| < / (—Int)" dt donne R = 1.
0 0

1
Exercice 80 |[sujet| 1. (a,) tend vers 0 donc a—? =o0 (—') et R = +o0.
n! n!

2. Par IPP (c’est I'(n + 1)) = nl.

t’fL

+oo
3. TITT avec / ap— | dt = |an].
0 n.

2n 2n T
Exercice 81 1. cos(xcost) = Z fau(t) avec fr(t) = (71)"17(2(370; et on applique le TITT avec/ |fn()]dt <
n)! 0
n>=0
™ = (série CV) ce qui donne /7T cos(x cost) dt = Z(—l)” (/7r cos%Ltdt) =
(2n)! d o - (2n)!

n=0 0
2. On trouve 0 (soit en dérivant terme a terme deux fois et en utilisant les relations entre les intégrales de Wallis, soit
avec le théoréme de dérivation des intégrales & parameétres et en faisant une IPP sur f'(z)).

. i 2)\—1/2 1
Exercice 82 |/sujet/| 1. pa(t) Ko el A et 5~ A<l
.99 . dg 9%g 2 .
2. |g(x,t)] < @a(t) puis a—(z,t) = —tpx(t) sin(at) donc a—(z,t) < tpa(t) Y ea(t) et W(:z:,t) < t“pa(t) indép de
x x x

x et intégrable sur [0, 1].

1 . 1 _42\A+1/2
Il (z) = —/ tcos(xt) x toy(t)dt P —/ [cos(at) — x sin(at)) (1—#)

1 _42\A+3/2
(1—1%)
x cos(xt)—————dt
/0 A +3

1
dt puis / sin(xt)(1 — t2)M1/2 dt 1EP
0

too 2n

t t !
3. pour (z,t) € R x [0,1[, cos(zt)px(t) = Z(—l)"(;A)(')xQ" puis TITT, avec z € R fixé, (H4) / |fn(t)] dt <
n . O
n=0
p2n 1
— t)dt
. i et 0 N 1
Exercice 83 l.g:t— ————-est CM" sur R" pour z < letg(t) = o).
1—xsin®t t—too  \ 12
“+ o0 “+o00
2. Siz| < 1,g(t) = Z (1) avec u, (t) = 2™ sin?" te ™" et on applique le TITT avec |, (8)| dt < |z|™ / e tdt =
0 0

n=>0

—+oo
|z|™ (donc série CV); on trouve f(z) = Z (/ et sin2”tdt> x".
0

n=0

Exercice 84 1. La série CVN sur [—R, R]

1 $2n 1 $2n
2. f(t) = n In(l —¢) —In(l+1t)] = _,;) 1 et on intégre terme a terme avec le TITT car /0 CT 1‘ =
1 =
@t (ce qui prouve aussi U'intégrabilité de f sur ]0,1[)
1 ! oo
3. En posant u = o on vérifie que / (t)dt = / ft)de
0 1
Exercice 85 1. récurrence
1
2. On en déduit R > 3
1 400 $2
3. Si |z| < v ona S(x)=1+2x+ Z (g1 + 2up + (=D 2™ = 1 + 2z + 2(S(x) — 1) + 22%S(x) + T, onen
x
n=0
1 x? 142+ 22 4 1 2 1 1 1 4
déduit S(z) = ( ) = _ 4 2 1 AN
éduit S(x) = T 9.2 1+2)  (+a2(1-20) 91-2¢ 91tz  3(1+a2)72 9; S
2 1 4 1 B
3 Z(fl)”x" + 3 Z(fl)”ﬂ(n + 1)2™. Au final, comme a,, ~ g X 2", on a bien R = 3

n>0 n>=0



Exercice 86 |[sujet/| 1. upy1+(n+1)4+1=2(u,+n+1)
2. u,=2""—n—-1

1 2 x 1
3-R:* tS = — —
IR S Pl e -l

Un

2TL

t"

1 1
—— — donc DVG en +—
n—4oco 2 2

2
. Pour |z| < R, on a S(z) = ug +$Zun+1m” =1 —l—xZ(Qun +n)z" =1+ 2zS(x) + (1967)2
-z
n=0 n>=>0

[

(qui donne bien le

méme résultat !)

