
Variables aléatoires
discrètes

Dans tout ce chapitre, A désignera une tribu sur un ensemble Ω.

I Généralités
1. Définitions

Définition : Soit E un ensemble quelconque. Une variable aléatoire discrète sur (Ω, A ) est une application
X : Ω −→ E qui vérifie les deux propriétés suivantes :

1. L’ensemble image X(Ω) est fini ou dénombrable.
2. Pour tout x de X(Ω), l’image réciproque de {x} (ie l’ensemble des antécédents de x) est un événement (ie

appartient à A ) :
∀x ∈ X(Ω), X−1({x}) = {ω ∈ Ω, X(ω) = x} ∈ A

Une variable aléatoire discrète réelle sur (Ω, A ) est une variable aléatoire discrète sur (Ω, A ) à valeurs réelles
(ie E = R).

Remarque(s) :�
 �	I.1 Si F ⊂ X(Ω), F est au plus dénombrable donc F = {xn, n ∈ I} avec I ⊂ N et X−1(F ) =⋃
n∈I

X−1({xn}) est une réunion, au plus dénombrable, d’événements donc X−1(F ) ∈ A .�
 �	I.2 Si x ∈ E \ X(Ω) alors X−1({x}) = ∅ donc X−1({x}) ∈ A aussi.
Exemple(s) :�
 �	I.3 Si on tire successivement, avec remise, n boules dans une urne contenant p boules blanches et q

boules noires, le nombre de boules blanches tirées est une variable aléatoire discrète .�
 �	I.4 Si on lance indéfiniment un dé à 6 faces et si on note Xn la valeur du dé au nème lancer alors Xn

est une variable aléatoire discrète .
Si on pose T = min{n ∈ N∗, Xn = 6} (avec T = +∞ si l’ensemble est vide), T est une variable
aléatoire discrète (le temps d’attente du premier 6).

Notations : Soit X une variable aléatoire discrète sur (Ω, A ).
1. Si U ⊂ X(Ω), l’événement X−1(U) est noté (X ∈ U) ou {X ∈ U} :

(X ∈ U) = {ω ∈ Ω, X(ω) ∈ U}

2. Si x ∈ X(Ω), l’événement (X ∈ {x}) est noté plus simplement (X = x) :

(X = x) = {ω ∈ Ω, X(ω) = x}

3. Si X est à valeurs réelles et a ∈ R, on utilise les notations suivantes :

(X ⩽ a) = {ω ∈ Ω, X(ω) ⩽ a} et (X ⩾ a) = {ω ∈ Ω, X(ω) ⩾ a}

(X < a) = {ω ∈ Ω, X(ω) < a} et (X > a) = {ω ∈ Ω, X(ω) > a}
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Remarque(s) :�
 �	I.5 Ces notations sont « compatibles » avec les opérations sur les ensembles :
(
X ∈ A

)
= (X ∈ A),

(X ∈ A) ∪ (X ∈ B) = (X ∈ A ∪ B) et (X ∈ A) ∩ (X ∈ B) = (X ∈ A ∩ B).�
 �	I.6 Si U ∈ X(Ω) alors (X ∈ U) =
⋃

x∈U

(X = x).

Définition [I.1] : Soient X une variable aléatoire discrète sur (Ω, A ) et f une application définie sur X(Ω) (au
moins). On note f(X) la variable aléatoire discrète f ◦ X, l’image de X par l’application f .

2. Loi d’une variable aléatoire discrète

Définition : Soient (Ω, A , P ) un espace probabilisé et X une variable aléatoire discrète sur (Ω, A , P ). On appelle
loi de la variable aléatoire discrète X l’application notée PX définie par

PX : P(X(Ω)) −→ [0, 1]
U 7−→ P (X ∈ U)

Remarque(s) :�
 �	I.7 Si U ∈ X(Ω), on a PX(U) = P (X ∈ U) =
∑

n tq xn∈U

pn.

�
 �	I.8 Cela signifie que PX , la loi de X est entièrement déterminée par les valeurs de P (X = x) quand x
décrit X(Ω).�
 �	I.9 On peut avoir deux variables aléatoires discrètes différentes X et Y telles que PX = PY (donc qui
aient la même loi) : on lance deux dés à 6 faces discernables et on note X la différence de la valeur
du premier dé et de la valeur du second dé. Les lois de X et −X sont égales alors que X ̸= −X.

Exemple(s) :�
 �	I.10 On tire, avec remise, p jetons dans une urne qui contient n jetons numérotés de 1 à n et on
considère X la variable aléatoire discrète égale au plus grand des numéros obtenus. Déterminer
P (X ⩽ k) et en déduire P (X = k).

Définition : Soient X et Y deux variables aléatoires discrètes sur (Ω, A , P ). On dit que X et Y suivent la même
loi si PX = PY , ie

X(Ω) = Y (Ω) et ∀z ∈ X(Ω), P (X = z) = P (Y = z)

On le note alors X ∼ Y .

Propriété [I.2] : Soient X et Y deux variables aléatoires discrètes sur (Ω, A , P ) et f une application définie sur
X(Ω).

Si X ∼ Y alors f(X) ∼ f(Y )

II Couple de variables aléatoires discrètes
1. Loi conjointe et lois marginales

Définition [II.1] : Soient X et Y deux variables aléatoires discrètes sur (Ω, A , P ) à valeurs dans E et F respec-
tivement. On appelle couple de variables aléatoires discrètes (X, Y ) la variable aléatoire discrète Z, à valeurs
dans E × F , définie par

∀ω ∈ Ω, Z(ω) = (X(ω), Y (ω))
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Exemple(s) :�
 �	II.1 On dispose de deux dés, un bleu et un vert ; on choisit un dé au hasard et on le lance. Si C
est la variable aléatoire discrète donnant la couleur du dé choisi et V la valeur obtenue sur le dé
alors le couple de variables aléatoires discrètes Z = (C, V ) détermine complètement le résultat de
l’expérience.

