Variables aléatoires
discretes

Dans tout ce chapitre, & désignera une tribu sur un ensemble 2.

I Généralités

1. Définitions

Définition : Soit £ un ensemble quelconque. Une variable aléatoire discréte sur (), .o7) est une application
X : QQ — FE qui vérifie les deux propriétés suivantes :
1. L’ensemble image X (£2) est fini ou dénombrable.
2. Pour tout x de X (), I'image réciproque de {z} (ie 'ensemble des antécédents de x) est un événement (ie
appartient & &) :
Ve X(Q), X *{z}) ={weQX(w) =0} &

Une variable aléatoire discréte réelle sur (2, 27) est une variable aléatoire discréte sur (€2, .27) a valeurs réelles
(ie E =R).

Remarque(s) :

@ Si F C X(Q), F est au plus dénombrable donc F = {x,,n € I} avec I C N et X }(F) =
U X71({z,}) est une réunion, au plus dénombrable, d’événements donc X 1 (F) € 7.
nel
(1.2) Size E\ X(Q) alors X '({z}) = 0 donc X *({z}) € o aussi.
Exemple(s) :

@ Si on tire successivement, avec remise, n boules dans une urne contenant p boules blanches et ¢
boules noires, le nombre de boules blanches tirées est une variable aléatoire discrete .

Si on lance indéfiniment un dé A 6 faces et si on note X,, la valeur du dé au n®™® lancer alors X,
est une variable aléatoire discrete .
Si on pose T' = min{n € N*, X,, = 6} (avec T" = +o0 si 'ensemble est vide), T" est une variable
aléatoire discrete (le temps d’attente du premier 6).

Notations : Soit X une variable aléatoire discréte sur (€2, 7).
1. Si U C X(Q), 'événement X ~H(U) est noté (X € U) ou {X € U} :

(Xel)={we, X(w)eU}
2. Siz € X(Q), I'événement (X € {z}) est noté plus simplement (X = z) :
(X =2)={we QX (w) =2z}
3. Si X est a valeurs réelles et a € R, on utilise les notations suivantes :
(X<a)={we, X(w)<a} et (X2a)={weQ,X(w)>a}

(X<a)={weQXw)<a} et (X>a)={weQ X(w)>a}
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Remarque(s) :

Ces notations sont « compatibles » avec les opérations sur les ensembles : (X € A) = (X € A),
(XeAuXeB)=(XecAUB)et (XeAN(XeB)=(XecANDB).

Si U e X(Q)alors (X €U) = | J (X =2).

zeU

Définition [I.1] : Soient X une variable aléatoire discréte sur (€2, 7) et f une application définie sur X () (au
moins). On note f(X) la variable aléatoire discréte f o X, 'image de X par 'application f.

2. Loi d’une variable aléatoire discréte

Définition : Soient (2, o7, P) un espace probabilisé et X une variable aléatoire discréte sur (€2, o7, P). On appelle
loi de la variable aléatoire discréte X l'application notée Px définie par

Py : P(X(Q) — [0,1]
U +— P(XeU)

Remarque(s) :

L7) SiUeX(Q),maPx(U)=P(XeU)= >  pn
n tq x, €U
Cela signifie que Py, la loi de X est entierement déterminée par les valeurs de P(X = z) quand x
décrit X ().

On peut avoir deux variables aléatoires discretes différentes X et Y telles que Px = Py (donc qui
aient la méme loi) : on lance deux dés a 6 faces discernables et on note X la différence de la valeur
du premier dé et de la valeur du second dé. Les lois de X et —X sont égales alors que X # —X.

Exemple(s) :
On tire, avec remise, p jetons dans une urne qui contient n jetons numérotés de 1 a n et on

considere X la variable aléatoire discréte égale au plus grand des numéros obtenus. Déterminer
P(X < k) et en déduire P(X = k).

Définition : Soient X et Y deux variables aléatoires discrétes sur (2, o7, P). On dit que X et Y suivent la méme
loi si Py = Py, ie
X(Q)=Y(Q) et V2eX(Q),P(X=2=PY =2)

On le note alors X ~ Y.

Propriété [I.2] : Soient X et Y deux variables aléatoires discrétes sur (2, <7, P) et f une application définie sur
X(9).

Si X ~Y alors f(X) ~ f(Y)

II Couple de variables aléatoires discretes

1. Loi conjointe et lois marginales

Définition [I1.1] : Soient X et Y deux variables aléatoires discrétes sur (2, o7, P) & valeurs dans F et F respec-
tivement. On appelle couple de variables aléatoires discrétes (X,Y) la variable aléatoire discrete Z, & valeurs
dans E x F', définie par

Yw e Q, Z(w) = (X (w),Y(w))
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Exemple(s) :

On dispose de deux dés, un bleu et un vert; on choisit un dé au hasard et on le lance. Si C
est la variable aléatoire discrete donnant la couleur du dé choisi et V' la valeur obtenue sur le dé
alors le couple de variables aléatoires discretes Z = (C, V) détermine complétement le résultat de
I’expérience.

