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Partie I :
1. (Eλ) et (E−λ−1) sont les mêmes équations car (−1 − λ)(1 + (−1 − λ)) = λ(λ+ 1).
2. y est de classe C∞ sur ] −R,R[, et si |x| < R, on a :

y′(x) =
+∞∑
n=0

nanx
n−1 =

+∞∑
n=0

(n+ 1)an+1x
n et y′′(x) =

+∞∑
n=0

n(n− 1)anx
n−2 =

+∞∑
n=0

n(n+ 1)an+1x
n−1.

Ainsi, x(1+x)y′′(x)+(2x+1)y(x)−λ(1+λ)y(x) =
+∞∑
n=0

[n(n+1)an+1+n(n−1)an+2nan+(n+1)an+1−λ(1+λ)an]xn.

Ainsi, y est solution de Eλ sur ] − R,R[ si et seulement si ∀n ∈ N, (n + 1)2an+1 + n(n + 1) − λ(1 + λ)an = 0, ie

an+1 = (λ+ n+ 1)(λ− n)
(n+ 1)2 an

3. a) (Eλ) admet une solution polynômiale de degré d si et seulement si (Eλ) admet une solution DSE dont les
coefficients sont nuls à partir du rang d + 1 et ad ̸= 0. Donc (Eλ) admet une solution polynômiale de degré d
si et seulement si λ = d

b) Si λ = d alors pour n ⩽ d, on a an+1 = (n+ d+ 1)(d− n)
(n+ 1)2 an = (n+ d+ 1)(d− n)

(n+ 1)2 × (n+ d)(d− n+ 1)
n2 an−1

donc an = (n+ d)!(d− n)!
(n!)2 a0. Le seul polynôme solution de (Ed) tel que φd(0) = 1 est donc défini par :

φd =
d∑

n=0

(n+ d)!(d− n)!
(n!)2 Xn

c) φ1 = 1 + 2X

4. a) Si λ /∈ N alors an ̸= 0 et pour x ̸= 0 on a
∣∣∣∣an+1x

n+1

anxn

∣∣∣∣ = (λ+ n+ 1)|λ− n|
(n+ 1)2 |x| −−−−−→

n→+∞
|x|. On en déduit que∑

anx
n converge absolument pour |x| < 1 et diverge grossièrement pour |x| > 1 donc le rayon de convergence

de
∑
n⩾0

anx
n est R = 1

b) D’après 2. et 4.a, l’unique solution DSE de (Eλ) sur ] − 1, 1[ telle que φλ(0) = 1 est définie par :

φλ(x) =
+∞∑
n=0

n∏
k=1

(λ+ k) ×
n−1∏
k=0

(λ− k)

(n!)2 xn pour |x| < 1

c)
n∏

k=1

Å
−1

2 + k

ã
=

n∏
k=1

2k − 1
2 = (2n)!

4nn! et
n−1∏
k=0

Å
−1

2 − k

ã
= (−1)n

n−1∏
k=0

2k + 1
2 = (−1)n (2n)!

4nn! donc on a :

φ−1/2(x) =
+∞∑
n=0

(−1)n

Å (2n)!
4n(n!)2

ã2
xn pour |x| < 1

De même
n∏

k=1

Å1
2 + k

ã
=

n∏
k=1

2k + 1
2 = (2n+ 1)!

4nn! et
n−1∏
k=0

Å1
2 − k

ã
= (−1)n−1

2

n−1∏
k=1

2k − 1
2 = (−1)n−1 (2n− 2)!

22n−1(n− 1)!

donc on a : φ1/2(x) =
+∞∑
n=0

(−1)n−1 2n+ 1
2n− 1

Å (2n)!
4n(n!)2

ã2
xnpour |x| < 1

Partie II :
1. On pose f(x, t) =

√
1 + x sin2 t et on applique le théorème de continuité :

H1 : Pour t ∈ [0, π/2], x 7→ f(x, t) est continue sur [−1,+∞[.
H2 : Pour x ⩾ −1, t 7→ f(x, t) est CM0 sur [0, π/2].
H3 : Pour x ∈ [a, b] ⊂ [−1,+∞[, on a |f(x, t)| =

√
1 + x sin2 t ⩽

√
1 + b sin2 t = φ(t) (indépendante de x) ; φ est

continue par morceaux donc intégrable sur le segment [0, π/2].

