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Wie Gott in Frankreich.  
 
 

PSI2. Devoir en classe n°5. Samedi 31 janvier 2026. 
Proposition de solution. 
 
 
Problème A. Extrait e3a 2021 psi. 
Q1. On oriente le circuit dans le sens du courant indiqué sur la figure 2 de l'énoncé. On suppose que le 

champ 𝐵⃗  est uniforme et s'écrit 𝐵⃗ = 𝐵𝑢⃗ 𝑧. 

Le flux de 𝐵⃗  à travers le circuit orienté est alors :  

𝛷𝐵 =∬  
circuit 

𝐵⃗ ⋅ 𝑛⃗ 𝑑𝑆 = 𝐵ℓ(ℓ0 + 𝑥)       𝑎𝑣𝑒𝑐  𝑛⃗ = 𝑢⃗ 𝑧  

La loi de Faraday s'écrit : 𝑒 = −
𝑑𝛷𝐵

 𝑑𝑡
 donc la force électromotrice induite dans le cadre est : 

𝑒 = −𝐵ℓ
𝑑𝑥(𝑡)

𝑑𝑡
= −𝐵ℓ𝑣(𝑡) 

ce qui est bien l'expression demandée. 
 
Q2. Il semble plus pertinent de réaliser d'abord le schéma électrique équivalent avant de donner la loi 
des mailles : 

 
On obtient alors :  𝐸 + 𝑒 = 𝑅𝑖 + 𝐿

𝑑𝑖

 𝑑𝑡
 

 
Q3. Système : { barre + haut-parleur } 
Référentiel : terrestre, supposé galiléen 
Bilan des forces : 

• le poids est négligé d'après l'énoncé, on va donc également négliger la réaction des rails; 

• force de frottement fluide : 𝐹𝑓⃗⃗  ⃗ = −𝛼𝑣 ; 

• force de rappel : 𝐹𝑒𝑙⃗⃗⃗⃗  ⃗ = −𝑘(ℓressort − ℓ0) = −𝑘𝑥𝑢⃗ 𝑥; 

• force de Laplace 𝐹𝐿⃗⃗  ⃗ qu'on exprime ci-dessous : 

𝐹𝐿⃗⃗  ⃗ = ∫  
barre 

𝑖𝑑ℓ⃗⃗⃗⃗ ∧ 𝐵⃗ = ∫  
ℓ

𝑦=0

𝑖𝐵 𝑑𝑦𝑢⃗ 𝑥 ⇒ 𝐹𝐿⃗⃗  ⃗ = 𝑖𝐵ℓ𝑢⃗ 𝑥 

Principe fondamental de la dynamique : ∑𝐹 𝑒𝑥𝑡 = 𝑚𝑇𝑎  qui donne, en projection selon 𝑢⃗ 𝑥 : 
𝑚𝑇𝑥̈ = −𝛼𝑥̇ − 𝑘𝑥 + 𝑖𝐵ℓ 
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Q4. Multiplions E.E. par 𝑖 : 

𝐸𝑖 + 𝑒𝑖 = 𝑅𝑖2 +
𝑑

𝑑𝑡
(
1

2
𝐿𝑖2) 

Multiplions E.M. par 𝑥̇ : 
𝑑

𝑑𝑡
(
1

2
𝑚𝑇𝑥̇

2) = −𝛼𝑥̇2 −
𝑑

𝑑𝑡
(
1

2
𝑘𝑥2) + 𝑖𝐵ℓ𝑥̇ 

En remarquant que 𝑒𝑖 = −𝐵ℓ𝑣𝑖 = −𝐵ℓ𝑥̇𝑖, on peut combiner les équations précédentes pour obtenir: 

𝐸𝑖 = 𝒫Joule +
𝑑ℰ𝑚𝑎𝑔

 𝑑𝑡
+
𝑑ℰ𝑚
 𝑑𝑡

+ 𝒫frottements  

avec 
• 𝒫Joule = 𝑅𝑖2, la puissance dissipée par effet Joule dans la résistance; 

• ℰmag =
1

2
𝐿𝑖2, l'énergie magnétique stockée dans la bobine ; 

• ℰ𝑚 =
1

2
𝑚𝑇𝑥̇

2 +
1

2
𝑘𝑥2, l'énergie mécanique de la barre ; 

• 𝒫frottements = 𝛼𝑥̇2, la puissance perdue par frottement fluide. 