Définition : Soient X et Y deux variables aléatoires discrétes sur (Q, o7, P). On appelle loi conjointe de X et
Y la loi du couple (X,Y) :

Pix.v)(U,V) = P(X € U,Y € V) pour (U, V) C X() x Y(Q)

La loi Pix yy est enticrement déterminée par la donnée de P(X = x;,Y = y;) pour (x;,y;) € X(Q2) x Y(€).

Exemple(s) :

(IL.2) On considére une urne contenant n jetons numérotées de 1 a n. On tire successivement deux
boules sans remise. On note X; la valeur du premier jeton tiré et X, celui du second. On a

0 sii=j
P(XlzleQZJ): Sll#j
nin—1)
On peut visualiser la loi du couple (X7, X2) par une matrice
(P(Xy =i, X, = j) L (1-by)
1 » A2 = J))1<i,5< n(n — 1) VPSS ES

Remarque(s) :
(I1.3) On note indifféremment (X € A,Y € B) = (X € A)N (Y € B) I'événement (X,Y) € A x B.
@@ SiZ =(X,Y),onaZ(Q) C X(Q)xY(Q) donc on peut vérifier que Z PX=2Y=y)=1.

z € X(Q)
y €Y(Q)

Définition [II.2] : Soit Z une variable aléatoire discréte sur (2,27, P) & valeurs dans E x F. Pour w € 2, on note
Z(w) = (X (w), Y (w)). Les applications X et Y sont alors deux variables aléatoires discrétes sur (2, 7, P).
On appelle lois marginales de Z les lois des variables aléatoires discretes X et Y.

Propriété [I1.3] : Soit Z une variable aléatoire discréte sur E x F. Les loi marginales de Z sont entiérement
déterminées pas la loi de Z : si Z = (X,Y) alors

VzeX(Q),P(X=x)= Y PX==zY=y)
yeY ()

VeY(Q),PY =y = > PX=zY=y)
zeX(Q)

Remarque(s) :

SiX(Q) ={z;,ieltetY(Q) ={y,;,j € J}etsilaloide Z=(X,Y) est visualisée par le tableau

(P(X =2,Y = y;))i,j)erxs alors P(X = x;) = ZP(X =x;,Y = y;) (somme de la i®™° ligne)
jedJ
et P(Y =y;) = Z P(X =2;,Y = y;) (somme de la j*° colonne).
i€l

(IL.6) On ne peut pas retrouver la loi de Z a partir des ses lois marginales : deux variables aléatoires
discretes sur E x F' différentes peuvent avoir les mémes lois marginales; ex : on lance une piéce
équilibrée et on pose X = 1 si le tirage donne pile, 0 sinon; les lois marginales de (X, X) et de
(X,1 — X) sont égales mais les lois conjointes sont différentes.
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(I1.7) Cette propriété se généralise & un n-uplets de variables aléatoires discretes : si Xi, ..., X, sont des
variables aléatoires discrétes définies sur (§2, &7, P) alors, pour tout k € [1,n] et tout z € X (),

on a
P(Xy =) = Z PXi=z1,...,. Xk =2p,..., Xy = xp)
itk
Exemple(s) :

Une urne contient n boules numérotées de 1 a n, on tire successivement avec remise deux boules.
On note X le plus petit des deux numéros, Y le plus grand. Déterminer la loi de (X,Y") puis celles
de X etY.

2. Conditionnement et indépendance

Définition : Soient X et Y deux variables aléatoires discrétes sur (€2, o7, P) et x € X(Q) tel que P(X =z) > 0. On
appelle loi conditionnelle de Y sachant que (X = z) la loi de la variable aléatoire discréte Y pour la probabilité
P(X:$), ie
P(X=z)Nn(Y € B))

P(X =2x)

VBeY(Q),P(YeB|X=xzx)=

Remarque(s) :

(11.9) On peut, dans le cas o P(X =) =0, poser P(Y € B|X =z) =0.
)

La loi de Y sachant que (X = z) est entierement déterminée par les valeurs de P(Y = y| X = z)

pour tout y € Y(2) : si BC Y(Q) alors P(Y € B| X =x) = Z PY =yl X =x).
yeB

Laloide Z = (X,Y) est entiérement déterminée par la connaissance des lois de X et de Y sachant
(X = z), pour tout z € X(Q) :si (z,y) € Z(N), P(Z = (z,y)) = P(Y =y|X =z) x P(X =x)
(méme si P(X = x) = 0 avec la convention précédente).
La loi de Y est elle aussi connue : P(Y =y) = Z PY=y|X =2)x P(X =x).

ze€X ()

On peut définir de méme la loi de Y sachant que X € A, avec A C X(9) tel que P(X € A) >0,

en posant P(Y € B| X € A) = Pxea(Y € B).

