Informatique - PTSI-PT*

Correction TD Info - Programmation dynamique

I - Exercices de mise en jambe

1 Suite récurrente simple

Q1. Effectuer une programmation itérative d’une fonction u_iter d’argument n:int permettant de
calculer u,,. Vérifier que vous obtenez u1y = 3628 800.

Cette question ne doit normalement pas vous poser de problémes. Il s’agit du genre de questions que
vous aviez lors des premiers TDs d’informatique ’année derniére. Il est important de savoir traiter cet
exemple.
def u_iter(n:int)->int:

u=1 # Initialisation u0

for i in range(l,n+1): # Boucle de n itérations commengant & 1 car ul=1*ul

u=i*u # U_n=n*U_(n-1)
return u

>>> print(u_iter (10))
3628800

0 N O U W N

Q2. Effectuer une programmation récursive d’une fonction u_rec d’argument n:int permettant de
calculer u,,. Vérifier que vous obtenez w1y = 3 628 800.

def u_rec(n:int)->int:
Cas de base
if n==0:
return 1
Cas récursif
else:
return n*xu_rec(n-1)
>>> print (u_rec (10))
3628800

© 00 O Ut kW

Q3. Justifiez que le principe de programmation dynamique ne s’applique pas dans ce cas d’étude (par
exemple pas besoin de memofisation).

La programmation récursive effectuée n’effectue pas de calculs redondants. En effet, la relation de
récurrence est « simple ». Le calcul de u,, nécessite de connaitre u,_; etc. Ces calculs étant liés de
maniére simples, il n’y a pas de redondances dans ceux-ci. En construisant 'arbre d’appels récursifs,

On constate alors I'inutilité de mettre en place une mémoisation pour résoudre ce probléme.

on a :

page 1

Informatique - PTSI-PT*

2 Suite de Fibonacci

Q4. Effectuer une programmation récursive d’une fonction fibo d’argument n:int permettant de
calculer u,,. Vérifier que vous obtenez u19 = 55.

1 def fibo(mn:int)->int

2 # Cas de base

3 if n==0:

4 return O

5 elif n==1:

6 return 1 # Cas récursif
7 else:

8

return fibo(n-1)+fibo(n-2)

Q5. Construire 'arbre d’appels récursifs de fibo(5). Justifier alors que la programmation dynamique
est tout a fait indiqué pour résoudre plus efficacement ce probléme.

On constate qu’il y a une redondance importante de calculs. Par exemple, on calcule deux fois fibo (3).
On peut donc utiliser le principe de mémoisation pour éviter d’avoir a refaire ce calcul. Une approche
bottom-up est également envisageable.

Q6. Effectuer une programmation dynamique top-down (principe de mémoisation) en vous appuyant
sur la structure de code proposée. Dans le cadre d’une mémoisation, cette structure est a
privilégier. Vérifier que fibonacci(10) renvoie bien 55.

1 def fibonacci(n:int)->int:

2 tab_fab=[0 for i in range(n+1)] # Initialisation du tableau de mémoisation

3 tab_fab[1]= # Initialisation utile pour u_1l, u_0 est initialis
é a o0

4 resultat=memoisation(n,tab_fab) # renvoie le résultat de u_n

5 return resultat

6

7 def memoisation(n,tab_fab):

8 # tab_fab est une liste qui est mise a jour d’appels en appels tout en

conservant les valeurs renseignées grdce a l’effet de bord.
9 if n==0:

10 POBUEBE. o0 o0o00000000000

11 elif n==

12 return

13 else

14 if tab_fab[n]!'!'=0:

15 TOBWEE 6000000000000

16 else:

17 resultat= e

Informatique - PTSI-PT*

18 tab_fab[nl=.............
19 PEOBEBEL 0000000000000

def fibonacci(n:int)->int:
tab_fab=[0 for i in range(n+1)] # Initialisation du tableau de mémoisation
tab_fab[1]=1 # Initialisation utile pour u_1, u_0 est initialisé & 0
resultat=memoisation(n,tab_fab) # renvoie le résultat de u_n
return resultat

def memoisation(n,tab_fab):
tab_fab est une liste qui est mise a jour d’appels en appels tout en

0 N O Uk W N

conservant les valeurs renseignées gréce a l’effet de bord.
9 if n==0:

10 return tab_fab [0]

11 elif n==1:

12 return tab_fab[1]

13 else

14 if tab_fab[n]!'!'=0:

15 return tab_fab[n]
16 else:

17 resultat=memoisation(n-1,tab_fab)+memoisation(n-2,tab_fab)
18 tab_fab[n]=resultat
19 return resultat

20

21 | >>> print(fibonacci (10))

22 55

Q7. Reprendre cette question mais en utilisant un dictionnaire pour réaliser la mémofsation.