On remarque ainsi que la puissance fournie par le générateur est en partie dissipée (par effet Joule et 
frottements), en partie stockée dans la bobine et en partie utilisée pour mettre la barre en mouvement. 
 
Q5. On a déjà utilisé le résultat demandé à la question précédente! En effet, on avait vu que 

𝒫fem = 𝑒𝑖 = −𝐵ℓ𝑣𝑖 = −𝒫𝐿 

Cette égalité traduit la conversion électromécanique parfaite dans ce problème d'induction de Lorentz.  
 
Q6. Passons E.M. en notations complexes : 

−𝜔2𝑚𝑇𝑥  = −𝛼𝑗𝜔𝑥 − 𝑘𝑥 + 𝑖𝐵ℓ

⇒ 𝑥  =
𝐵ℓ

𝑘 −𝑚𝑇𝜔2 + 𝛼𝑗𝜔
𝑖

 

Passons maintenant E.E. en notions complexes: 
𝐸 − 𝐵ℓ𝑗𝜔𝑥 = 𝑅𝑖 + 𝑗𝐿𝜔𝑖 

On injecte l'expression de 𝑥 dans la relation précédente : 

𝐸 −
(𝐵ℓ)2𝑗𝜔

𝑘 − 𝑚𝑇𝜔2 + 𝛼𝑗𝜔
𝑖 = 𝑅𝑖 + 𝑗𝐿𝜔𝑖 

puis 

𝐸 = (𝑅 + 𝑗𝐿𝜔 + 𝑍𝑚) 𝑖 avec 𝑍𝑚 =
(𝐵ℓ)2𝑗𝜔

𝑘 − 𝑚𝑇𝜔2 + 𝛼𝑗𝜔
 

 
Q7. 

𝑌𝑚 =
1

𝑍𝑚
=
𝑘 −𝑚𝑇𝜔

2 + 𝛼𝑗𝜔

(𝐵ℓ)2𝑗𝜔
=

𝑘

(𝐵ℓ)2𝑗𝜔
+

𝛼

(𝐵ℓ)2
+
𝑚𝑇𝑗𝜔

(𝐵ℓ)2
 

L'admittance 𝑌𝑚 s'écrit bien sous la forme 𝑌𝑚 =
1

𝑅𝑚
+ 𝑗𝐶𝑚𝜔 +

1

𝑗𝐿𝑚𝜔
 avec 

𝑅𝑚 =
(𝐵ℓ)2

𝛼
 ;  𝐶𝑚 =

𝑚𝑇

(𝐵ℓ)2
 ;  𝐿𝑚 =

(𝐵ℓ)2

𝑘
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Q8. On remarque que l'admittance 𝑌𝑚 est la somme de trois admittances : celle d'une résistance 𝑅𝑚, 

d'un condensateur de capacité 𝐶𝑚 et d'une bobine d'inductance 𝐿𝑚. 
Le dipôle d'impédance 𝑍𝑚 est donc constitué d'une résistance, d'un condensateur et d'une bobine en 

parallèle (les admittances des dipôles en parallèle s'additionnent). 
On obtient donc le schéma électrique équivalent du haut-parleur suivant: 

 
 
Q9. On reprend le bilan de puissance de la 𝑸4. en valeurs moyennes : 

⟨𝐸𝑖⟩ = ⟨𝑅𝑖2⟩ + ⟨
𝑑ℰ𝑡𝑜𝑡

 𝑑𝑡
⟩ + ⟨𝛼𝑣2⟩  avec  ℰ𝑡𝑜𝑡 = ℰ𝑚𝑎𝑔 + ℰ𝑚 

Or, ⟨
𝑑ℰ𝑡𝑜𝑡

 𝑑𝑡
⟩ = 0 car ℰ𝑡𝑜𝑡 est une grandeur périodique. Ainsi, on obtient bien la relation de l'énoncé : 

⟨𝐸𝑖⟩ = ⟨𝑅𝑖2⟩ + ⟨𝛼𝑣2⟩ 
En moyenne, la puissance fournie par le générateur se répartit entre la puissance dissipée par effet Joule 
et la puissance dissipée par frottement fluide. Cette dernière permet la mise en mouvement de l'air et 
est donc une puissance utile pour le fonctionnement du haut-parleur. 
 