Définition : Soient X et Y deux variables aléatoires discrètes sur (Ω, A , P ). On appelle loi conjointe de X et
Y la loi du couple (X, Y ) :

P(X,Y )(U, V ) = P (X ∈ U, Y ∈ V ) pour (U, V ) ⊂ X(Ω) × Y (Ω)

La loi P(X,Y ) est entièrement déterminée par la donnée de P (X = xi, Y = yj) pour (xi, yj) ∈ X(Ω) × Y (Ω).

Exemple(s) :�
 �	II.2 On considère une urne contenant n jetons numérotées de 1 à n. On tire successivement deux
boules sans remise. On note X1 la valeur du premier jeton tiré et X2 celui du second. On a

P (X1 = i, X2 = j) =

 0 si i = j
1

n(n − 1) si i ̸= j

On peut visualiser la loi du couple (X1, X2) par une matrice

(P (X1 = i, X2 = j))1⩽i,j⩽n = 1
n(n − 1)(1 − δi,j)1⩽i,j⩽n

Remarque(s) :�
 �	II.3 On note indifféremment (X ∈ A, Y ∈ B) = (X ∈ A) ∩ (Y ∈ B) l’événement (X, Y ) ∈ A × B.�
 �	II.4 Si Z = (X, Y ), on a Z(Ω) ⊂ X(Ω)×Y (Ω) donc on peut vérifier que
∑

x ∈ X(Ω)
y ∈ Y (Ω)

P (X = x, Y = y) = 1.

Définition [II.2] : Soit Z une variable aléatoire discrète sur (Ω, A , P ) à valeurs dans E × F . Pour ω ∈ Ω, on note
Z(ω) = (X(ω), Y (ω)). Les applications X et Y sont alors deux variables aléatoires discrètes sur (Ω, A , P ).
On appelle lois marginales de Z les lois des variables aléatoires discrètes X et Y .

Propriété [II.3] : Soit Z une variable aléatoire discrète sur E × F . Les loi marginales de Z sont entièrement
déterminées pas la loi de Z : si Z = (X, Y ) alors

∀x ∈ X(Ω), P (X = x) =
∑

y∈Y (Ω)

P (X = x, Y = y)

∀y ∈ Y (Ω), P (Y = y) =
∑

x∈X(Ω)

P (X = x, Y = y)

Remarque(s) :�
 �	II.5 Si X(Ω) = {xi, i ∈ I} et Y (Ω) = {yj , j ∈ J} et si la loi de Z = (X, Y ) est visualisée par le tableau
(P (X = xi, Y = yj))(i,j)∈I×J alors P (X = xi) =

∑
j∈J

P (X = xi, Y = yj) (somme de la ième ligne)

et P (Y = yj) =
∑
i∈I

P (X = xi, Y = yj) (somme de la j ème colonne).�
 �	II.6 On ne peut pas retrouver la loi de Z à partir des ses lois marginales : deux variables aléatoires
discrètes sur E × F différentes peuvent avoir les mêmes lois marginales ; ex : on lance une pièce
équilibrée et on pose X = 1 si le tirage donne pile, 0 sinon ; les lois marginales de (X, X) et de
(X, 1 − X) sont égales mais les lois conjointes sont différentes.
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�
 �	II.7 Cette propriété se généralise à un n-uplets de variables aléatoires discrètes : si X1, . . . , Xn sont des
variables aléatoires discrètes définies sur (Ω, A , P ) alors, pour tout k ∈ [[ 1, n ]] et tout xk ∈ Xk(Ω),
on a

P (Xk = xk) =
∑

xi ∈ Xi(Ω)
i ̸= k

P (X1 = x1, . . . , Xk = xk, . . . , Xn = xn)

Exemple(s) :�
 �	II.8 Une urne contient n boules numérotées de 1 à n, on tire successivement avec remise deux boules.
On note X le plus petit des deux numéros, Y le plus grand. Déterminer la loi de (X, Y ) puis celles
de X et Y .

2. Conditionnement et indépendance

Définition : Soient X et Y deux variables aléatoires discrètes sur (Ω, A , P ) et x ∈ X(Ω) tel que P (X = x) > 0. On
appelle loi conditionnelle de Y sachant que (X = x) la loi de la variable aléatoire discrète Y pour la probabilité
P(X=x), ie

∀B ∈ Y (Ω), P (Y ∈ B| X = x) = P ((X = x) ∩ (Y ∈ B))
P (X = x)

Remarque(s) :�
 �	II.9 On peut, dans le cas où P (X = x) = 0, poser P (Y ∈ B|X = x) = 0.�
 �	II.10 La loi de Y sachant que (X = x) est entièrement déterminée par les valeurs de P (Y = y| X = x)
pour tout y ∈ Y (Ω) : si B ⊂ Y (Ω) alors P (Y ∈ B| X = x) =

∑
y∈B

P (Y = y| X = x).�
 �	II.11 La loi de Z = (X, Y ) est entièrement déterminée par la connaissance des lois de X et de Y sachant
(X = x), pour tout x ∈ X(Ω) : si (x, y) ∈ Z(Ω), P (Z = (x, y)) = P (Y = y|X = x) × P (X = x)
(même si P (X = x) = 0 avec la convention précédente).
La loi de Y est elle aussi connue : P (Y = y) =

∑
x∈X(Ω)

P (Y = y| X = x) × P (X = x).�
 �	II.12 On peut définir de même la loi de Y sachant que X ∈ A, avec A ⊂ X(Ω) tel que P (X ∈ A) > 0,
en posant P (Y ∈ B| X ∈ A) = PX∈A(Y ∈ B).