Exercice 87 [[sujet/| 1. récurrence (triple)
1 .
2. On en déduit R > 5 S(x) = 74+2x+4x2+z Uni3x™ T = 4420+ 422 +2(S(2) +4—22) + 22 (S(x) +4) — 23S (z)

n=0
-1 [
Cl42z 1-z (1-2)?
4. S(x) ==Y (-D)"a" =7 2" +4Y (n+1)a" donc ap = =7+ 4(n+1) + (-1)"*

n=0 n>=0 n>=0

Exercice 88 |/sujet/|| 1. Par récurrence

2. Avec 'encadrement précédent, on trouve R = 1.

2 .
3.Si|z| <1, f(z) =1+2a+ E (an—i— man_;l)x’“rl =l+ax+z(f(zr)—1)+2 E ﬁx"“ donc f'(z) =
n>1 n=1

—2x
1 (@) = 1+af (@) + 20/ (@) puis (1= a)f (@) = (1+20) (@) ot f(a) = Gy car £(0) = 1.
Exercice 89 1. réc
n 1
2. Apio—Qpi1 = nL—M > 0 donc (a,,) est croissante. On en déduit a,, = 1 et apyo—ant1 = p—— donc Z(an+2_an+1)
DV
mn n n 1 . . n
3.a+2:1+a7donclga+2\l+ pu1shma+2:1etR:1
(p41 (71 + 2)an+1 Ap41 n+2 Gp41
4. x5 (z) = Z napz" = ar1x + Z(n +2)apg02" M =2 4 Z[(n +2)any1 + a2 =z + Z(n + Dap 12" +
n=0 n=0 n=0 n=0
Z an17"T2 + Z anx™? =z + 228" (z) + (S (x) — ag) + 22S(x) = 225" (z) + x(x +1)S(z) d’ot le résultat pour
n=0 n>=0
x # 0 et en x = 0 par continuité en 0
r+1 2 e "
5. " :1+If1 doncS(m):mcarS(O)—ao—l
6. e "= Z(fl)”ﬁ et o Z(n + 1)z™ donc, par produit de Cauchy, a,, = i(fl)"*k bl
. = = ! (J,‘ — 1)2 = = , P p y, An = par (n — k)'

Exercice 90 |/sujet/| 1. d2 =2/3; pour la relation de récurrence, il suffit de développer le déterminant successivement
par la premiere colonne et par la premiere ligne du second déterminant qui est apparu.

2. |d,| < 1 par récurrence donc R > 1.

3. Sest Cl sur | —1,1[ et S'(z) = do + 2d1x Z(ndn_l +dp 2)2" =14+ 2+ 2(5(x) — 1) + 2S(z) ; on en déduit la
n>=2

valeur de S(z) (et R =1 car S n’est pas bornée en 1). Puis S(z) =« Zm” X Z(—l)"( x

—— | donc par
|
= = n+1)!

produit de Cauchy et unicité des coefficients, on a d,, = Z
k=0

Exercice 91 |/sujet/| 1. Récurrence

2. Comme a,, > 1, on en déduit R > 1; on pose b, = a—? et on a (n+ 2)byi2 = byy1 + by, done f'(z) = Z(n +
n!
n=0
Dbp1z™ = by + Z(n + 2)by oz = by + Z(an + b))z = by + (f(x) — bo) + zf(x) donc f est solution de
n=0 n>=0

y'(x) = (1 + 2)y(x) avec y(0) = 1.



n
41403 _ x+az?/2 _ oz z2/2 _ 1177 n _ 1 _
3. On en déduit f(x) = e =e" xe = Z il Zanaz avec Qzn = oo et agpt1 = 0. Par
n>=0 n>=0
n
. an Qg s I . s . .
produit de Cauchy, on a — = Z =) puis on distingue les cas n pair/impair. (En fait on a R = 4+00)
n! n—k)!