Q10. Par définition du rendement, on a : 

𝜂 =
⟨𝑃son ⟩

⟨𝐸𝑖⟩
=

⟨𝛼𝑣2⟩

⟨𝑅𝑖2⟩ + ⟨𝛼𝑣2⟩
=

1

1 +
𝑅
𝛼
⟨𝑖2⟩
⟨𝑣2⟩

 

On rappelle que les grandeurs étudiées sont sinusoїdales, de pulsation 𝜔. Ainsi, les grandeurs réelles 
s'écrivent : 

𝑣(𝑡)  = 𝑣𝑚𝑐𝑜𝑠 (𝜔𝑡 + 𝜑𝑣)

𝑖(𝑡)  = 𝑖𝑚𝑐𝑜𝑠 (𝜔𝑡 + 𝜑𝑖)
 

On obtient ensuite ⟨𝑣2⟩ =
𝑣𝑚
2

2
 et ⟨𝑖2⟩ =

𝑖𝑚
2

2
, ce qui donne l'expression du rendement: 

𝜂 =
1

1 +
𝑅
𝛼 (

𝑖𝑚
𝑣𝑚
)
2 

Or, 𝑣 = 𝑗𝜔𝑥 =
𝑗𝜔𝐵ℓ

𝑘−𝑚𝑇𝜔2+𝛼𝑗𝜔
𝑖 d'après la question Q6. donc 

𝑖𝑚
𝑣𝑚

= |
𝑖

𝑣
| =

√(𝑘 − 𝑚𝑇𝜔2)2 + (𝛼𝜔)2

𝜔𝐵ℓ
 

On injecte cette relation dans l'expression du rendement: 

𝜂 =
1

1 +
𝑅
𝛼
(𝑘 − 𝑚𝑇𝜔2)2 + (𝛼𝜔)2

𝜔2(𝐵ℓ)2

=
1

1 +
𝑅𝛼
(𝐵ℓ)2

(
𝑘 − 𝑚𝑇𝜔2

𝛼
)
2

+ 𝜔2

𝜔2

=
1

1 +
𝑅
𝑅𝑚

[1 + (
𝑚𝑇𝜔
𝛼 −

𝑘
𝛼𝜔)

2

]

 

On identifie avec la forme proposée dans l'énoncé : 

{
 

 
𝑚𝑇

𝛼
 =

𝑄

𝜔0
𝑘

𝛼
 = 𝑄𝜔0
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Ce qui donne 𝜔0 = √
𝑘

𝑚𝑇
  et  𝑄 =

√𝑚𝑇𝑘

𝛼
 

 
Q11. On obtient le comportement d'un filtre passe-bande : à hautes et basses fréquences, le rendement 

tend vers 0 et il est maximum à la pulsation 𝜔0 et vaut : 𝜂𝑚𝑎𝑥 =
1

1+
𝑅

𝑅𝑚

 . 

En effet, à basse fréquence, le mouvement est très lent, ce qui induit peu de puissance de frottement 
fluide donc un faible rendement. 
A haute fréquence, l'inertie mécanique de l'équipage mobile implique une très faible vitesse de 
déplacement donc peu de puissance de frottement fluide donc encore un faible rendement. 
 