Exemple(s) :�
 �	II.13 On dispose d’une infinité de boites (Bn)n∈N∗ , la boite Bn contenant 2n boules dont une seule est
blanche. On lance une pièce équilibrée une infinité de fois, si on obtient le premier pile au nème

tirage, on tire un jeton dans la boite Bn et on arrête l’expérience. On note X le numéro de la boite
et Y = 1 si la boule tirée est blanche, 0 sinon. Déterminer la loi de (X, Y ) puis celle de Y .

Définition : Soient X et Y deux variables aléatoires discrètes sur (Ω, A , P ). On dit que les variables aléatoires
discrètes X et Y sont indépendantes si

∀(x, y) ∈ X(Ω) × Y (Ω), P (X = x, Y = y) = P (X = x) × P (Y = y)

On le note alors X ⊥⊥ Y

Remarque(s) :�
 �	II.14 Si X ⊥⊥ Y alors la loi de Y sachant (X = x) est la loi de Y : pour (x, y) ∈ X(Ω) × Y (Ω), on a
P (Y = y| X = x) = P (Y = y).�
 �	II.15 Lors d’une expérience aléatoire répétée deux fois de suite dans les mêmes conditions (tirage d’une
boule avec remise, lancer de dé, . . .), si on note X le « résultat » de la première expérience et Y
celui de la deuxième, il est courant de modéliser l’expérience avec X et Y indépendantes.
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Exemple(s) :�
 �	II.16 Soient X et Y deux variables aléatoires à valeurs dans N et p ∈]0, 1[.
On suppose que la loi conjointe de X et Y vérifie

P (X = k, Y = n) =


Ç

n

k

å
anp(1 − p)n si k ≤ n

0 sinon

avec a ∈ R.
a) Déterminer la valeur de a.
b) Déterminer les lois de X et Y .
c) Les variables X et Y sont elle indépendantes ?

Théorème [II.4] : Soient X et Y deux variables aléatoires discrètes sur (Ω, A , P ). Les variables aléatoires discrètes
X et Y sont indépendantes si et seulement si

∀(A, B) ⊂ X(Ω) × Y (Ω), P (X ∈ A, Y ∈ B) = P (X ∈ A) × P (Y ∈ B)

Définition :
1. Soient X1, . . . , Xn n variables aléatoires discrètes sur (Ω, A , P ). On dit que X1, . . . , Xn sont indépendantes

si pour tout k ∈ [[ 2, n ]] et tout i1 < i2 < · · · < ik dans [[ 1, n ]] , on a

∀(xi1 , . . . , xik
) ∈

k∏
j=1

Xij
(Ω), P

Ñ ⋂
1⩽j⩽k

(Xij
= xij

)

é
=

k∏
j=1

P (Xij
= xij

)

2. Si (Xn)n∈N est une suite de variables aléatoires discrètes définies sur (Ω, A , P ), on dit que (Xn)n∈N est une
suite de variables aléatoires discrètes indépendantes si, pour tout n ∈ N, la famille finie X1, . . . , Xn est
indépendantes.
Une suite (Xn)n∈N de variables aléatoires discrètes indépendantes est dite identiquement distribuée si les
Xn suivent toutes la même loi, ie

∀(i, j) ∈ N2, Xi ∼ Xj

Remarque(s) :�
 �	II.17 Des variables aléatoires discrètes indépendantes sont 2 à 2 indépendantes mais la réciproque est
fausse ; c/ex : on lance deux fois un dé à 6 faces, on note X = 1 (resp. Y = 1 et Z = 1) si le
premier (resp. le second, la somme des 2) tirage est pair, 0 sinon. Les variables aléatoires discrètes
X, Y et Z sont 2 à 2 indépendantes mais pas indépendantes.�
 �	II.18 Pour tester si X1, . . . , Xn sont indépendantes, il faut tester 2n − n − 1 ensembles d’indices i1 <
· · · < ik.�
 �	II.19 Si X1, . . . , Xn est une famille de variables aléatoires discrètes indépendantes alors toute sous
famille de X1, . . . , Xn est une famille de variables aléatoires discrètes indépendantes.�
 �	II.20 Si on lance une pièce une infinité de fois et si Xn est définie par Xn =

ß
1 si pile au lancer n
0 sinon

alors (Xn)n∈N sera modélisée comme une suite de variables aléatoires discrètes indépendantes
identiquement distribuées, suivant une loi de Bernoulli.

Théorème [II.5] : Soient X1, . . . , Xn n variables aléatoires discrètes sur (Ω, A , P ). Les variables aléatoires discrètes
X1, . . . , Xn sont indépendantes si et seulement si on a

∀(A1, . . . , An) ⊂
n∏

j=1
Xi(Ω), P

Ñ ⋂
1⩽i⩽n

(Xi ∈ Ai)

é
=

n∏
i=1

P (Xi ∈ Ai)

PSI2 - Lycée Montaigne Page 5/15



Propriété [II.6] :
1. Soient X et Y deux variables aléatoires discrètes sur (Ω, A , P ), f une application définie sur X(Ω) et g une

application définie sur Y (Ω).
X ⊥⊥ Y ⇒ f(X) ⊥⊥ g(Y )

2. Généralisation : si X1, . . . , Xn sont des variables aléatoires discrètes définies sur (Ω, A , P ) et si f1, . . . , fn sont
des applications définies sur Xi(Ω) respectivement alors

Si X1, . . . , Xn sont indépendantes alors f(X1), . . . , fn(Xn) sont indépendantes.

