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Partie I
1. a) i. On a S2 = I4 donc (X−1)(X+1) est annulateur de s, scindé à racines simples donc s est diagonalisable

ii. Sp(s) ⊂ {−1,+1}, Sp(s) ̸= ∅ car s est diagonalisable et Sp(s) ne peut pas être un singleton sinon, comme s
est diagonalisable, s serait une homothétie. Donc Sp(s) contient au moins 2 éléments et Sp(s) = {−1,+1}

iii. Tr(s) = 0 donc 0 = m1(s) + (−1)m−1(s) donc m1(s) = m−1(s) = 2 et dim(E1(s)) = dim(E−1(s)) = 2
car s est DZ

b) i. On a s(u1) = u1 et s(u2) = u2 donc u1 et u2 sont deux vecteurs libres (non colinéaires) de E1(s) donc

(u1, u2) est une base de E1(s) En appliquant le procédé d’orthonormalisation de Schmidt à cette base de

E1(s), on obtient
Å 1√

3
(e1 + e3 + e4), 1√

3
(e2 − e3 + e4)

ã
est une base orthonormale de E1(s)

ii. u4 est orthogonal à u1, u2 et u3 si et seulement si

 a+ c+ d = 0
a+ b+ 2d = 0
−a+ b+ c = 0

⇔
ß
a = b = −d
c = 0 donc, par exemple,

le vecteur u4 = e1 + e2 − e4 convient
On vérifie que s(u3) = −u3 et s(u4) = −u4 donc (u3, u4) est une famille de deux vecteurs non nuls et ortho-
gonaux (donc libres) de E−1(s) qui est de dimension 2 donc (u3, u4) est une base orthogonale de E−1(s)

c) i. sk(x) = sk(y) + sk(z) = y + (−1)kz donc Sn(x) = y + 1 − (−1)n

2n z

ii. lim
n→+∞

1 − (−1)n

2n = 0 donc lim
n→+∞

Sn(x) = y = 1
2(x+ s(x))

2. a) i. ℓ(u) = 1
4((3a+ c)e1 + (3b+ d)e2 + (a+ 3c)e3 + (b+ 3d)e4) donc :

∥u∥2 − ∥ℓ(u)∥2 =
(
a2 + b2 + c2 + d2) − 1

16
(
3a+ c)2 + (3b+ d)2 + (a+ 3c)2 + (b+ 3d)2)

= 1
8
[
3
(
a2 + b2 + c2 + d2) − 6ac− 6bd

]
= 3

8
[
(a− c)2 + (b− d)2] ⩾ 0

donc ∥ℓ(u)∥ ⩽ ∥u∥

ii. ∥ℓ(u)∥ = ∥u∥ si et seulement si a = c et b = d donc si et seulement si u ∈ Vect{e1 + e3, e2 + e4}

Si ∥u∥ = 1 alors ∥ℓ(u)∥ ⩽ 1 et
∥∥∥∥ℓÅ 1√

2
(e1 + e3)

ã∥∥∥∥ = 1√
2

∥e1 + e3∥ = 1 avec
∥∥∥∥ 1√

2
(e1 + e3)

∥∥∥∥ = 1 (car e1 et

e3 sont orthogonaux) max
∥u∥=1

∥ℓ(u)∥ = 1

iii. Si ℓ(u) = u alors ∥ℓ(u)∥ = ∥u∥ donc E1(ℓ) ⊂ Vect{e1 + e3, e2 + e4} et on vérifie que ℓ(e1 + e3) = e1 + e3

et ℓ(e2 + e4) = e2 + e4 donc 1 ∈ Sp(ℓ) et E1(ℓ) = Vect{e1 + e3, e2 + e4} est de dimension 2 car e1 + e3 et
e2 + e4 sont libres.

b) i. 1 est valeur propre de ℓ d’ordre de multiplicité au moins égal à 2. Si λ et µ sont les deux autres valeurs
propres complexes de MatB(ℓ) (pas forcément distinctes et éventuellement égales à 1 aussi) alors on a :

Tr(ℓ) = 2 + λ+ µ = 3 et det(ℓ) = λµ = 1
4 ; ainsi λ et µ sont les racines de X2 −X + 1

4 =
Å
X − 1

2

ã2
donc

λ = µ = 1
2 et Xl = (X − 1)2

Å
X − 1

2

ã2

ii. λ = 1
2 est valeur propre double

On vérifie que (X − 1)
Å
X − 1

2

ã
est annulateur de ℓ, ce polynôme est scindé à racines simples donc ℓ est

diagonalisable et les espaces propres de ℓ sont supplémentaires

c) i. ℓk(x) = x+ 1
2k
y

ii. Donc Ln(x) = y + 2
1 −

( 1
2
)n

n
z et lim

n→+∞
Ln(x) = y



3. a) i. t(e1) = 1√
3
e1 −

…
2
3ε1 ∈ F1 et t(ε1) =

…
2
3e1 + 1√

3
ε1 ∈ F1 donc F1 est stable par t et dim(F1) = 2 car

(e1, ε1) est libre.
ii. On a dim(F2) = 4 − 2 = 2, on vérifie que e2 et ε2 sont 2 vecteurs libres de F2 (car orthogonaux à e1 et ε1)