Problème B. Extrait mines ponts 2018 psi.  
 17)Hypothèse acoustique : on néglige l'influence de la pesanteur et on limite les calculs à 
l'ordre 1 vis-à-vis des perturbations p, µ et 𝑣  . 
p est la surpression P=Po+p , µ est la surmasse volumique 𝜌 = 𝜌𝑜 + µ 

Equation mécanique : 𝑎 = −
1

𝜌
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑃) ≈ −

1

𝜌𝑜
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑝)          𝑎 ≈  

𝜕𝑣⃗ 

𝜕𝑡
 soit : 

𝜕𝑣⃗ 

𝜕𝑡
≈ −

1

𝜌𝑜
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑝) 

Conservation de la matière : 
𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑣 ) = 0   𝑑𝑒𝑣𝑖𝑒𝑛𝑡  

𝜕µ

𝜕𝑡
+ 𝜌𝑜𝑑𝑖𝑣(𝑣 ) = 0    

L'évolution est adiabatique réversible donc isentropique  : 𝜒𝑆 =
1

𝜌
(
𝜕𝜌

𝜕𝑃
)
𝑆
≈

1

𝜌𝑜
(
µ

𝑝
) 

On élimine µ avec la dernière équation. Les deux premières équations deviennent alors : 
𝜕𝑣 

𝜕𝑡
= −

1

𝜌𝑜
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑝)                       𝑑𝑖𝑣(𝑣 ) = −𝜒𝑆

𝜕𝑝

𝜕𝑡
 

On fait la divergence de la première et la dérivée temporelle de la seconde. On élimine la dérivée croisée 

et obtient l'EDP demandée avec : 𝑐 =
1

√𝜌𝑜𝜒𝑆
. 

  
18) On part de la loi de Laplace 𝑃𝜌−𝛾 = 𝑐𝑡𝑒   

qui donne : 
𝑑𝑃

𝑃
− 𝛾

𝑑𝜌

𝜌
= 0 soit à l'ordre 1 :  

𝑑𝑝

𝑃𝑜
− 𝛾

𝑑µ

𝜌𝑜
= 0  qui devient  𝜒𝑆 =

1

𝛾𝑃𝑜
 

On utilise aussi la loi des gaz parfait qu'on écrit ici à l'équilibre : 𝑃𝑜 =
1

𝑀
𝜌𝑜𝑅𝑇𝑜 où M est la masse molaire. 

On sort alors  : 𝑐 =
1

√𝜌𝑜𝜒𝑆
= √

𝛾𝑃𝑜

𝜌𝑜
= √

𝛾𝑅𝑇𝑜

𝑀
   AN : 𝑐 ≈ 350 𝑚. 𝑠−1 

On calcule aussi une longueur d'onde de 1,73m pour une fréquence de 200Hz. 
 

 19)On utilise le formulaire fourni et l'EDP de propagation, ce qui donne 𝑘 =
𝜔

𝑐
 en prenant la 

racine positive, ce qu'il faut évidemment justifier. 
 

 20)On utilise donc :  
𝜕𝑣⃗ 

𝜕𝑡
≈ −

1

𝜌𝑜
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑝) 

En utilisant les propriétés de la notation complexe et le formulaire fourni , on sort : 

 𝑗𝜔𝑣 = −
1

𝜌𝑜
(
1

𝑟
+ 𝑗𝑘)𝑝  soit : 𝑣 = −

1

𝑗𝜔𝜌𝑜
(
1

𝑟
+ 𝑗𝑘) 𝑝 

On calcule alors l'impédance complexe : 𝑍 =
𝑝

𝑣
=

𝑗𝜔𝜌𝑜

(
1

𝑟
+𝑗𝑘)

 

A grande distance de la sphère, soit 𝑟 ≫
1

𝑘
 , on retrouve la formule de l'onde plane vue en cours. 

 

 21)Avec la CI fournie en r=Ro et la définition de Q, on sort : 𝐴1 = 𝑗
𝜔𝜌0𝑄0

4𝜋(1+𝑗𝑘𝑅𝑜)
 

 
On reporte alors dans l'expression de la pression en tenat compte de l'approximation fournie : 𝑘𝑅𝑜 ≪
1. 

On obtient alors l'expression fournie : 𝑝(𝑟, 𝑡) = 𝑗𝜔𝜌0
𝑄0

4𝜋𝑟
𝑒𝑥𝑝 [𝑗(𝜔𝑡 − 𝑘𝑟)] 
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 22)Simple calcul à vérifier. 
 