Remarque(s) :�
 �	II.21 Dans cette propriété, on peut avoir f1 = · · · = fn (à part fi définie sur Xi(Ω), aucune hypothèse
n’est nécessaire sur les fi).

Propriété [II.7] : (Lemme des coalitions)
1. Si X1, . . . , Xn sont des variables aléatoires discrètes définies sur (Ω, A , P ), m ∈ [[ 1, n − 1 ]] , f et g deux appli-

cations définies respectivement sur X1(Ω) × · · · × Xm(Ω) et Xm+1(Ω) × · · · × Xn(Ω) alors

Si X1, . . . , Xn sont indépendantes alors f(X1, . . . , Xm) et g(Xm+1, . . . , Xn) sont indépendantes

2. Généralisation : si X1, . . . , Xn sont des variables aléatoires discrètes définies sur (Ω, A , P ), si I1, . . . , Ik est une
partition de [[ 1, n ]] et si f1, . . . , fk sont définies respectivement sur

∏
i∈Ih

Xi(Ω), pour h ∈ [[ 1, k ]] , alors

Si X1, . . . , Xn sont indépendantes alors f1((Xh)h∈I1), . . . , fk((Xh)h∈Ik
) sont indépendantes

Remarque(s) :�
 �	II.22 Le lemme des coalitions permet entre autres de prouver que si X1, . . . , Xn sont indépendantes
alors X1 + · · · + Xn−1 et Xn sont indépendantes.

III Lois usuelles
1. Variables aléatoires discrètes finies

Définition [III.1] : (Loi uniforme)
Soit X une variable aléatoire discrète sur (Ω, A ). On dit que X suit une loi de probabilité uniforme si X(Ω) est un
ensemble fini de cardinal n et si

∀x ∈ X(Ω), P (X = x) = 1
n

On le note X ∼ U (n).

Exemple(s) :�
 �	III.1 On lance un dé à 6 faces équilibré. Si X est la variable aléatoire discrète égale au numéro de la
face obtenue alors X ∼ U(6).

Définition [III.2] : (Loi de Bernoulli)
Soient X une variable aléatoire discrète sur (Ω, A ) et p ∈]0, 1[. On dit que X suit une loi de Bernoulli de
paramètre p si

X(Ω) = {0, 1} et
ß

P (X = 1) = p
P (X = 0) = 1 − p

On le note X ∼ B(p).
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Remarque(s) :�
 �	III.2 Les variables de Bernoulli sont utiles pour modéliser une expérience à deux issues : si on tire
une boule dans une urne contenant k boules blanches et n − k boules noires, la variable aléatoire
discrète X = 1 si la boule est blanche, 0 si elle est noire suit une loi B

Å
k

n

ã
.�
 �	III.3 Un tirage de pile ou face avec une pièce équilibrée suit U (2) ou B

Å1
2

ã
.�
 �	III.4 Une pièce donne pile avec une probabilité p (et face avec une probabilité 1 − p). On lance cette

pièce une infinité de fois. L’expérience peut être modélisée par une suite de variables aléatoires
discrètes indépendantes identiquement distribuées (Xn)n∈N∗ qui suivent toutes B(p).

Définition [III.3] : (Loi binomiale)
Soient X une variable aléatoire discrète sur (Ω, A , P ), p ∈]0, 1[ et n ∈ N∗. On dit que X suit une loi binomiale de
paramètres n et p si

X(Ω) = [[ 0, n ]] et ∀k ∈ [[ 0, n ]] , P (X = k) =
Ç

n

k

å
pk(1 − p)n−k

On le note X ∼ B(n, p).

Propriété [III.4] : Si X1, . . . , Xn sont n variables aléatoires discrètes indépendantes et suivant toutes une loi
B(p) alors X1 + · · · + Xn suit une loi B(n, p).

Remarque(s) :�
 �	III.5 Cela signifie que B(n, p) est utilisée pour modéliser le nombre de gains dans une succession de n
expériences de Bernoulli indépendantes et de même paramètre p : par exemple le nombre de boules
blanches obtenues dans une expérience de n tirages successifs avec remise, ou dans un jeu de pile
ou face répété n fois.

2. Variables aléatoires discrètes infinies

Définition [III.5] : (Loi géométrique)
Soit X une variable aléatoire discrète sur (Ω, A , P ) et p ∈]0, 1[. On dit que X suit une loi géométrique de
paramètre p si

X(Ω) = N∗ et ∀k ∈ N∗, P (X = k) = p(1 − p)k−1

On le note X ∼ G (p).

Propriété [III.6] : Si X ∼ G (p) avec p ∈]0, 1[ alors

∀k ∈ N, P (X > k) = (1 − p)k

Exemple(s) :�
 �	III.6 Soient X et Y deux variables aléatoires discrètes indépendantes suivant G (p) et Z = min(X, Y ).
Vérifier que Z suit une loi géométrique.

PSI2 - Lycée Montaigne Page 7/15



Propriété [III.7] : Soit (Xn)n∈ N∗ une suite de variables aléatoires discrètes indépendantes et identiquement
distribuées suivant toutes la même loi B(p). On définit la variable aléatoire discrète T par

T = min {k ∈ N∗, Xk = 1} et T = +∞ si l’ensemble est vide

Alors la variable aléatoire discrète T suit la loi G (p).