donc que (e2, ε2) est une base de F2. On a ensuite t(e2) = 1√
3
e2 +
…

2
3ε2 ∈ F2 et t(ε2) = −

…
2
3e2 + 1√

3
ε2 ∈

F2 donc F2 est stable par t

b) i. Avec les calculs des deux questions précédentes, on a T ′ = 1√
3

Ü
1

√
2 0 0

−
√

2 1 0 0
0 0 1 −

√
2

0 0
√

2 1

ê
On a cos θ = 1−2

3 = 1
3 et θ ∈

[
−π

2 ,
π

2

]
donc cos θ ⩾ 0 puis cos θ = 1√

3
. On en déduit T ′ =

Å
R(−θ) 0

0 R(θ)

ã
ii. La relation R(φ)R(ψ) = R(φ+ψ) découle des formules d’addition de cos et sin ; on en déduit, par récurrence

sur k ∈ N, R(φ)k = R(kφ), pour tout φ ∈ R.

On en déduit MatB′(tk) =
Å
R(−kθ) 0

0 R(kθ)

ã
c) eiω = 1 ⇔ ω ∈ 2πZ donc ζn(ω) =

 1 − einω

1 − eiω
si ω /∈ 2πZ

n si ω ∈ 2πZ

On en déduit (ζn(ω)) est bornée si et seulement si ω /∈ 2πZ car dans ce cas, on a |ζn(ω)| ⩽ 1
|1 − eiω|

.

d) F1 est stable par t donc par tk puis par Tn

e) i. D’après 3.c.iii, Vk = R(−kθ) et Un = 1
n

n−1∑
k=0

R(−kθ) donc Un = 1
n

Å
Re(ζn(θ)) Im(ζn(θ))

− Im(ζn(θ)) Re(ζn(θ))

ã
ii. θ /∈ 2πZ donc (ζn(θ)) est bornée, lim

n→+∞
Un = 0 donc lim

n→+∞
λn = lim

n→+∞
µn = 0 puis lim

n→+∞
Tn(y) = 0

f) On vérifierait de même que lim
n→+∞

Tn(z) = 0 donc par linéarité de Tn, on obtient lim
n→+∞

Tn(x) = 0

Partie II
1. a) On a ∥ATX∥2 = (ATX|ATX) = (X|AATX) ⩽ ∥X∥ × ∥AATX∥ d’après l’inégalité de Cauchy-Schwarz. De

plus ∥AATX∥ ⩽ ∥ATX∥ par hypothèse sur A ; on en déduit ∥ATX∥2 ⩽ ∥X∥ × ∥ATX∥. Si ATX ̸= 0 alors, en
divisant par ∥ATX∥, on obtient ∥ATX∥ ⩽ ∥X∥ et si ATX = 0 alors l’inégalité à prouver est évidente. On a
donc bien ∥ATX∥ ⩽ ∥X∥ pour tout X ∈ Rn

b) On a ∥ATX −X∥2 = ∥ATX∥2 + ∥X∥2 − 2(ATX|X) et (ATX|X) = (X|AX) = (X|X) = ∥X∥2 ; on en déduit
∥ATX −X∥2 = ∥ATX∥2 − ∥X∥2 puis ∥ATX −X∥2 ⩽ 0 si AX = X d’après la question précédente.
On vient donc de prouver que si X ∈ ker(A − In) alors ATX = X, ie X ∈ ker(AT − In). Ce qui donne
ker(A−In) ⊂ ker(AT −In). De plus, dim(ker(A−In)) = n−rg(A−In) = n−rg((A−In)T ) = n−rg(AT −In) =
dim(ker(AT − In)) et ker(A− In) = ker(AT − In)

c) ker(MT ) = Im(M)⊥ a été vu en cours.

On a ker(A− In) = ker(AT − In) = ker((A− In)T ) = Im(A− In)⊥ donc ker(A− In)
⊥
⊕ Im(A− In) = Rn

2. D’après la question précédente, appliquée à A la matrice de ℓ dans une base orthonormale de E, on a la décomposition
E = ker(ℓ − id) ⊕ Im(ℓ − id). On peut décomposer x en x = y + (ℓ(z) − z)) avec ℓ(y) = y. On obtient alors

Ln(x) = Ln(y) +Ln(ℓ(z) − z), puis Ln(y) = y car ℓk(y) = y pour tout k et Ln(ℓ(z) − z) = 1
n

n∑
k=0

(ℓk+1(z) − ℓk(z)) =

1
n

(ℓn+1(z) − z). On a alors lim
n→+∞

Ln(f(z) − z) = 0 car (ℓn(z)) est bornée (∥ℓn(z)∥ ⩽ ∥ℓn−1(z)∥ ⩽ . . . ⩽ ∥z∥) donc

Ln(x) −−−−−→
n→+∞

y et y est par définition le projeté de x sur ker(ℓ− id), parallèlement à Im(ℓ− id)