 23)Pour un monopole unique en C :  Rd=0  donc u=0 et donc D(u)=1 
Aucun effet directif. 
Pour le disque encastré, ce n'est plus vrai et D(u) non constant et donc dépende de . 
 
 24)Pour notre HP, 𝑢𝑚𝑎𝑥 = 𝑘𝑅𝑑 ≈ 0,36 
Donc D(u) reste proche de 1 et le HP est peu directif. 
 
 25)Ici 𝛼 = 0,36. Le plus long est de lire  l'énoncé. Même pas besoin comprendre, sauf à la fin… 

𝐹ra = −𝑍ra 𝑣 = −𝜌0𝑐𝑆𝑑(𝑟𝑟𝑎 + 𝑗𝑥𝑟𝑎)𝑣 

Et on peut remplacer par les expressions fournies : 

𝐹ra = −𝑍ra 𝑣 = −(
𝜌0𝑐𝑆𝑑
2

(
𝑅𝑑
𝑐
)
2

)𝑣 − 𝑗𝜔𝑣 (𝜌0𝑐𝑆𝑑 ×
8𝛼

3𝜋
×
𝑅𝑑
𝑐
) 

Or 𝑗𝜔𝑣 = 𝑎  accélération 

Le premier terme est assimilable à une force de frottement fluide supplémentaire , et le second à une 
masse supplémentaire quand on refait le bilan mécanique. 
 
Problème C. Etude de la capsule Hyperloop. Centrale psi 2015. 
 B1a) Réduction de Li+ : 𝐿𝑖+ + 𝑒−  = 𝐿𝑖 
  Insertion :   𝐿𝑖 + 𝐶6  =  𝐿𝑖𝐶6 
  Bilan :   𝐿𝑖+ + 𝐶6  +  𝑒

− =  𝐿𝑖𝐶6 

 B1b)D'après la stoechiométrie de la réaction d'insertion :𝑁𝑚𝑎𝑥 =
1

6𝑀(𝐶)
= 13,9 𝑚𝑚𝑜𝑙. 𝑔−1  

chaque mol de Li peut libérer une mol d'électrons soit une charge Nae. 
Donc :  𝑞𝑚𝑎𝑥 = 𝑁𝑎𝑒𝑁𝑚𝑎𝑥 = 1340 𝐶. 𝑔−1    𝑜𝑢    372 𝑚𝐴ℎ. 𝑔−1 
 
 B2)Avce les indications fournies, no(Co)=+IV dans CoO2  et no(Co)=+III dans LiCoO2. 
L'oxydant est donc CoO2 et LiCoO2 est le réducteur. 
La demi-équation est donc :   𝐿𝑖𝐶𝑜𝑂2  →   𝐿𝑖

+ +  𝐶𝑜𝑂2 + 𝑒
−  

 
 B3)Lors de la charge, les demi-équations sont : 

𝐿𝑖+ + 𝐶6  +  𝑒
− →  𝐿𝑖𝐶6        𝑒𝑡        𝐿𝑖𝐶𝑜𝑂2  →   𝐿𝑖

+ +  𝐶𝑜𝑂2 + 𝑒
− 

D'où le bilan :  𝐿𝑖𝐶𝑜𝑂2 + 𝐶6  →  𝐶𝑜𝑂2 +  𝐿𝑖𝐶6  
A la décharge, réaction inversée. 
 
 B4)a)La batterie doit donc fournir P=328kW pendant t=45 min=0,75h. Le calcul demandé est 
idiot. l'énergie demandée est donc E=Pt= 886 MJ ou 246kWh. 
 b)La batterie de masse m doit fournir P, donc une puissance massique p=P/m=219 W.kg-1. 
 c)... et fournir une énergie massque w=W/m=165Wh.kg-1. 
 d)A la lecture de la figure 6, seule la technologie Li-ion High Energy peut convenir. 
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III.La propulsion de la capsule. 
 A1a)La circulation du champ magnétique sur un contour fermé orienté est égale au courant 
algébrique enlacé par le contour divisé par µo. ET maintenant la formule. 
 A1b)On prend un point M repéré par ses coordonnées cylindriques d'axe Oz : r, ,z 
 