T ∼ G (p)

Remarque(s) :�
 �	III.7 T désigne le temps d’attente du premier succès dans la suite d’expériences modélisée par (Xn)n∈N :
par exemple l’obtention d’un premier pile dans un jeu de pile ou face infini, l’obtention d’un premier
6 dans une expérience de lancer de dé infinie,. . .

Exemple(s) :�
 �	III.8 On lance un dé à 6 faces équilibré une infinité de fois. Déterminer la probabilité de ne pas obtenir
un 6 dans les 10 lancers suivants sachant qu’on n’a pas fait de 6 dans les 100 premiers lancers.�
 �	III.9 Plus généralement (loi sans mémoire) : si X est une variable aléatoire discrète sur (Ω, A , P ).
Alors X suit une loi géométrique si et seulement si

∀(n, k) ∈ (N∗)2
, P (X > n + k| X > n) = P (X > k)

Définition [III.8] : (Loi de Poisson)
Soient X une variable aléatoire discrète sur (Ω, A , P ) et λ > 0 un réel. On dit que X suit une loi de Poisson de
paramètre λ si

X(Ω) = N et ∀k ∈ N, P (X = k) = e−λ λk

k!
On le note X ∼ P(λ).

Exemple(s) :�
 �	III.10 Soient X et Y deux variables aléatoires discrètes indépendantes suivant respectivement P(λ) et
P(µ). Alors la variable aléatoire discrète X + Y suit la loi P(λ + µ).

Propriété [III.9] : Soit (Xn)n∈N une suite de variables aléatoires discrètes telle que, pour tout n ∈ N, Xn suit une
loi B(n, pn). Si lim

n→+∞
npn = λ alors on a, pour tout k ∈ N∗ fixé

lim
n→+∞

P (Xn = k) = e−λ λk

k!

Remarque(s) :�
 �	III.11 On dit que la loi de Poisson est la loi des événements rares.
Exemple(s) :�
 �	III.12 On considère une masse de matière qui contient n atomes radioactifs. On suppose que chacun

d’eux possède, indépendamment des désintégrations des autres atomes, une probabilité p de se
désintégrer à un instant ⩽ tk donné ; on suppose que cette probabilité est très faible devant n. Le
nombre d’atomes qui se désintègrent à un instant ⩽ tk est une variable aléatoire discrète qui suit
B(n, p). Si on suppose que durant un laps de temps T = np fixé, on observe un nombre constant
λ de désintégrations alors on peut approcher le nombre de désintégrations à l’instant ⩽ tk par une
variable aléatoire discrète suivant P(λ).
En comptant le nombre de désintégrations pendant un temps donné, un compteur Geiger peut
alors donner le nombre d’atomes radioactifs présents dans la masse.
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IV Espérance et variance d’une variable aléatoire discrète réelle
1. Espérance

Définition : Soit X une variable aléatoire discrète réelle sur (Ω, A , P ).
1. Si X est à valeurs positives (ie X(Ω) ⊂ R+) alors l’espérance de X est

E(X) =
∑

x∈X(Ω)

xP (X = x) ∈ [0, +∞]

2. Si X est à valeurs réelles ou complexes, on dit que X est d’espérance finie si la famille (xP (X = x))x∈X(Ω)
est sommable, ie si ∑

x∈X(Ω)

|x|P (X = x) < +∞

Dans ce cas, l’espérance de X est
E(X) =

∑
x∈X(Ω)

xP (X = x)

Une variable aléatoire discrète X d’espérance finie est dite centrée si E(X) = 0.

Remarque(s) :�
 �	IV.1 Rappel : si X(Ω) = {xn, n ∈ N} avec xi ̸= xj pour i ̸= j alors (xP (X = x))x∈X(Ω) est sommable
si et seulement si la série

∑
n⩾0

xnP (X = xn) est absolument convergente. La nature de cette série

ne dépend pas de l’ordre dans lequel on numérote les éléments de X(Ω).�
 �	IV.2 Si X est à valeurs dans X(Ω) = {x1, . . . , xn} fini, on a E(x) =
n∑

k=1
xkP (X = xk) (somme finie).�
 �	IV.3 Soit X une variable aléatoire discrète réelle à valeurs bornées. Alors X est d’espérance finie.

Propriété [IV.1] : (Espérance des variables de lois usuelles)
Soit X une variable aléatoire discrète sur (Ω, A , P ).

1. Si X ∼ U (n) et X(Ω) = [[ 1, n ]] , alors E(X) = n + 1
2 .

2. Si X ∼ B(p) alors E(X) = p.
3. Si X ∼ B(n, p) alors E(X) = np.

4. Si X ∼ G (p) alors E(X) = 1
p

.

5. Si X ∼ P(λ) alors E(X) = λ.

Propriété [IV.2] : Soit X une variable aléatoire discrète sur (Ω, A , P ) à valeurs dans N ∪ {+∞}. Alors X admet
une espérance si et seulement si la série

∑
n⩾1

P (X ⩾ n) converge. Dans ce cas

E(X) =
+∞∑
n=1

P (X ⩾ n)

Remarque(s) :�
 �	IV.4 Sous ces hypothèses, si P (X = +∞) > 0, alors on a E(X) = +∞

Exemple(s) :�
 �	IV.5 Retrouver l’espérance d’une variable aléatoire discrète suivant G (p).

PSI2 - Lycée Montaigne Page 9/15



2. Propriétés de l’espérance

Propriété [IV.3] : (Théorème de comparaison)
Si X et Y sont deux variables aléatoires discrètes telles que |X| ⩽ Y et si Y est d’espérance finie alors

X est d’espérance finie.

