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Étant donné un endomorphisme l, pour tout x de E et tout n de N∗ on définit Ln(x) = 1
n

n−1∑
k=0

lk(x). En prenant différentes

hypothèses pour E et pour l on étudie la limite de la suite
(
Ln(x)

)
n∈N∗

lorsque n tend vers +∞.

PARTIE I : EXEMPLES
Dans cette partie E est un espace euclidien de dimension 4, rapporté à une base orthonormale
B = (e1, e2, e3, e4).

1. Soit s l’endomorphisme de E défini par sa matrice S = MatB(s) = 1
3

Ü
−1 0 2 2
0 −1 −2 2
2 −2 1 0
2 2 0 1

ê
.

a) Réduction de l’endomorphisme s.

i. Calculer la matrice S2. Justifier l’affirmation : l’endomorphisme s est diagonalisable.
ii. En déduire que 1 et −1 sont les valeurs propres de s.

On note E1 et E−1 les sous-espaces propres de s respectivement associés aux valeurs propres 1 et −1. Il résulte
des questions précédentes que E1 et E−1 sont des sous-espaces supplémentaires de E.

iii. Calculer la trace de s. En déduire la dimension de E1 et celle de E−1.

b) On considère les trois vecteurs suivants de E : u1 = e1 + e3 + e4, u2 = e1 + e2 + 2e4 et u3 = −e1 + e2 + e3.

i. Déterminer les vecteurs s(u1) et s(u2). En déduire que (u1, u2) est une base de E1.

Déterminer une base orthonormale de E1.

ii. Déterminer un vecteur non nul u4 = ae1 + be2 + ce3 + de4 orthogonal aux trois vecteurs u1, u2 et u3.

En déduire que (u3, u4) forme une base orthogonale de E−1.

c) Pour tout x de E et tout n de N∗ on pose Sn(x) = 1
n

n−1∑
k=0

sk(x).

i. Pour x ∈ E fixé, on note x = y + z avec y ∈ E1 et z ∈ E−1.
Soit k ∈ N, déterminer un réel αk tel que sk(x) = y + αkz.

En déduire, pour n ∈ N∗, un réel βn tel que Sn(x) = y + βnz.
ii. Déduire de ce qui précède que la suite

(
Sn(x)

)
n∈N∗

de E a une limite lorsque n tend vers +∞.

Exprimer cette limite en fonction de x et de s(x).

2. Soit ℓ l’endomorphisme de E défini par sa matrice MatB(ℓ) = 1
4

Ü
3 0 1 0
0 3 0 1
1 0 3 0
0 1 0 3

ê
.

a) Une propriété concernant les normes.

i. Pour tout vecteur u = ae1 + be2 + ce3 + de4 de E calculer ∥u∥2 − ∥ℓ(u)∥2.

Prouver l’inégalité ∥ℓ(u)∥ ⩽ ∥u∥.
ii. En déduire une condition nécessaire et suffisante pour qu’un vecteur u vérifie l’égalité ∥ℓ(u)∥ = ∥u∥.

Déterminer max
∥u∥=1

∥ℓ(u)∥.

iii. Montrer que 1 est valeur propre de ℓ et que le sous-espace propre associé est de dimension 2.

b) Réduction de l’endomorphisme ℓ.

i. Déterminer le polynôme caractéristique de ℓ.
ii. Montrer que ℓ possède une autre valeur propre λ ̸= 1 que l’on déterminera.

Justifier que les sous-espaces propres G1 et Gλ de ℓ associés aux valeurs propres 1 et λ sont supplémentaires
dans E.



c) Pour tout x de E et tout n ∈ N∗ on note Ln(x) = 1
n

n−1∑
k=0

ℓk(x).

Soit x ∈ E. On note x = y + z avec y ∈ G1 et z ∈ Gλ.
i. Pour k ∈ N exprimer ℓk(x) en fonction de y, z et k.
ii. Pour tout n de N∗ exprimer Ln(x) en fonction de y, z et n.