Exemple(s) :

On dispose d’une infinité de boites (B, )nen~, la boite B, contenant 2 boules dont une seule est
blanche. On lance une piéce équilibrée une infinité de fois, si on obtient le premier pile au n®me
tirage, on tire un jeton dans la boite B,, et on arréte I’expérience. On note X le numéro de la boite
et Y = 1 si la boule tirée est blanche, 0 sinon. Déterminer la loi de (X,Y") puis celle de Y.

Définition : Soient X et Y deux variables aléatoires discrétes sur (€2, o7, P). On dit que les variables aléatoires
discrétes X et Y sont indépendantes si

V(z,y) € X(Q) xY(Q),P(X=z,Y=y)=P(X =2)x P(Y =y)

On le note alors X 1L Y

Remarque(s) :
Si X 1 Y alors la loi de Y sachant (X = x) est la loi de Y : pour (z,y) € X(2) x Y(Q2), on a
PY =yl X =2) =P =y).

I1.15) Lors d’une expérience aléatoire répétée deux fois de suite dans les mémes conditions (tirage d’une
boule avec remise, lancer de dé, ...), si on note X le « résultat » de la premiere expérience et ¥
celui de la deuxiéme, il est courant de modéliser ’expérience avec X et Y indépendantes.
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Exemple(s) :

Soient X et Y deux variables aléatoires & valeurs dans N et p €]0, 1].
On suppose que la loi conjointe de X et Y vérifie

avec a € R.

a) Déterminer la valeur de a.
b) Déterminer les lois de X et Y.
c) Les variables X et Y sont elle indépendantes ?

Théoréme [I1.4] : Soient X et Y deux variables aléatoires discrétes sur (€2, <7, P). Les variables aléatoires discrétes
X et Y sont indépendantes si et seulement si

V(A,B) C X(Q)xY(Q),P(X € A)Y e B)=P(X € A) x P(Y € B)

Définition :

1. Soient Xj,..., X, n variables aléatoires discretes sur (2, <7, P). On dit que X1, ..., X,, sont indépendantes
si pour tout k € [2,n] et tout i; < iy < --- < i dans[1,n], on a

k

k
V(Z’il,...,l’ik) € HXZ7(Q),P ﬂ (ij :IL‘Z‘J.) = 1_[P()(17 :I‘ij)

j=1 1<5<k j=1

2. Si (X,)nen est une suite de variables aléatoires discretes définies sur (€2, <7, P), on dit que (X, )nen est une
suite de variables aléatoires discretes indépendantes si, pour tout n € N, la famille finie X;,...,X,, est
indépendantes.

Une suite (X,,)nen de variables aléatoires discretes indépendantes est dite identiquement distribuée si les
X, suivent toutes la méme loi, ie
V(i,j) € N} X; ~ X

Remarque(s) :

Des variables aléatoires discretes indépendantes sont 2 & 2 indépendantes mais la réciproque est
fausse; c¢/ex : on lance deux fois un dé a 6 faces, on note X = 1 (resp. Y = 1let Z = 1) sile
premier (resp. le second, la somme des 2) tirage est pair, 0 sinon. Les variables aléatoires discretes
X, Y et Z sont 2 a 2 indépendantes mais pas indépendantes.

I1.18) Pour tester si Xq,...,X, sont indépendantes, il faut tester 2" — n — 1 ensembles d’indices i1 <
e <& ik»

I1.19) Si Xi,...,X, est une famille de variables aléatoires discretes indépendantes alors toute sous
famille de X1, ..., X, est une famille de variables aléatoires discretes indépendantes.

1 si pile au lancer n
0 sinon

alors (X, )nen sera modélisée comme une suite de variables aléatoires discrétes indépendantes
identiquement distribuées, suivant une loi de Bernoulli.

I1.20) Si on lance une piece une infinité de fois et si X,, est définie par X,, = {

Théoréme [I1.5] : Soient X3,..., X, n variables aléatoires discrétes sur (§2, &7, P). Les variables aléatoires discretes
X1,...,X, sont indépendantes si et seulement si on a

n

V(A1 Ay C [T X, P[] (X € A :ﬁP(XieAi)

j=1 1<ign
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Propriété [II.6] :
1. Soient X et Y deux variables aléatoires discrétes sur (€, 7, P), f une application définie sur X (Q) et g une
application définie sur Y ().
X LY = f(X) 1 g(Y)

2. Généralisation : si Xy,..., X, sont des variables aléatoires discrétes définies sur (2, o7, P) et si fi,

..y [ sont
des applications définies sur X;(€2) respectivement alors
Si Xi,..., X, sont indépendantes alors f(X1),..., fn(X,) sont indépendantes.
Remarque(s) :
I1.21) Dans cette propriété, on peut avoir f; = --- = f,, (& part f; définie sur X;(2), aucune hypotheése

n’est nécessaire sur les f;).