k=0
Exercice 92 M 1. récurrence puis R > 1

2 f5) = 1+ f(2)

3. y(z) = ae® + ep(x) avec a € R.
Exercice 93 1. récurrence
2. R> -
4
3. f(z)* = Z cnx™ avec ¢, = Z %an,k(n —k)l'=(n+ 1)((IH7Jr1

1)!
n=>0 k=0 n+ )

4. f(0) =3 donc f > 0sur ] — h,h[ (avec h < R); sur cet intervalle )2 = 1donc f(z) = : _3330 = ;3n+lxn

Exercice 94 |[sujet| 1. On vérifie |a,| < 1 par récurrence.
2. 81|z <1, fl) =1+ Zaon"H donc on trouve f'(z) = f(ac)z :c

n

(produit de Cauchy) donc f'(x) =

n=0 n=>0 n+t2
In(1 — 2 In(1 —
—Il(if)ﬂf(x) et en résolvant cette éq diff, avec f(0) = 1, on trouve f(z) = 1:1: exp ( n( x))
x —x x
Exercice 95 [[sujet]] 1. (p,q) €[1,n]? donc a, < (n+1)? et R > 1 comme (a,) ne tend pas vers 0 la série est GDV
en +1 et Dy =] —1,1].
1 1
2. Pour |z| < 1, on écrit T2 = Zanx” et T3 = Zﬁnx" et on a m Z’yna: avec

n=0 n=0 n>0

n = Zakﬁn_k = a, car aipBn_r = 1 si et seulement si k = 2p est pair et n — k = 3¢ est un multiple de 3. On

k=0
. . . 1 . 1 s . R .
détermine ensuite a,, avec le DSE de (=21 = 2%) BT D D) qui s’obtient a partir de la

décomposition en éléments simples.

Exercice 96 |[sujet]| 1. CVS seulement et CVNTS de | — R, R].
2. Pour construire une partition de [1,n + 1], on commence par construire un ensemble contenant n + 1 : le nombre

d’ensemble contenant n 41 et de cardinal £+ 1 est Z (il reste & choisir les k autres éléments parmi[1,n])) puis il

reste & constituer une partition de I’ensemble des n+1— (k+1) = n— k entiers restants, il y a p,,_;, choix possibles.
Le nombre de partitions pour lesquelles n + 1 appartient & un ensemble de cardinal k + 1 (avec k& > 0) est donc

<Z>pnk En faisant varier k € [0, n], on obtient p,41 = Z <Z)pnk h=n—k Z <Z>ph

k=0 h=0
N n b “+oo
3. On pose b, = Prn otona (n+1)bpp1 = Z ; on vérifie 0 < b, < 1donc R > let f'(z) = Z(nJrl)b,H_lx” =
n! = (k) n=0

f(z) x e par produit de Cauchy. On a donc f(x) = f(0) exp(e®) = exp(e” — 1) car f(0) =py = 1.
Exercice 97 [[sujet/| 1. On compte le nombre de permutation de[[1,n] en fonction de leur nombre de points fixes : pour
créer une permutation ayant k points fixes, on choisit ’ensemble de ses k points fixes (il y a (Z) choix possible) et

pour chaque choix de cet ensemble, la restriction a ’ensemble des autres n — k points est une permutation sans point

n n
fixe (il y a d,,—y, choix possibles) ; le nombre de permutations ayant k points fixes est donc A dp_ = ( 1 dp_k-
n—

L’égalité s’obtient en ajoutant ces quantité et en utilisant que le nombre total de permutations de[1,n] est nl.

2. Par définition, on a 0 < d,, < nl donc R > 1; e f(x) = Z a,x" avec a, = Z (produit de Cauchy)
kl(n —
n=0
e " " -
donc a, = 1. On a donc f(z) = e ;0(71)"5 X ;):17" donc d (encore produit de
n> n> =0

Cauchy).