Dans ce cas, on a de plus |E(X)| ⩽ E(Y ).

Propriété [IV.4] : (Linéarité de l’espérance)
Soient X et Y deux variables aléatoires discrètes réelles sur (Ω, A , P ) d’espérances finies et (α, β) ∈ R2 alors αX+βY
est d’espérance finie et

E(αX + βY ) = αE(X) + βE(Y )

Remarque(s) :�
 �	IV.6 Si X est une variable aléatoire discrète réelle d’espérance finie alors X∗ = X − E(X) est centrée.

Propriété [IV.5] : (Positivité et croissance de l’espérance)
Soit X une variable aléatoire discrète réelle sur (Ω, A , P ) d’espérance finie.

1. Si X est à valeurs positives, ie X(Ω) ⊂ R+, alors E(X) ⩾ 0.
De plus si E(X) = 0 alors P (X = 0) = 1 (X est presque sûrement nulle).

2. Si Y est une autre variable aléatoire discrète réelle d’espérance finie et si X ⩽ Y alors E(X) ⩽ E(Y ).

Théorème [IV.6] : (Théorème de transfert)
Soient X une variable aléatoire discrète réelle sur (Ω, A , P ) et f une application définie sur X(Ω) et à valeurs
réelles. La variable aléatoire discrète f(X) est d’espérance finie si et seulement si la famille (f(x)P (X = x))x∈X(Ω)

est sommable, ie
∑

x∈X(Ω)

|f(x)|P (X = x) < +∞.

Dans ce cas, on a
E(f(X)) =

∑
x∈X(Ω)

f(x)P (X = x)

Remarque(s) :�
 �	IV.7 Si X(Ω) = {xn, n ∈ N} avec xi ̸= xj pour i ̸= j, la famille (f(x)P (X = x))x∈X(Ω) est sommable
signifie que la série

∑
n⩾0

f(xn)P (X = xn) est absolument convergente. Dans ce cas, on a

E(f(X)) =
+∞∑
n=0

f(xn)P (X = xn)

�
 �	IV.8 Si f est à valeurs positives, on peut toujours écrire E(f(X)) =
∑

x∈X(Ω)

f(x)P (X = x) avec

E(f(X)) ∈ [0, +∞].�
 �	IV.9 Le théorème de transfert permet de calculer E(f(X)) à partir de la loi de X, sans avoir à calculer
la loi de f(X).�
 �	IV.10 Cette formule peut s’appliquer à toute variable aléatoire discrète , donc aussi à un couple de
variables aléatoires discrètes Z = (X, Y ) (ou un n-uplet de variables aléatoires discrètes ) : si f est
définie sur X(Ω) × Y (Ω) et à valeurs réelles, f(Z) = f(X, Y ) est d’espérance finie si et seulement
si

∑
(x,y)∈X(Ω)×Y (Ω)

|f(x, y)|P (X = x, Y = y) < +∞ et dans ce cas

E(f(X, Y )) =
∑

(x,y)∈X(Ω)×Y (Ω)

f(x, y)P (X = x, Y = y)
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Exemple(s) :�
 �	IV.11 Soit X une variable aléatoire discrète suivant G (p). Déterminer l’espérance de 1
X

.�
 �	IV.12 Calculer E(XY ) pour les variables X et Y de l’ex II.16

Propriété [IV.7] :
1. Soient X et Y deux variables aléatoires discrètes réelles sur (Ω, A , P ) d’espérances finies.

Si X et Y sont indépendantes alors XY est d’espérance finie et

E(XY ) = E(X) × E(Y )

2. Généralisation : si X1, . . . , Xn sont des variables aléatoires discrètes réelles indépendantes et d’espérance finie

alors
n∏

i=1
Xi est d’espérance finie et

E

(
n∏

i=1
Xi

)
=

n∏
i=1

E(Xi)

Attention : La réciproque est fausse : on peut avoir E(XY ) = E(X)E(Y ) avec X et Y non indépendantes.

Propriété [IV.8] : (Inégalité de Markov)
Soit X une variable aléatoire discrète réelle positive sur (Ω, A , P ) admettant une espérance finie. Pour tout α > 0,
on a

P (X ⩾ α) ⩽ E(X)
α

Remarque(s) :�
 �	IV.13 Cette inégalité n’a bien sûr aucun intérêt si α ⩽ E(X) (donc si α est petit).

3. Variance

Propriété [IV.9] : Si X est une variable aléatoire discrète réelle telle que X2 est d’espérance finie alors X est
d’espérance finie et on a

E(X)2 ⩽ E
(
X2)

Remarque(s) :�
 �	IV.14 Plus généralement si Xk est d’espérance finie alors Xh est aussi d’espérance finie pour h ⩽ k.

Définition [IV.10] : Soit X une variable aléatoire discrète réelle. Si X2 est d’espérance finie, on dit que X admet
un moment d’ordre 2 et on définit la variance de X, notée V (X), par

V (X) = E
[
(X − E(X))2] = E

(
X2)− E(X)2

Dans ca cas, on définit aussi son écart type, note σ(X), par

σ(X) =
»

V (X)

On dit qu’une variable aléatoire discrète X est réduite si V (X) = 1.

Remarque(s) :�
 �	IV.15 La variance d’une variable aléatoire discrète est donc toujours positive !�
 �	IV.16 La variance (et l’écart type) mesurent la dispersion des valeurs de X par rapport à sa moyenne
(son espérance).
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�
 �	IV.17 On dit que X admet un moment d’ordre k ∈ N si Xk est d’espérance finie. Ainsi X est d’espérance
finie si et seulement si X admet un moment d’ordre 1. Toute variable aléatoire discrète admet un
moment d’ordre 0 : E(X0) = 1.