Propriété [I1.7] : (Lemme des coalitions)

1. Si Xy,..., X, sont des variables aléatoires discrétes définies sur (€2, o7 P), m €[[1,n—1], f et g deux appli-
cations définies respectivement sur Xi(Q) x -+ x X,,(Q) et X;py1(Q) x -+ x X,,(Q) alors
Si Xi,...,X, sont indépendantes alors f(Xy,...,X) et g(Xm+1,-.-,Xn) sont indépendantes

2. Généralisation : si X7,..., X, sont des variables aléatoires discrétes définies sur (Q, o7, P), si I, ..., I} est une

partition de [1,n] et si fi,..., fx sont définies respectivement sur H X;(Q), pour h €1, k], alors
el

Si X1,..., X, sont indépendantes alors f1((Xp)ner,)s-- -, fx((Xn)ner,) sont indépendantes

Remarque(s) :

I11.22) Le lemme des coalitions permet entre autres de prouver que si X7,

., X, sont indépendantes
alors X7 + -4+ X,,_1 et X,, sont indépendantes.

IIT Lois usuelles

1. Variables aléatoires discrétes finies

Définition [III.1] : (Loi uniforme)
Soit X une variable aléatoire discréte sur (2, .47). On dit que X suit une loi de probabilité uniforme si X (£2) est un
ensemble fini de cardinal n et si 1

Ve e X(Q),P(X =x) = -

On le note X ~ % (n).

Exemple(s) :

(I11.1) On lance un dé a 6 faces équilibré. Si X est la variable aléatoire discrete égale au numéro de la
face obtenue alors X ~ U(6).

Définition [IT1.2] : (Loi de Bernoulli)
Soient X une variable aléatoire discréte sur (2, 47) et p €]0,1[. On dit que X suit une loi de Bernoulli de

parameétre p si
PX=1)=
X(2)={0,1} et { EX ng _p
On le note X ~ %AB(p).
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Remarque(s) :

II1.2) Les variables de Bernoulli sont utiles pour modéliser une expérience a deux issues : si on tire
une boule dans une urne contenant k boules blanches et n — k boules noires, la variable aléatoire

discrete X = 1 si la boule est blanche, 0 si elle est noire suit une loi % (7)
n

1
(II1.3) Un tirage de pile ou face avec une piece équilibrée suit % (2) ou & (5)

(I11.4) Une piéce donne pile avec une probabilité p (et face avec une probabilité 1 — p). On lance cette
piece une infinité de fois. L’expérience peut étre modélisée par une suite de variables aléatoires

discretes indépendantes identiquement distribuées (X,,)nen+ qui suivent toutes Z(p).

Définition [III.3] : (Loi binomiale)
Soient X une variable aléatoire discréte sur (2, <7, P), p €]0,1] et n € N*. On dit que X suit une loi binomiale de

parameétres n et p si

X(Q)=[0,n] et Vke[0,n],P(X =k) = (Z)pk(l —p)nk

On le note X ~ A(n,p).

Propriété [II1.4] : Si Xi,...,X, sont n variables aléatoires discrétes indépendantes et suivant toutes une loi
P (p) alors X1 + - - + X, suit une loi #(n,p).

Remarque(s) :

I11.5) Cela signifie que #(n,p) est utilisée pour modéliser le nombre de gains dans une succession de n
expériences de Bernoulli indépendantes et de méme parametre p : par exemple le nombre de boules
blanches obtenues dans une expérience de n tirages successifs avec remise, ou dans un jeu de pile

ou face répété n fois.

2. Variables aléatoires discrétes infinies

Définition [II1.5] : (Loi géométrique)
Soit X une variable aléatoire discréte sur (2,27, P) et p €]0,1[. On dit que X suit une loi géométrique de

parameétre p si
X(Q)=N* et VEeN" P(X=k)=p(1l—-p)r!

On le note X ~ ¥ (p).

Propriété [IIL.6] : Si X ~ ¥(p) avec p €]0, 1] alors

VkeN,P(X > k)= (1-p)*

Exemple(s) :

(JII.6) Soient X et Y deux variables aléatoires discretes indépendantes suivant ¢(p) et Z = min(X,Y).
Vérifier que Z suit une loi géométrique.
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Propriété [II1.7] : Soit (X,,),€ N* une suite de variables aléatoires discrétes indépendantes et identiquement
distribuées suivant toutes la méme loi Z(p). On définit la variable aléatoire discréte T par

T =min{k € N*, X}, =1} et T = 400 si 'ensemble est vide
Alors la variable aléatoire discréte T suit la loi 4(p).

T ~%(p)

Remarque(s) :

I11.7) T désigne le temps d’attente du premier succes dans la suite d’expériences modélisée par (X, )nen :
par exemple 'obtention d’un premier pile dans un jeu de pile ou face infini, I’'obtention d’un premier
6 dans une expérience de lancer de dé infinie,. ..