Exercice 98 1. I({1}) = {id} donc t; = 1; I({1,2}) = {id, (12)} ((12) est I'appl qui échange 1 et 2) donc
ta =2 et I({1,2,3}) = {id, (12), (13),(23)} donc t3 = 4

2. I([1,n]) C S, (ensemble des permutations de [1,n]) donc ¢, < n!

8. Sig(n+2)=n+2alors g, € I(1,n]) doncily at,i1 applications de ce type. Sinon g(n +2) =k €[1,n + 1]
(il y a n+1 choix pour k) puis g(k) = n+2et g, € I(E), ) ot Ey =[1,n+1]\ {k} donc il y a (n + 1)t,
applications de ce type

1

tn,
4. sia, = —
(n+2)!

on a anyo = (an+1 + an) donc f est solution de f'(z) = (1 + z)f(z) avec f(0) = to = 1 donc

'7
fla) = evtes?

1
Exercice 99 |[sujet/| 1. a,=o0 <7> donc R > 1;pourz € [0,1[,ona | f(z) —
n

_ S _P@)]
1| <e+
—In(1 —2) —1In(1 — z)
o P,
fixé) ; Comme hmﬂ =0,ilexiste r >0telque l —7r <z <1= M
e=1 —In(l — ) —In(1 — )
I’équivalent demandé.

ng
g anpx”
n=0

ou P. est un polyndme qui ne dépend que du choix de £ (donc

<e Z i:a(—ln(l—x)—

n>no+1

on en déduit

< ¢ donc on a bien

+oo
1 . 1
2. Pour I'exemple donné, (na,) ne tend pas vers 0 et f(z) = Z 2—px2p donc |f(x)] < Z 55 ©st bornée donc flz) =

2 r—1
p=0 p=0
o(In(1 — x)).

27
Exercice 100 [[sujet] 1. f(re)e % = Zakrkel(k_”)e et on intégre terme a terme car / lagreik—mitheta) qg —
k>0 0

2m
27|ag|r® (série CV); on ne déduit le résultat car / e =m0 49 = 276,
0
2m

2. a) f(reit)e*ipt dt| < 27| f]loo

0

b) Quand r tend vers +oo et p > 1, on en déduit a, = 0 donc f = ap est constante
27

3. On a cette fois f(ret)e™ Pt dt| < 27

(ar? + ) donc |ap| < ar?™P + fr7P ——— 0 si p > ¢+ 1. Il reste donc
0 r—400

q
x) = Z aqz? € Cy[X
n=0

Exercice 101 M 1. Utiliser a,, = Ry, — Rn+1

2. |f(z) — (1—x) Z |Ry|2" + ¢ Z ") < (1 —2)(no +1)C + ¢ car (R,,) tend vers 0 donc est bornée
n>no+1
et 2" < 1. ng etant ﬁxe, ilexister >0telque l —r <z < 1= (1—2)(ng+1)C < e donc |f(x) — S| < 2¢ pour

x proche de 1, ce qui donne le résultat.

. - . exp(in’z) (p) P 1 () ;
Exercice 102 Si up(z) = o alors [|u, |00 = o =0\ 3 donc Zunp CVN sur R ce qui donne
n n n
+oo TL2p p2p
fe€C®M) et f®) (0) = Z o sona donc (en ne gardant que le terme d’indice p, les autres étant positifs) f(p)( 0) > o

n=0
PP @) (0)
donc — f (p)( ) = — 400 donc E 7':101’ diverge pour tout = A; le rayon de convergence de la série de
p! b:

2p ' p——+o00
Taylor de f est donc nul.

Exercice 103 1. |g(z,t)] <e™?
k

g _ 2k‘ ( 2 Z)‘ —t < 2k —t  _ (l)
ak(mt)‘ t*% |cos | xt —i—k:2 e’ < t*e A e

oo 4k)!
3. Ona F@+1(0) = 0 et F2R)(0) = (fl)k/ t*e~tdt = (—1)*(4k)!. La série de Taylor de F est donc g (fl)k( ) z?F
0 k>0 ’

2. Avec

dont le RCV est nul donc F' n’est pas DSE.
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