Symétries : le plan passant par M et perpandiculaire à l'axe Oz est plan de symétrie pour les courants, 
donc le champ magnétique est selon Oz 
Invariances: le solénoïde est invariant par rotation d'Axe Oz et par translation selon Oz, donc le champ 

ne dépend que de la distance à l'axe Oz. Finalement : 𝐵⃗ (𝑀) = 𝐵(𝑟)𝑢⃗ 𝑧  
Pour utiliser la proriété fournie dans l'énoncé, une partie du contour doit être à l'extérieur du solénoïde. 
On prend le rectangle suivant où le coté bas du rectangle est à la distance r de l'axe : 

 
Le courant enlacé vaut 𝑛ℓ𝑖. La seule circulation non nulle est sur le côté bas du rectangle qui vaut 𝐵(𝑟)ℓ. 
On sort finalement :  B(r)=µoni. Ce qui donne Bo=| µoni|. 
 

 A2)a)On triouve sans pb : 𝐵⃗ (𝑥, 𝑡) =
4µ𝑜𝑛𝐼𝑜

𝜋
𝑐𝑜𝑠(𝜔𝑡)𝑠𝑖𝑛 (

2𝜋

𝜆
𝑥) 𝑢⃗ 𝑧 = 𝐵𝑜

′𝑐𝑜𝑠(𝜔𝑡)𝑠𝑖𝑛 (
2𝜋

𝜆
𝑥) 𝑢⃗ 𝑧  

b)Un peu de trigo en utilisant le formulaire : 

𝐵⃗ (𝑥, 𝑡) = −
𝐵𝑜
′

2
[𝑠𝑖𝑛 (𝜔𝑡 +

2𝜋

𝜆
𝑥) + 𝑠𝑖𝑛 (𝜔𝑡 −

2𝜋

𝜆
𝑥)] 𝑢⃗ 𝑧 

Le premier terme est une onde progressive se propageant selon les x décroissant de vecteur 

d'onde 𝑘⃗ − = −
2𝜋

𝜆
𝑢⃗ 𝑧  et de vitesse de phase 𝑣𝜑 =

𝜔

𝑘
=

𝜆𝜔

2𝜋
. 

Le second terme est une onde progressive se propageant selon les x croissant de vecteur d'onde 

𝑘⃗ + = +
2𝜋

𝜆
𝑢⃗ 𝑧  et de vitesse de phase 𝑣𝜑 =

𝜔

𝑘
=

𝜆𝜔

2𝜋
. 

 
A3) 

Prop à redémontrer :  𝑠𝑖𝑛(𝑢) + 𝑠𝑖𝑛 (𝑢 −
2𝜋

3
) + 𝑠𝑖𝑛 (𝑢 +

2𝜋

3
) = 0 

On développe les produits pour en faire des sommes. Avec la propriété précédente, il ne reste que l'onde 
progressive selon les x croissant : 

   

𝐵⃗ (𝑥, 𝑡) = −
3𝐵𝑜

′

2
[𝑠𝑖𝑛 (𝜔𝑡 −

2𝜋

𝜆
𝑥)] 𝑢⃗ 𝑧 = 𝐵(𝑥, 𝑡)𝑢⃗ 𝑧 

B1)Avec les CI, on a xC(t)=vt . On oriente la spire telle que sa normale soit 𝑢⃗ 𝑧 .  

 
En supposant le champ uniforme sur la spire et valant donc 𝐵⃗ (𝑥𝐶 , 𝑡) , le flux est très facile à calculer : 
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𝜙(𝑡) = 𝐵⃗ (𝑥𝐶 , 𝑡)𝑢⃗ 𝑧 = −
3ℓ2𝐵𝑜

′

2
𝑠𝑖𝑛 ((𝜔 −

2𝜋

𝜆
𝑣) 𝑡) 