Exemple(s) :

II1.8) On lance un dé a 6 faces équilibré une infinité de fois. Déterminer la probabilité de ne pas obtenir
un 6 dans les 10 lancers suivants sachant qu’on n’a pas fait de 6 dans les 100 premiers lancers.

I11.9) Plus généralement (loi sans mémoire) : si X est une variable aléatoire discrete sur (€2, .47, P).
Alors X suit une loi géométrique si et seulement si

V(n, k) € (N*)*>,P(X >n+k| X >n)=P(X > k)

Définition [I11.8] : (Loi de Poisson)
Soient X une variable aléatoire discréte sur (£2, 47, P) et A > 0 un réel. On dit que X suit une loi de Poisson de
parametre A si
)\k
XQ)=N et VkeN,P(X =k)= e**ﬁ

On le note X ~ Z(\).

Exemple(s) :

Soient X et Y deux variables aléatoires discrétes indépendantes suivant respectivement Z(\) et
P (). Alors la variable aléatoire discréte X + Y suit la loi Z2(\ + p).

Propriété [II1.9] : Soit (X, ),en une suite de variables aléatoires discretes telle que, pour tout n € N, X, suit une
loi #(n,py). Si linILl np, = A alors on a, pour tout k € N* fixé
n—-+0oo

LA

Remarque(s) :

II1.11) On dit que la loi de Poisson est la loi des événements rares.
Exemple(s) :

On considére une masse de matiére qui contient n atomes radioactifs. On suppose que chacun
d’eux possede, indépendamment des désintégrations des autres atomes, une probabilité p de se
désintégrer & un instant < t; donné; on suppose que cette probabilité est tres faible devant n. Le
nombre d’atomes qui se désintegrent a un instant < t; est une variable aléatoire discréte qui suit
PB(n,p). Si on suppose que durant un laps de temps 7' = np fixé, on observe un nombre constant
A de désintégrations alors on peut approcher le nombre de désintégrations a l'instant < ¢; par une
variable aléatoire discréte suivant F2(\).

En comptant le nombre de désintégrations pendant un temps donné, un compteur Geiger peut
alors donner le nombre d’atomes radioactifs présents dans la masse.
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IV Espérance et variance d’une variable aléatoire discréte réelle

1. Espérance

Définition : Soit X une variable aléatoire discréte réelle sur (2, &7, P).

1. Si X est a valeurs positives (ie X(£2) C RT) alors 'espérance de X est

E(X)= ) aP(X=x) €0+
z€X(Q)

2. Si X est a valeurs réelles ou complexes, on dit que X est d’espérance finie si la famille (zP(X = x)),ex ()
est sommable, ie si

Y 2P(X =) < 400

zeX (Q)

Dans ce cas, I’espérance de X est

E(X)= ) zP(X=ux)

TEX(Q)

Une variable aléatoire discrete X d’espérance finie est dite centrée si E(X) = 0.

Remarque(s) :

(IV.1) Rappel : si X(Q) = {z,,n € N} avec x; # x; pour i # j alors (zP(X = x)),ex () est sommable

si et seulement si la série Z x, P(X = x,) est absolument convergente. La nature de cette série
n>=0
ne dépend pas de l'ordre dans lequel on numérote les éléments de X (£2).

Si X est & valeurs dans X (Q) = {z1,...,2,} fini, on a E(x Zka = x1) (somme finie).

Soit X une variable aléatoire discrete réelle a valeurs bornées. Alors X est d’espérance finie.

Propriété [IV.1] : (Espérance des variables de lois usuelles)
Soit X une variable aléatoire discrete sur (€2, o7, P).

L. 81 X ~ %(n) et X(@) =[1,n], alors B(X) =" L
2. Si X ~ %B(p) alors E(X) = p.
3. Si X ~ B(n,p) alors E(X) =
4. Si X ~¥9(p) alors E(X) = %
5. Si X ~ Z()\) alors E(X) =\

Propriété [IV.2] : Soit X une variable aléatoire discréte sur (€2, &7, P) a valeurs dans NU {4o00}. Alors X admet

une espérance si et seulement si la série E P(X = n) converge. Dans ce cas
n>1

—+oo
X)=> P(X>n
n=1

Remarque(s) :
Sous ces hypotheses, si P(X = +o00) > 0, alors on a F(X) = 400
Exemple(s) :

Retrouver l'espérance d’une variable aléatoire discréte suivant ¢(p).
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2. Propriétés de ’espérance

Propriété [IV.3] : (Théoréme de comparaison)
Si X et Y sont deux variables aléatoires discrétes telles que | X| <Y et si Y est d’espérance finie alors

X est d’espérance finie.

Dans ce cas, on a de plus |E(X)| < E(Y).

Propriété [IV.4] : (Linéarité de ’espérance)
Soient X et Y deux variables aléatoires discrétes réelles sur (€2, .27, P) d’espérances finies et (, 3) € R? alors aX +3Y

est d’espérance finie et
E(aX +8Y)=aE(X)+ BE(Y)

Remarque(s) :

(IV.6) Si X est une variable aléatoire discréte réelle d’espérance finie alors X* = X — E(X) est centrée.