Ici, on crée un dictionnaire tab_fab qu’on initialise seulement avec les deux premiéres valeurs connues
de la suite de Fibonacci & savoir ug et uq1. On le complétera au fur et &

1 def fibonacci(n:int)->int:

2 tab_fab={0:0,1:1}# Initialisation du tableau de mémoisation,

3 resultat=memoisation(n,tab_fab) # renvoie le résultat de u_n

4 return resultat

5

6 def memoisation(n,tab_fab):

7 # tab_fab est un dictionnaire qui est mis & jour d’appels en appels tout en
conservant les valeurs renseignées grdce a l’effet de bord

8 if n==0:

9 return tab_fab [0]

10 elif n==1:

11 return tab_fab[1]

12 else

13 if n in tab_fab: # Si n est une clé de la dictionnaire tab_fab...

14 return tab_fab[n]

15 else:

16 resultat=memoisation(n-1,tab_fab)+memoisation(n-2,tab_fab)

17 tab_fab[n]l=resultat

18 return resultat

19

20 | >>> print(fibonacci (10))

21 55

Q8. Effectuer maintenant une programmation bottom-up fibo_bottom_up afin de calculer wu,. Celle-ci
se fera en débutant par le calcul de uso, puis de ug etc. Vous serez attentif a ne pas utiliser un tableau
pour stocker les résultats.

page 3

Informatique - PTSI-PT*

1| def fibo_bottom_up(n:int)->int:
2 u_old_o0ld=0 # u_old_old représente u(i-2)
3 u_old=1 # u_old représente u(i-1)
4 for i in range(2,n+1) : # Calcul de u_2 jusque u_n
5 u=u_old_old+u_old # Calcul de u(i) en fonction de u(i-2) et u(i-1)
6 # Mise a jour des données. ATTENTION a 1’ordre dans lequel la mise a
jour est faite.
7 u_old_old=u_old
8 u_old=u
9 return u
Dans ce code, il faut faire attention de ne pas écrire :
1 u_old=u
2 u_old_old=u_old

Car dans ce cas, vous obtenez la méme valeur de u, de u_old et de u_old_old.

II - Découpe de barres d’acier

1 Approche par force brute

Q1. En considérant les doublons possibles, quel est le nombre de possibilités de découpes de la barre
de longueur n ?

On considére une barre de longueur n. On va utiliser un code binaire pour spécifier si la découpe est
réalisée. Pour la valeur 0, la barre n’est pas coupée, pour la valeur 1, la barre est coupée. Par exemple,
pour une barre de longueur 4, le code suivant 011 signifie qu’aprés 1cm la barre n’est pas coupée,
aprés 2cm la barre est coupée et aprés 3cm la barre est coupée. Ainsi, la découpe obtenue est : un
morceau de 2cm et deux morceaux de 1cm. De ce fait, pour une barre de longueur n, le mot binaire
associé aux découpes possibles a une taille de n — 1. C’est-a-dire que le nombre de découpes possibles

en tenant compte des doublons est .

Q2. Quand bien méme il y a des découpes équivalentes possibles, une approche par force brute vous
parait-elle possible pour un nombre n conséquent 7

La complexité du probléme étant exponentielle avec les doublons, quand bien méme ceux-ci sont
éliminés, celle-ci restera de toute fagon importante (elle restera exponentielle en réalité).

‘Une approche par force brute est donc irréaliste. ‘

2 Analyse du probléme

Q3. En supposant que rg = 0, écrire alors le probléme 7, sous sa nouvelle forme.

De cette fagon, on pose le probléme sous la forme :

Tn = Max (pi + Tn—i)

page 4

Informatique - PTSI-PT*

Q4. On pose la liste p=[0,1,5,8,9,10,17,17,20,24,30], le tableau des prix. Etablir la programma-
tion d’une fonction couper_barre d’arguments p et d’un entier n, longueur de la barre avec n<len(p) -1
permettant de résoudre le probléme de découpe proposé.

w N

© 00 N O Ut

11
12
13
14
15
16
17
18

p=[0,1,5,8,9,10,17,17,20,24,30]
def couper_barre(p:[int],n:int)->int:
’?7 Fonction permettant de trouver le revenu maximal possible pour une barre
de longueur n

Entrée

- liste p : tableau des prix

- n : longueur de la barre
La longueur de la liste p est plus grande que n d’une uniteé.
Sortie

- rev : revenu maximal possible pour la découpe des barres ’’°

On traite le cas de base
if n==0:
return O
Cas récursif
else:
rev=0
for i in range(l,n+1):
rev=max (rev,p[il+couper_barre(p,n-i))
return rev

Q5. Modifier votre fonction, pour compter le nombre d’appels récursifs. Tester que votre code fonc-
tionne en vérifiant que vous obtenez le bon résultat de revenu maximal pour des barres de longueur
différentes. Pour n = 4 et n = 10, combien d’appels sont effectués? Effectuer une conjecture sur le
nombre d’appels & la fonction & réaliser pour obtenir la solution du probléme.