 B2)On calcule alors la fem d'induction :  𝑒(𝑡) = −
𝑑𝜙

𝑑𝑡
=

3ℓ2𝐵𝑜
′

2
(𝜔 −

2𝜋

𝜆
𝑣) 𝑐𝑜𝑠 ((𝜔 −

2𝜋

𝜆
𝑣) 𝑡)  

 
 B3)En négligeant l'autoinduction du cadre et en tenant compte seulement de sa résistance, on 
peut alors calculer le courant i(t) dansle cadre : 

𝑖(𝑡) =
𝑒(𝑡)

𝑅
=
3ℓ2𝐵𝑜

′

2𝑅
(𝜔 −

2𝜋

𝜆
𝑣) 𝑐𝑜𝑠 ((𝜔 −

2𝜋

𝜆
𝑣) 𝑡) 

 

 B4)La force élémentaire de Laplace sur un élément 𝑑ℓ⃗  du cadre est 𝑑𝐹 = 𝑖(𝑡)𝑑ℓ⃗ ∧ 𝐵⃗  
La suite va être longue. 
Il y a a priori 4 forces à calculer. cependant, les deux forces sur les côtés A4A1 et A2A3 s'éliminent 
mutuellement. 

Sur le côté A1A2, on calcule facilement : 𝐹 12 = 𝑖(𝑡)ℓ𝐵 (𝑥𝐶 +
ℓ

2
, 𝑡) 𝑢⃗ 𝑥 

Sur le côté A3A4, on calcule facilement : 𝐹 12 = −𝑖(𝑡)ℓ𝐵 (𝑥𝐶 −
ℓ

2
, 𝑡) 𝑢⃗ 𝑥 

 
On ajoute, on transforme la somme en produit,ce qui donne : 

𝐹 = 3𝑖(𝑡)ℓ𝐵𝑜
′𝑠𝑖𝑛 (

𝜋ℓ

𝜆
) 𝑐𝑜𝑠 (𝜔𝑡 −

2𝜋

𝜆
𝑥𝐶) 𝑢⃗ 𝑥 

ℓ

𝜆
≪ 1 permet de simplifier le sinus : 𝑠𝑖𝑛 (

𝜋ℓ

𝜆
) ≈

𝜋ℓ

𝜆
 

 
En remplaçant xC et en remarquant que v  apparaît dans le calcul, on obtient finalement : 

𝐹 =
(3𝜋ℓ2𝐵𝑜

′)2

𝑅𝜆2
(𝑣𝜑 − 𝑣)𝑐𝑜𝑠

2 [(𝜔 −
2𝜋

𝜆
𝑣) 𝑡] 𝑢⃗ 𝑥  

dont la valeur moyenne temporelle est : 

〈𝐹 〉 =
(3𝜋ℓ2𝐵𝑜

′)2

2𝑅𝜆2
(𝑣𝜑 − 𝑣)𝑢⃗ 𝑥 

 
 B5)Au départ la vitesse est nulle , ce qui donne une force de Laplace motrice selon les x croissants. 
Si cette force l'emporte sur les frottements, la capsule démarre. 
 
 B6)Pour avoir une force résistante, il suffit de régler la vitesse de phase en modifiant la pulsation 
du courant d'alimentation de manière à obtenir 𝑣𝜑 < 𝑣. 
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Problème D. centrale psi 2023. 
 Q1) 𝐿𝑖𝐹𝑒𝑃𝑂4( 𝑠)𝑅é𝑑𝑢𝑐𝑡𝑒𝑢𝑟 ⟶ 0,6𝐿𝑖+𝑂𝑥𝑦𝑑𝑎𝑛𝑡 + 0,6𝑒− + 𝐿𝑖0,4𝐹𝑒𝑃𝑂4( 𝑠) 

    Oxydation d’un réducteur donc ANODE 
 𝐿𝑖+𝑂𝑥𝑦𝑑𝑎𝑛𝑡 + 6𝐶(𝑠) + 𝑒

− ⟶ 𝐿𝑖𝐶6( 𝑠)𝑅é𝑑𝑢𝑐𝑡𝑒𝑢𝑟 

    Réduction d’un oxydant donc CATHODE 
 Q2) On élimine les électrons entre les relations précédentes : 

