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i. s8(z) = s*(y) + s*(2) =y + (—1)*z donc

1
ii. [ A= 3 est valeur propre double

On a donc (X —1)(X +1) est annulateur de s, scindé & racines simples donc‘ s est diagonalisable ‘

ii. Sp(s) C {—1,+1}, Sp(s) # 0 car s est diagonalisable et Sp(s) ne peut pas étre un singleton sinon, comme s

est diagonalisable, s serait une homothétie. Donc Sp(s) contient au moins 2 éléments et ‘ Sp(s) = {-1,+1} ‘

donc 0 = my(s) + (—1)m_1(s) donc my(s) =m_1(s) =2 et ‘dim(El(s)) =dim(E_1(s)) = 2‘
car s est DZ

i. On a ‘s(ul) = uy et s(uz) = ug ‘ donc u; et uy sont deux vecteurs libres (non colinéaires) de FE4(s) donc

‘ (u1,us) est une base de E(s) ‘ En appliquant le procédé d’orthonormalisation de Schmidt & cette base de

1 1
E;(s), on obtient (—(el +esz+teq), —=(ea —e3+ 64)) est une base orthonormale de F(s)

V3 V3

atc+d=0
ii. uy4 est orthogonal & u1, us et ug si et seulement si a+b+2d=0 < { a=b=—d donc, par exemple,
—a+b+c=0 ¢=0
le vecteur ‘ Uy = €1 + €9 — e4 convient ‘
On vérifie que s(ug) = —ug et s(ug) = —uy donc (ug, uq) est une famille de deux vecteurs non nuls et ortho-

gonaux (donc libres) de E_1(s) qui est de dimension 2 donc ‘ (us, uq) est une base orthogonale de F_1(s) ‘

L— (-1

Sn(@) =y + 2n

i L= (D"

n—-+o0o n

1
=0donc| lim S,(z)=y= i(x + s(x))

n—-+o0o

i. f(u) = i((Sa +c)er + (3b+ d)ea + (a + 3c)es + (b + 3d)ey) donc :

ul> = [6)||* = (a* + b* + ¢ + d*) — — (3a+¢)* + (3b+d)*> + (a + 3¢)* + (b + 3d)?)

16
1 3
=3 3 (a® + 0% + ¢ + d*) — 6ac — 6bd] = 3 [(a—c)*+(b—d)?] >0
donc | [[£(u) ]| < [lul
ii. |[(u)|| = ||u| si et seulement si a = c et b = d donc si et seulement si ‘ u € Vect{e; + e3,e2 +e4} ‘
1 1 1
Sil|ull =1 alors |[f(uw)]| <1 et K(—e +e > = —lle; +e3|| =1 avec ||—=(e; +e3)|| =1 (car e et
i [[€(w)]] \/i( 1+ e3) ﬂll 1+ es| v \/5( 1+ e3) (car e;

e3 sont orthogonaux) Hm\?}l le(uw)]| =1

Si £(u) = w alors [[£(u)|| = ||u|| donc Ey(¢) C Vect{e; + e3,ea + e4} et on vérifie que £(e; + e3) = €1 + €3
et f(ea +e4) =ea+ey donc|1 € Sp(¢) et Ey(¢) = Vect{e; + e3,e2 + e4} est de dimension 2 ‘ car e +e3 et
es + e4 sont libres.

i. 1 est valeur propre de £ d’ordre de multiplicité au moins égal & 2. Si A et p sont les deux autres valeurs

propres complexes de Matg(¢) (pas forcément distinctes et éventuellement égales & 1 aussi) alors on a :

1 1 1)*
Tr(l) =2+ A+ pu=3et det(f) = A = Z;ainsi A et p sont les racines de X2 fXJrZ = (Xf 5) donc