Propriété [IV.5] : (Positivité et croissance de ’espérance)
Soit X une variable aléatoire discrete réelle sur (2, o7, P) d’espérance finie.
1. Si X est & valeurs positives, ie X(Q) C R, alors E(X) > 0.
De plus si E(X) =0 alors P(X =0) =1 (X est presque stirement nulle).

2. Si Y est une autre variable aléatoire discrete réelle d’espérance finie et si X <Y alors E(X) < E(Y).

Théoréme [IV.6] : (Théoréme de transfert)
Soient X une variable aléatoire discréte réelle sur (,.27, P) et f une application définie sur X () et a valeurs
réelles. La variable aléatoire discréte f(X) est d’espérance finie si et seulement si la famille (f(z)P(X = )),cx (@)
est sommable, ie Z If(2)|P(X =x) < 4o00.
z€X ()
Dans ce cas, on a
E(f(X)= ) f@)P(X=x)

zeX(Q)

Remarque(s) :

IV.7) Si X(Q) = {zn,n € N} avec x; # x; pour i # j, la famille (f(z)P(X = z))zecx (o) est sommable

signifie que la série Z f(zn)P(X = x,) est absolument convergente. Dans ce cas, on a

n=0
+o00
E(f(X) =) flxn)P(X = zn)
n=0
Si f est a valeurs positives, on peut toujours écrire E(f(X)) = Z f(@)P(X = z) avec

ze€X ()
E(f(X)) € [0, +00].
Le théoréme de transfert permet de calculer E(f(X)) & partir de la loi de X, sans avoir a calculer
la loi de f(X).

Cette formule peut s’appliquer a toute variable aléatoire discrete , donc aussi a un couple de
variables aléatoires discrétes Z = (X,Y") (ou un n-uplet de variables aléatoires discrétes ) : si f est
définie sur X (2) x Y(2) et a valeurs réelles, f(Z) = f(X,Y) est d’espérance finie si et seulement
si Z |f(z,y)|P(X =2,Y =y) < +00 et dans ce cas

(2,9)EX(Q) XY (Q)

E(f(X’Y)): Z f(x,y)P(X:x,Y:y)

(z,y) X (Q)XY ()
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Exemple(s) :

1
IV.11) Soit X une variable aléatoire discréte suivant ¢ (p). Déterminer 1'espérance de <

Calculer E(XY') pour les variables X et Y de 'ex I1.16

Propriété [IV.7] :
1. Soient X et Y deux variables aléatoires discretes réelles sur (2, o7, P) d’espérances finies.
Si X et Y sont indépendantes alors XY est d’espérance finie et

E(XY)=E(X) x E(Y)

2. Généralisation : si Xq,..., X, sont des variables aléatoires discretes réelles indépendantes et d’espérance finie
n

alors H X; est d’espérance finie et
i=1

i=1 i=1

Attention : La réciproque est fausse : on peut avoir E(XY) = E(X)E(Y) avec X etY non indépendantes.

Propriété [IV.8] : (Inégalité de Markov)

Soit X une variable aléatoire discréte réelle positive sur (Q, o, P) admettant une espérance finie. Pour tout a > 0,
on a

E(X)

P(X > a) <
o

Remarque(s) :

IV.13) Cette inégalité n’a bien sir aucun intérét si a < F(X) (donc si « est petit).

3. Variance

Propriété [IV.9] : Si X est une variable aléatoire discréte réelle telle que X 2 est d’espérance finie alors X est
d’espérance finie et on a
E(X)* < E(X?)

Remarque(s) :

1V.14) Plus généralement si X* est d’espérance finie alors X" est aussi d’espérance finie pour h < k.

Définition [IV.10] : Soit X une variable aléatoire discréte réelle. Si X2 est d’espérance finie, on dit que X admet
un moment d’ordre 2 et on définit la variance de X, notée V(X), par

V(X)=FE[(X - E(X))?] = E(X?) - B(X)?

Dans ca cas, on définit aussi son écart type, note o(X), par

On dit qu’une variable aléatoire discréte X est réduite si V(X) = 1.

Remarque(s) :

IV.15) La variance d’une variable aléatoire discrete est donc toujours positive !

IV.16) La variance (et ’écart type) mesurent la dispersion des valeurs de X par rapport a sa moyenne
(son espérance).
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1V.17) Ondit que X admet un moment d’ordre k € Nsi X* est d’espérance finie. Ainsi X est d’espérance
finie si et seulement si X admet un moment d’ordre 1. Toute variable aléatoire discrete admet un
moment d’ordre 0 : E(X°) = 1.