Propriété [IV.11] : (Variance des variables de lois usuelles)
Soit X une variable aléatoire discrète sur (Ω, A , P ).

1. Si X ∼ U (n) et X(Ω) = [[ 1, n ]] , alors V (X) = n2 − 1
12 .

2. Si X ∼ B(p) alors V (X) = p(1 − p).
3. Si X ∼ B(n, p) alors V (X) = np(1 − p).

4. Si X ∼ G (p) alors V (X) = 1 − p

p2 .

5. Si X ∼ P(λ) alors V (X) = λ.

Propriété [IV.12] : Soit X une variable aléatoire discrète réelle sur (Ω, A , P ) admettant un moment d’ordre 2
alors pour tout (a, b) ∈ R2, la variable aléatoire discrète aX + b admet un moment d’ordre 2 et

V (aX + b) = a2V (X)

Remarque(s) :�
 �	IV.18 Si X est une variable aléatoire discrète réelle admettant une variance alors la variable aléatoire

discrète 1
σ(X) (X − E(X)) est réduite et centrée.

Propriété [IV.13] : (Inégalité de Bienaymé-Tchebychev)
Soit X une variable aléatoire discrète réelle sur (Ω, A , P ) admettant un moment d’ordre 2. Alors, pour tout α > 0,
on a

P (|X − E(X)| ⩾ α) ⩽ V (X)
α2

Remarque(s) :�
 �	IV.19 L’inégalité de Bienaymé-Tchebychev permet de contrôler la probabilité que X s’écarte de sa
moyenne.�
 �	IV.20 Là encore, cette inégalité est sans intérêt si α est petit (α ⩽

»
V (X)).

Définition [IV.14] : Soient X et Y deux variables aléatoires discrètes réelles sur (Ω, A , P ) admettant des moments
d’ordre 2. On définit la covariance de X et Y , notée Cov(X, Y ) par

Cov(X, Y ) = E((X − E(X))(Y − E(Y )))

Remarque(s) :�
 �	IV.21 Si V (X) > 0 et V (Y ) > 0, on définit également le coefficient de corrélation de X et Y , noté

ρ(X, Y ), par ρ(X, Y ) = Cov(X, Y )√
V (X)V (Y )

Conséquence [IV.15] : Soient X et Y deux variables aléatoires discrètes réelles sur (Ω, A , P ) admettant des
moments d’ordre 2. On a :

1. Cov(X, Y ) = E(XY ) − E(X)E(Y ).
2. Si X et Y sont indépendantes alors Cov(X, Y ) = 0.
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Remarque(s) :�
 �	IV.22 Pour calculer E(XY ), on peut utiliser le théorème de transfert si on connait la loi du couple
(X, Y ).�
 �	IV.23 On peut avoir Cov(X, Y ) = 0 sans que X et Y soient indépendantes (ie la réciproque de 2. est
fausse) : si U et V sont deux variables aléatoires discrètes indépendantes suivant B(p), X = 2U −V
et Y = U + 2V alors Cov(X, Y ) = 0 mais P (X = 0, Y = 0) ̸= P (X = 0)P (Y = 0) donc X et Y ne
sont pas indépendantes.

Propriété [IV.16] : (Inégalité de Cauchy-Schwarz)
Soient X et Y deux variables aléatoires discrètes réelles sur (Ω, A , P ) admettant des moments d’ordre 2. Alors XY
est d’espérance finie et

E(XY )2 ⩽ E
(
X2)× E

(
Y 2)

Remarque(s) :�
 �	IV.24 On a donc (Cov(X, Y ))2 ⩽ V (X) × V (Y ) et −1 ⩽ ρ(X, Y ) ⩽ 1.

Propriété [IV.17] : Soient X1, . . . , Xn des variables aléatoires discrètes réelles admettant des moments d’ordre 2,
pour tout i ∈ [[ 1, n ]] . Alors X1 + · · · + Xn admet un moment d’ordre 2 et

V

(
n∑

i=1
Xi

)
=

n∑
i=1

V (Xi) + 2
∑

1⩽i<j⩽n

Cov(Xi, Xj)

Si on suppose de plus que les Xi sont deux à deux indépendantes alors on a

V

(
n∑

i=1
Xi

)
=

n∑
i=1

V (Xi)

Théorème [IV.18] : (Loi faible des grands nombres)
Soit (Xn)n∈N∗ une suite de variables aléatoires discrètes réelles indépendantes et identiquement distribuées. Si X1
(donc tous les Xi) admet un moment d’ordre 2 et si on note m = E(X1) (leur espérance commune), σ = σ(X1) (leur

écart type commun) et Sn =
n∑

k=1
Xk alors on a, pour tout ε > 0 fixé,

P

Å∣∣∣∣ 1nSn − m

∣∣∣∣ ⩾ ε

ã
⩽

σ2

nε2 donc lim
n→+∞

P

Å∣∣∣∣ 1nSn − m

∣∣∣∣ ⩾ ε

ã
= 0

Remarque(s) :�
 �	IV.25 Il suffit en fait que les variables aléatoires discrètes soient 2 à 2 indépendantes.�
 �	IV.26 Une fois de plus, cela n’a d’intérêt que si ε est assez grand (ε >
σ√
n

).