On en déduit que ψ est continue sur [−1,+∞[



2. a)
Å1

2

ãÅ1
2 − 1

ã
. . .

Å1
2 − n+ 1

ã
= (−1)n−1

2

n−2∏
k=0

2k + 1
2 = (−1)n−1 (2n− 2)!

22n−1(n− 1)! = (−1)n−1

2n− 1
(2n)!
22nn! donc on a :

√
1 + u =

+∞∑
n=0

(−1)n−1

2n− 1
(2n)!

22n(n!)2u
n pour |u| < 1

b) Soit |x| < 1 et t ∈
[
0, π2

]
, on a

√
1 + x sin2 t =

+∞∑
n=0

fn(t) avec fn(t) = (−1)n−1

2n− 1
(2n)!

22n(n!)2x
n sin2n t.

Pour l’interversion
∑

/

∫
, comme le domaine d’intégration est le segment

[
0, π2

]
, on peut soit utiliser le

TITT, soit le faire avec un argument de convergence normale :

Avec la convergence normale :

H1 : les fonctions fn sont continues sur
[
0, π2

]
.

H2 : on a, si t ∈
[
0, π2

]
, |fn(t)| ⩽ 1

2n− 1
(2n)!

22n(n!)2 |x|n (indépendant de t) donc ∥fn∥∞ ⩽
1

2n− 1
(2n)!

22n(n!)2 |x|n

qui est le terme général d’une série convergente car |x| < 1 (d’après le rayon de convergence du DSE de√
1 + x). Ainsi

∑
fn converge normalement sur

[
0, π2

]
.

On en déduit :
∫ π

2

0

√
1 + x sin2 tdt =

+∞∑
n=0

(−1)n−1

2n− 1
(2n)!

22n(n!)2x
n

∫ π
2

0
sin2n tdt.

Avec le TITT :

H1 : la série de fonctions
∑

fn converge simplement sur
[
0, π2

]
vers S : t 7→

√
1 + x sin2 t.

H2 : les fonctions fn et la fonction S sont continues par morceaux sur
[
0, π2

]
.

H3 : les fonctions fn sont continues par morceaux sur le segment
[
0, π2

]
donc intégrables sur

[
0, π2

]
.

H4 :
∫ π/2

0
|fn(t)| dt = 1

2n− 1
(2n)!

22n(n!)2 |x|n
∫ π

2

0
sin2n tdt ⩽ π

2(2n− 1)
(2n)!

22n(n!)2 |x|n qui est le terme général d’une

série convergente car |x| < 1 (d’après le rayon de convergence du DSE de
√

1 + x) donc
∑ ∫ π/2

0
|fn(t)| dt

converge.

On en déduit aussi :
∫ π

2

0

√
1 + x sin2 tdt =

+∞∑
n=0

(−1)n−1

2n− 1
(2n)!

22n(n!)2x
n

∫ π
2

0
sin2n tdt.

Ceci étant valable pour tout x ∈] − 1, 1[, on en déduit que ψ est DSE sur ] − 1, 1[ et qu’on a :

ψ(x) =
+∞∑
n=0

(−1)n−1

2n− 1
(2n)!

22n(n!)2

Ç
2
π

∫ π
2

0
sin2n tdt

å
xn pour |x| < 1

c) Cours : intégrales de Wallis In = (2n)!
22n(n!)2

π

2 donc le DSE de ψ est :

ψ(x) =
+∞∑
n=0

(−1)n−1

2n− 1

Å (2n)!
22n(n!)2

ã2
xn pour |x| < 1

3. Comme 2n+ 1
2n− 1 = 1 + 2 1

2n− 1 , on a, pour |x| < 1, φ1/2(x) = −φ−1/2(x) + 2ψ(x) donc ψ = 1
2
(
φ1/2 + φ−1/2

)