Propriété [IV.11] : (Variance des variables de lois usuelles)
Soit X une variable aléatoire discréte sur (2, <7, P).
n?—1

12

1. Si X ~ % (n) et X(Q) =[1,n], alors V(X) =
p(

2. Si X ~ B(p) alors V(X) = p(1 — p).
3. Si X ~B(n,p) alors V(X) =n (1 — D).
4 )=

’_‘H

. Si X ~¥(p) alors V(X

5. Si X ~ Z()\) alors V(X) = )\.

Propriété [IV.12] : Soit X une variable aléatoire discréte réelle sur (£, <, P) admettant un moment d’ordre 2
alors pour tout (a,b) € R?, la variable aléatoire discréte aX + b admet un moment d’ordre 2 et

V(aX +b) =’V (X)

Remarque(s) :

IV.18) Si X est une variable aléatoire discréte réelle admettant une variance alors la variable aléatoire

1
discrete —— (X — E(X)) est réduite et centrée.

o(X)

Propriété [IV.13] : (Inégalité de Bienaymé-Tchebychev)
Soit X une variable aléatoire discréte réelle sur (2,.o7, P) admettant un moment d’ordre 2. Alors, pour tout « > 0,
on a

PX - E(X)[ > a) <

Remarque(s) :

IV.19) L’inégalité de Bienaymé-Tchebychev permet de contrdler la probabilité que X s’écarte de sa
moyenne.

Iv.20) La encore, cette inégalité est sans intérét si v est petit (o < /V(X)).

Définition [IV.14] : Soient X et Y deux variables aléatoires discrétes réelles sur (€, o7, P) admettant des moments
d’ordre 2. On définit la covariance de X et Y, notée Cov(X,Y") par

Cov(X,Y)=E(X —EX))(Y —E(Y)))

Remarque(s) :

Si V(X) > 0et V(Y) > 0, on définit également le coefficient de corrélation de X et Y, noté

Cov(X,Y
p(X,Y), par p(X,Y) = _CovlX,Y)
V(X)V(Y)
Conséquence [IV.15] : Soient X et Y deux variables aléatoires discrétes réelles sur (€2, o7, P) admettant des

moments d’ordre 2. On a :
1. Cov(X,Y) = E(XY) — BE(X)E(Y).
2. Si X et Y sont indépendantes alors Cov(X,Y") = 0.
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Remarque(s) :

Pour calculer E(XY'), on peut utiliser le théoréeme de transfert si on connait la loi du couple
(X, Y).

On peut avoir Cov(X,Y) = 0 sans que X et Y soient indépendantes (ie la réciproque de 2. est
fausse) : si U et V sont deux variables aléatoires discrétes indépendantes suivant #(p), X = 2U -V
et Y =U + 2V alors Cov(X,Y) = 0 mais P(X =0,Y =0) # P(X =0)P(Y =0) donc X et Y ne
sont pas indépendantes.

Propriété [IV.16] : (Inégalité de Cauchy-Schwarz)
Soient X et Y deux variables aléatoires discrétes réelles sur (2, o7, P) admettant des moments d’ordre 2. Alors XY
est d’espérance finie et

E(XY)’ < E(X?) x E(Y?)

Remarque(s) :

On a donc (Cov(X,Y))2 < V(X)) x V(Y) et =1 < p(X,Y) < 1.

Propriété [IV.17] : Soient Xi,...,X,, des variables aléatoires discretes réelles admettant des moments d’ordre 2,
pour tout ¢ € [1,n]. Alors X; + - - + X,, admet un moment d’ordre 2 et

1<i<j<n

Si on suppose de plus que les X; sont deux a deux indépendantes alors on a

14 (i: Xi) = En:V(Xi)
i—1 i=1

Théoréme [IV.18] : (Loi faible des grands nombres)
Soit (X, )nen+ une suite de variables aléatoires discretes réelles indépendantes et identiquement distribuées. Si X
(donc tous les X;) admet un moment d’ordre 2 et si on note m = E(X1) (leur espérance commune), o = o(X7) (leur

n
écart type commun) et S, = ZX’“ alors on a, pour tout € > 0 fixé,
k=1

52 n—-+oo

1 o2 . 1
Pl|=S5,—m|>¢) < — donc lim P||=-S,—m|>¢]=0
n n

Remarque(s) :
Iv.25) 1l suffit en fait que les variables aléatoires discretes soient 2 & 2 indépendantes.

(o)
IV.26) Une fois de plus, cela n’a d’intérét que si € est assez grand (e > 7)
n

Exemple(s) :

IV.27) On dispose d’une piece dont on souhaite déterminer la probabilité p qu’elle donne pile. Pour cela,

on la lance un grand nombre de fois et on note X la variable aléatoire discrete de Bernoulli égale
n

a1 quand le k*™ tirage donne pile et S, = Z X la variable aléatoire discrete donnant le nombre
k=1

de pile lors des n premiers lancers. X}, suit #(p) donc E(X) = p et V(X;) = p(1 — p). La loi

p(1 —p)

1
> 5) <———=< . Ainsi la probabilité que
ne? 4ne?
1

41— a)e?’