Exemple(s) :�
 �	IV.27 On dispose d’une pièce dont on souhaite déterminer la probabilité p qu’elle donne pile. Pour cela,
on la lance un grand nombre de fois et on note Xk la variable aléatoire discrète de Bernoulli égale

à 1 quand le kème tirage donne pile et Sn =
n∑

k=1
Xk la variable aléatoire discrète donnant le nombre

de pile lors des n premiers lancers. Xk suit B(p) donc E(Xk) = p et V (Xk) = p(1 − p). La loi

faible des grands nombres donne P

Å∣∣∣∣ 1nSn − p

∣∣∣∣ ⩾ ε

ã
⩽

p(1 − p)
nε2 ⩽

1
4nε2 . Ainsi la probabilité que

1
n

Sn soit une valeur approchée de p à ε près sera supérieure à α à condition que n ⩾
1

4(1 − α)ε2 .
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V Fonction génératrice d’une variable aléatoire discrète
Dans toute cette partie, on considère des variables aléatoires discrètes définies sur un espace probabilisé (Ω, A , P ) et
à valeurs dans N, ie telles que X(Ω) ⊂ N.

Définition : Soit X une variable aléatoire discrète à valeurs dans N. On appelle fonction génératrice de X, la
fonction GX définie, lorsque la série entière de variable réelle t converge, par

GX(t) = E
(
tX
)

=
+∞∑
n=0

P (X = n) × tn

Remarque(s) :�
 �	V.1 Si X(Ω) est un ensemble fini, alors GX est un polynôme.�
 �	V.2 On a GX(1) = P (X ∈ N) = 1.

Propriété [V.1] : Le rayon de convergence de la série entière
∑
n⩾0

P (X = n) × tn est au moins égal à 1 et la série

converge normalement sur [−1, 1].

Conséquence [V.2] : La loi d’une variable aléatoire discrète X à valeurs dans N est entièrement déterminée par
la fonction GX :

1. GX est continue sur [−1, 1] (au moins)
2. la fonction GX est de classe C∞ sur ] − 1, 1[ (au moins) et, pour tout n ∈ N,

P (X = n) = G
(n)
X (0)
n!

Remarque(s) :�
 �	V.3 La fonction GX peut ne pas être dérivable en ±1 (cf lien avec l’espérance plus loin).

Propriété [V.3] : (Fonctions génératrices des lois usuelles)
Soit X une variable aléatoire discrète .

1. Si X ∼ B(p) alors, pour t ∈ R, GX(t) = (1 − p) + pt et RX = +∞.
2. Si X ∼ B(n, p) alors, pour tout t ∈ R, GX(t) = [(1 − p) + pt]n et RX = +∞.

3. Si X ∼ U (n) et X(Ω) = [[ 1, n ]] alors, pour tout t ∈ R, GX(t) = 1
n

n∑
k=1

tk et RX = +∞.

4. Si X ∼ G (p) alors, pour |t| <
1

1 − p
, GX(t) = pt

1 − (1 − p)t et RX = 1
1 − p

.

5. Si X ∼ P(λ) alors, pour tout t ∈ R, GX(t) = eλ(t−1) et RX = +∞.
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Propriété [V.4] :
1. Soient X et Y deux variables aléatoires discrètes à valeurs dans N indépendantes. Si on note RX et RY les

rayons de convergences des fonctions génératrices GX et GY respectivement, on a :

∀|t| < min(RX , RY ), GX+Y (t) = GX(t) × GY (t)

On a donc RX+Y ⩾ min(RX , RY ).
2. Généralisation : si X1, . . . , Xn sont des variables aléatoires discrètes entières indépendantes alors

∀|t| < min(RX1 , . . . , RXn), GX1+···+Xn(t) = GX1(t) × · · · × GXn(t)

Remarque(s) :�
 �	V.4 On peut, à l’aide de cette propriété, retrouver la fonction génératrice d’une loi binomiale à partir
de le fonction génératrice d’une loi de Bernoulli.

Exemple(s) :�
 �	V.5 Soient X1, . . . , Xn des variables aléatoires discrètes indépendantes suivant toutes la même loi

géométrique de paramètre p ∈]0, 1[ et Sn =
n∑

k=1
Xk. Déterminer GSn

et en déduire la loi de Sn.

Théorème [V.5] : Soit X une variable aléatoire discrète à valeurs dans N et GX sa fonction génératrice.
1. X admet une espérance finie si et seulement si GX est dérivable en 1. De plus, dans ce cas, on a

E(X) = G′
X(1)

2. X admet un moment d’ordre 2 si et seulement si GX est deux fois dérivable en 1. De plus dans ce cas, on a

V (X) = G′′
X(1) + G′

X(1) − (G′
X(1))2

Remarque(s) :�
 �	V.6 On peut retrouver ainsi les espérances et les variances des lois usuelles.
Exemple(s) :�
 �	V.7 On considère l’expérience suivante : on lance une pièce équilibrée une infinité de fois, tant qu’on

obtient « pile », on lance un dé équilibré à 6 faces et on avance un pion sur un plateau de jeu d’un
nombre de cases égal au numéro de la face du dé (on suppose le plateau infini) ; dès qu’on obtient
« face », le jeu s’arrête. On note N la variable aléatoire discrète égale au nombre de fois où on
avance le pion, Xk la variable aléatoire discrète donnant le numéro de la face du dé obtenue au
kème tirage et S la variable aléatoire discrète égale au nombre de cases dont le pion a avancé à la
fin du jeu.

a) Montrer que P (S = n) =
+∞∑
k=0

1
2k+1 P (X1 + · · · + Xk = n).

b) Montrer que, si |t| ⩽ 1, GS(t) =
+∞∑
k=0

1
2k+1

+∞∑
n=0

P (X1 + · · · + Xk = n)tn.

c) En déduire que S admet une espérance finie et que E(S) = 7
2 .
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