En déduire que la suite
(
Ln(x)

)
n∈N∗

de E a une limite lorsque n tend vers +∞ et déterminer cette limite.

3. Soit t l’endomorphisme de E défini par sa matrice T = MatB(t) = 1√
3

Ü
1 0 1 1
0 1 −1 1

−1 1 1 0
−1 −1 0 1

ê
.

a) On considère les deux vecteurs suivants de E : ε1 = 1√
2

(e3 + e4) et ε2 = 1√
2

(e3 − e4).

i. On note F1 = Vect(e1, ε1). Déterminer les vecteurs t(e1) et t(ε1).
En déduire que F1 est un sous-espace vectoriel de E de dimension 2, stable par t.

ii. Soit F2 = F⊥
1 l’orthogonal du sous-espace F1. Montrer que F2 est stable par t.

Montrer que (e2, ε2) est une base de F2.

La famille de vecteurs B′ = (e1, ε1, e2, ε2) est donc une base de E.
b) On note T ′ = MatB′(t).

i. On note, pour φ ∈ R, R(φ) =
Å

cosφ − sinφ
sinφ cosφ

ã
et θ = arcsin

Ç…
2
3

å
.

Exprimer la matrice T ′ en fonction de θ.
ii. Vérifier que, pour (φ,ψ) ∈ R2, on a R(φ)R(ψ) = R(φ+ ψ).

Pour k ∈ N exprimer en fonction de θ et k la matrice de tk relativement à la base B′.

c) Soient ω ∈ R et n ∈ N∗. On note ζn(ω) =
n−1∑
k=0

eikω.

Expliciter ζn(ω) selon les valeurs de ω.
En déduire les réels ω pour lesquels la suite complexe (ζn(ω))n∈N∗ est bornée.

d) Pour tout x de E et tout n ∈ N∗ on note Tn(x) = 1
n

n−1∑
k=0

tk(x).

i. Justifier que le sous-espace F1 est stable par Tn.

ii. Soit y = αe1 + βε1 ∈ F1.

On note tk(y) = γke1 + δkε1, Tn(y) = λne1 + µnε1.

A. Déterminer la matrice Vk ∈ M2(R) telle que
Å
γk

δk

ã
= Vk

Å
α
β

ã
.

En déduire la matrice Un ∈ M2(R) telle que
Å
λn

µn

ã
= Un

Å
α
β

ã
.

On exprimera Vk en fonction de θ et k, et Un en fonction de θ et n.
B. Montrer que la suite (Tn(y))n∈N∗ de E a une limite lorsque n tend vers +∞ et déterminer cette limite.

iii. Soit x ∈ E. En écrivant x = y + z avec y ∈ F1 et z ∈ F2, montrer que la suite (Tn(x))n∈N∗ a une limite
lorsque n tend vers +∞ et déterminer cette limite.

PARTIE II
1. Dans cette question, on considère l’espace Rn canoniquement euclidien et on fixe A ∈ Mn(R) telle que ∥AX∥ ⩽ ∥X∥

pour tout X ∈ Rn (on confond un vecteur x de Rn et sa matrice colonne X, dans la base canonique)
a) Montrer que ∀X ∈ Rn, ∥ATX∥ ⩽ ∥X∥
b) Montrer que si X ∈ Rn vérifie AX = X alors ∥ATX −X∥2 ⩽ 0.

Montrer l’égalité ker(A− In) = ker(AT − In).
c) En déduire que ker(A−In) et Im(A−In) sont des sous-espaces supplémentaires dans Rn. (on pourra commencer

par démontrer que si M ∈ Mn(R) alors ker(MT ) = Im(M)⊥.)
2. Dans cette question, on suppose que E est un espace vectoriel normé de dimension finie et que ℓ est un endomor-

phisme de E tel que ∀x ∈ E, ∥ℓ(x)∥ ⩽ ∥x∥.
Soit x ∈ E. Montrer que la suite (Ln(x))n∈N∗ admet une limite et la déterminer.