1
faible des grands nombres donne P (‘Sn —-p
n

—S,, soit une valeur approchée de p a € pres sera supérieure a o a condition que n >
n
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V Fonction génératrice d’une variable aléatoire discrete

Dans toute cette partie, on considére des variables aléatoires discrétes définies sur un espace probabilisé (2, o7, P) et
a valeurs dans N, ie telles que X () C N.

Définition : Soit X une variable aléatoire discrete a valeurs dans N. On appelle fonction génératrice de X, la
fonction Gx définie, lorsque la série entiere de variable réelle ¢ converge, par

Gx(t) = E (t¥) = +§P(X =n)xt"
n=0

Remarque(s) :

V.1) Si X(9) est un ensemble fini, alors Gx est un polynéme.

OnaGx(1)=P(X eN) =1.

Propriété [V.1] : Le rayon de convergence de la série entiére Z P(X =mn) x t" est au moins égal a 1 et la série
n=0
converge normalement sur [—1,1].

Conséquence [V.2] : La loi d’'une variable aléatoire discréte X a valeurs dans N est entiérement déterminée par
la fonction Gy :

1. Gx est continue sur [—1,1] (au moins)

2. la fonction Gx est de classe C*° sur | — 1,1 (au moins) et, pour tout n € N,
G0
n!
Remarque(s) :

(V.3) La fonction Gx peut ne pas étre dérivable en £1 (cf lien avec I'espérance plus loin).

Propriété [V.3] : (Fonctions génératrices des lois usuelles)
Soit X une variable aléatoire discrete .

1. Si X ~ %(p) alors, pour t € R, Gx(t) = (1 —p) + pt et Rx = +o0.
2. Si X ~ %B(n,p) alors, pour tout t € R, Gx(t) = [(1 — p) + pt]" et Rx = +o0.

1 n
3. Si X ~%(n) et X(2) =[1,n] alors, pour tout t € R, Gx(t) = - Ztk et Rx = +oo0.
k=1

pt 1
P G Ry=——.
1-(1-pt @ M T1-p

5. Si X ~ Z()) alors, pour tout t € R, Gx(t) = MY et Rx = +00.

1
4. Si X ~ ¥(p) alors, pour [t| < T Gx(t)
—-p
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Propriété [V.4] :
1. Soient X et Y deux variables aléatoires discretes a valeurs dans N indépendantes. Si on note Rx et Ry les
rayons de convergences des fonctions génératrices Gx et Gy respectivement, on a :

Vlt‘ < min(RX7Ry),Gx+y(ﬁ) = Gx(t) X Gy(t)

On a donc Rx4y > min(Rx, Ry).

2. Généralisation : si Xq,..., X, sont des variables aléatoires discretes entiéres indépendantes alors

V|t| < min(Rx,,...,Rx,),Gx,+..+x,(t) =Gx, (t) x -+ x Gx, (t)

Remarque(s) :

(V.4) On peut, a I'aide de cette propriété, retrouver la fonction génératrice d’une loi binomiale & partir
de le fonction génératrice d’une loi de Bernoulli.

Exemple(s) :
@5) Soient X7,...,X, des variables aléatoires discretes indépendantes suivant toutes la méme loi

n
géométrique de parametre p €]0,1[ et S,, = Z X}j. Déterminer Gg, et en déduire la loi de .S,,.
k=1

Théoréme [V.5] : Soit X une variable aléatoire discréte a valeurs dans N et Gy sa fonction génératrice.

1. X admet une espérance finie si et seulement si Gx est dérivable en 1. De plus, dans ce cas, on a
B(X) = Gx(1)
2. X admet un moment d’ordre 2 si et seulement si Gx est deux fois dérivable en 1. De plus dans ce cas, on a

V(X) = G%(1) + Gx (1) - (Gx(1))?

Remarque(s) :

(V.6) On peut retrouver ainsi les espérances et les variances des lois usuelles.

Exemple(s) :

@ On considere 'expérience suivante : on lance une piece équilibrée une infinité de fois, tant qu’on
obtient « pile », on lance un dé équilibré a 6 faces et on avance un pion sur un plateau de jeu d’un
nombre de cases égal au numéro de la face du dé (on suppose le plateau infini) ; dés qu’on obtient
« face », le jeu s’arréte. On note N la variable aléatoire discrete égale au nombre de fois ot on
avance le pion, X la variable aléatoire discrete donnant le numéro de la face du dé obtenue au
k°™e tirage et S la variable aléatoire discréte égale au nombre de cases dont le pion a avancé a la

fin du jeu.
+o0 1

a) Montrer que P(S =n) = Z WP(X1 +-+ Xp =n).
k=0

+oo “+oo
1
b) Montrer que, si [t] < 1, Gs(t) = g SRFT E P(X1+ -+ Xi =n)t".
k=0 n=0

¢) En déduire que S admet une espérance finie et que E(S) = 5
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