𝐿𝑖𝐹𝑒𝑃𝑂4( 𝑠) + 3,6𝐶(𝑠) + 0,6𝑒
− ⟶ 𝐿𝑖0,4𝐹𝑒𝑃𝑂4( 𝑠) + 0,6𝐿𝑖𝐶6( 𝑠) + 0,6𝑒

− 

 Q3) 1𝐴ℎ ≡ 1𝐴 × 3600𝑠 = 3600 𝐶 donc 𝑄 = 2600𝑚𝐴. ℎ = 9360 𝐶 

Si n est le nombre de mol d’électrons échangés , on a : 𝑛 =
𝑄

𝐹
≈ 97 𝑚𝑚𝑜𝑙. 

On a donc consommé 
𝑛

0,6
 mol de 𝐿𝑖𝐹𝑒𝑃𝑂4( 𝑠) et 

3,6𝑛

0,6
= 6𝑛 mol de C. 

Soit une masse de matière consommée : 

𝑚 =
𝑛

0,6
𝑀(𝐿𝑖𝐹𝑒𝑃𝑂4( 𝑠)) + 6𝑛𝑀(𝐶) ≈ 32,5𝑔 

 Q4)On peut penser qu’il y a des réactions parasites qui se font sans transfert électronique. 
 
 Q5)Montage habituel du cours : 

 
 Q6)Il s’agit de l’oxydation d’un réducteur et ce n’est pas l’eau qui est en (c). Donc il s’agit de : 

𝐿𝑖𝐹𝑒𝑃𝑂4( 𝑠)𝑅é𝑑𝑢𝑐𝑡𝑒𝑢𝑟 ⟶ 0,6𝐿𝑖+𝑂𝑥𝑦𝑑𝑎𝑛𝑡 + 0,6𝑒− + 𝐿𝑖0,4𝐹𝑒𝑃𝑂4( 𝑠) 

Il reste à vérifier numériquement. Ce décollage a lieu pour 𝐸 = 3,5𝑉 + 𝐸𝑜(𝐿𝑖+/𝐿𝑖(𝑠)) ≈ 0,5𝑉 

Appliquons la loide Nernst au couple 𝐿𝑖+/𝐿𝑖𝐹𝑒𝑃𝑂4( 𝑠) : 

𝐸 = 𝐸𝑜(𝐿𝑖+/𝐿𝑖𝐹𝑒𝑃𝑂4( 𝑠)) +
0,06

0,6
𝑙𝑜𝑔{𝑎(𝐿𝑖+)0,6} = 𝐸𝑜(𝐿𝑖+/𝐿𝑖𝐹𝑒𝑃𝑂4( 𝑠)) = 0,6𝑉 

Valeurs compatibles. 
 

 Q7)D’après l’énoncé, pour 𝐸 − 𝐸𝑜 (
𝐿𝑖+

𝐿𝑖
) = 5,1𝑉 soit donc E=2,1V, on rencontre le mur du solvant 

qui s’oxyde.  
 
 Q9)Si on court-circuite la pile, la LDM et la loi d’Ohm donnent un courant i débité par la pile : 

𝑖 =
𝑈

𝑟
≈ 480𝐴 

La charge Q débitée pendant le temps 𝜏   est  𝑄 = 𝑖𝜏 

Pour 𝑄 = 2,6𝐴. ℎ, on calcule un temps de décharge 𝜏 =
𝑄

𝑖
≈ 5,4 × 10−3 ℎ   𝑠𝑜𝑖𝑡 19,5 𝑠 

 Q10)On suppose que toute l’énergie dégagée 𝐸𝐽𝑜𝑢𝑙𝑒 = (𝑟𝑖2)𝜏 sert à échauffer la pile de masse m 

et de capacité massique 𝑐𝑝. On a donc : (𝑟𝑖2)𝜏 = 𝑚𝑐𝑝∆𝑇   soit : 

∆𝑇 =
(𝑟𝑖2)𝜏

𝑚𝑐𝑝
≈ 1040 𝐾 

On peut donc envisager d’atteindre expérimentalement une température de 900°C. 