X = (X —1)? (X—;)2

1
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On vérifie que (X — 1) (X — 5) est annulateur de ¢, ce polynoéme est scindé a racines simples donc £ est

diagonalisable et ‘ les espaces propres de £ sont supplémentaires

1
o) =x+ oY

Donc L,(x) =y + 2 lim L,(x) =y

n—-+oo
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3. a) 1 tle)= ﬁel — \/;sl € Fyetter) = \/;el + ﬁel € F; donc ‘Fl est stable par ¢ ‘ et dim(Fy) = 2 car
(e1,€1) est libre.
ii. On a dim(Fy) =4 —2 =2, on vérifie que ey et e sont 2 vecteurs libres de Fy (car orthogonaux a e; et €1)
. 1 2 2 1
donc que (es, £2) est une base de Fs. On a ensuite t(ey) = %62 + \/;62 € Fyett(er) = —\/;62 + %62 S
F5 donc ‘ F5 est stable par ¢
1 v2 0 0
1 _
b)  i. Avec les calculs des deux questions précédentes, on a T = % 8@ (1) ? _?@
0 0 V2 1
2 1 1 —
Onacosf = 1—§ =3 et e [—g, g} donc cos @ > 0 puis cos = % On en déduit | T" = (R(O 9) R(()H))
ii. Larelation R(¢)R(¢) = R(p+1) découle des formules d’addition de cos et sin ; on en déduit, par récurrence
sur k € N, R(¢)* = R(ky), pour tout ¢ € R.
L1 R(—k0) 0 )
ky _
On en déduit | Matg (t%) = ( 0 R(k0)
1— einw )
¢) e =1 we2nZ donc |, (w) = 1w ¥ ¢ 2nL
n siw € 277
1
On en déduit ‘ (Cn(w)) est bornée si et seulement si w ¢ 277 ‘ car dans ce cas, on a |(,(w)] < e
— e'LW
d) Fj est stable par ¢ donc par t* puis par T},
n—1
. X 1 L [ Re(Ca(0)) Im(Cn(9)))
e i. D’apres 3.c.iii, | Vi, = R(—k0) | et U, = — R(—k0) donc |U,, = — <
) P i = R(-H0) 2 k) n (G (0) Re(Ga(0))
ii. 0 ¢ 277 donc (¢,(0)) est bornée, ngrfw U, =0 donc nkrfw An = nll)rfoo tn = 0 puis ngrfw T.(y) =0
f) On vérifierait de méme que lif}rl T,.(z) = 0 donc par linéarité de T,,, on obtient lirf T,(x)=0
n—-+0oo n—-+0oo
Partie I1
1. a) Ona [|[ATX|? = (ATX|ATX) = (X|AATX) < ||X]|| x [|[AAT X|| d’apres linégalité de Cauchy-Schwarz. De

plus [[AAT X || < ||AT X || par hypothése sur A; on en déduit [|AT X || < ||X|| x AT X|. Si ATX # 0 alors, en
divisant par ||A” X||, on obtient |ATX| < ||X|| et si ATX = 0 alors 'inégalité & prouver est évidente. On a

donc bien | [|ATX|| < || X|| pour tout X € R"

b) Ona |[ATX — X||? = |[ATX|? + | X]||* — 2(ATX|X) et (ATX|X) = (X|AX) = (X|X) = ||X]|?; on en déduit

IATX = X|* = [[ATX|* — || X||* puis

|ATX — X||? < 0si AX = X | d’apreés la question précédente.

On vient donc de prouver que si X € ker(A — I,,) alors ATX = X, ie X € ker(A” — I,,). Ce qui donne
ker(A—1I,) C ker(AT —1,,). De plus, dim(ker(A—1,,)) = n—rg(A—1I,) = n—rg((A—1,)") = n—rg(AT - 1,) =

dim(ker(AT — I,,)) et | ker(A — I,,) = ker(AT — I,,)

¢) ker(MT)=TIm(M)* a été vu en cours.

On a ker(A — I,,) = ker(AT — I,,) = ker((A — I,)T) = Im(A — I,,)* donc |ker(A — I,,) é Im(A-1,) =R"

2. D’apres la question précédente, appliquée a A la matrice de £ dans une base orthonormale de F, on a la décomposition
E = ker({ — id) ® Im(£ — id). On peut décomposer © en & = y + ({(z) — z)) avec £(y) = y. On obtient alors

1

Ly (x) = Ly (y) 4+ L (£(2) — 2), puis L, (y) = y car £*(y) = y pour tout k et L, ({(z) — z) = - Z(£k+1(z) —F(2) =

1
n
L

k=0

(0" *1(2) — 2). On aalors lim L,(f(z) — z) = 0 car (¢"(z)) est bornée (||"(2)|| < [[€"1(2)|| < ... < |]2]|) donc

n—-+oo

n() ——— y et y est par définition ‘ le projeté de = sur ker(¢ — id), parallelement & Im(¢ — id) ‘

n—-+oo