On va utiliser un compteur que 'on va incrémenter au début de la fonction. Dans chaque return, on
va retourner la valeur du compteur pour pouvoir I’exploiter lors du prochain appel récursif. On aurait
également pu utiliser une variable globale.

© 00 O Utk W N

e e e
TR W N = O

ou

© 00 O Uk W N

—_
[e=]

p=[0,1,5,8,9,10,17,17,20,24,30]
def couper_barre(p:[int],n:int,compt=0)->int:
Par défaut, la valeur du compteur vaut O
compt+=1
On traite le cas de base
if n==0:
return O, compt
Cas récursif
else:
rev=0
for i in range(l,n+1):
temp=couper_barre (p,n-i, compt)
rev=max (rev,p[i]l+temp [0])
compt=temp [1]
return rev,compt

p=[0,1,5,8,9,10,17,17,20,24,30]
compt=0
def couper_barre(p:[int],n:int)->int:

global compt

compt+=1

On traite le cas de base

if n==0:

return 0, compt
Cas récursif
else:

page 5

Informatique - PTSI-PT*

11
12
13
14

=W N =

rev=0
for i in range(1l,n+1):

rev=max (rev,p[il+couper_barre(p,n-i))
return rev

>>> print (couper_barre(p,4))
(10,16)

>>> print (couper_barre(p,10))
(30,1024)

Pour n = 4, on trouve qu’il faut 16 appels a la fonction couper_barre pour résoudre le probléme et
pour n = 10, il faut 1024 appels & cette méme fonction.

‘On peut conjecturer que le nombre d’appels a la fonction est de 2™.

Q6. Pour n = 4, dessiner I'arbre d’appels récursifs et justifier qu'une programmation dynamique est
envisageable.

On constate, par exemple, sur ce graphe des appels de la fonction que le sous-probléme 79 est appelé
deux fois. Celui-ci faisant appels a d’autres sous-problémes, on retrouve une propriété de sous-structure
optimale. ‘La programmation dynamique est donc toute indiquée pour résoudre ce probléme.

3 Programmation dynamique top-down : mémoisation

Q7. Compléter le code permettant de résoudre le probléme. Que contient la liste r?

w N

© 00 N O Ut

11
12
13

p=[0,1,5,8,9,10,17,17,20,24,30]
def couper_barre(p:[int],n:int)->int:
r=[-1 for i in range(len(p))] # Initialisation du tableau qui contiendra la
résolution du probléme pour r[il]
r[0]=0 # Pour r_0=0.
return memoisation_coupe_barre(p,n,r)

def memoisation_coupe_barre(p,n,r):
Si la solution est connue
if r[n]>=0:
return r[n]
Cas de base du probleme récursif
if n==0:
return O

page 6

Informatique - PTSI-PT*

14 # Cas récursif

15 else:

16 rev=-1 # Initialisation du revenu possible pour une barre de longueur n
17 for i in range(l,n+1):

18 rev=max (rev,p[il+memoisation_coupe_barre(p,n-i,r))
19 r[n]l=rev # Mise & jour de r

20 return rev

21

22 >>> solution,tableau_r=couper_barre (p,10)

23 | >>> print(solution,tableau_r)

24| 30 [0, 1, 5, 8, 10, 13, 17, 18, 22, 25, 30]

La liste r contient donc ’ensemble des solutions au probléme r; avec i € [0, n].

Q8. Modifier votre code pour savoir combien d’appels a la fonction memoisation_coupe_barre.

On utilise une variable locale.

1| p=[0,1,5,8,9,10,17,17,20,24,30]

2 def couper_barre(p:[int],n:int)->int:

3 r=[-1 for i in range(len(p))] # Initialisation du tableau qui contiendra la
résolution du probléme pour r[il]

4 r[0]=0 # Pour r_0=0.

5 compteur=0

6 solution, compteur=memoisation_coupe_barre(p,n,r,compteur)

7 return solution,compteur,r

8

9 def memoisation_coupe_barre(p,n,r,compteur):

10 compteur +=1

11 # Si la solution est connue

12 if r[n]>=0:

13 return r[n]

14 # Cas de base du probléme récursif

15 if n==0:

16 return O

17 # Cas récursif

18 else:

19 rev=-1 # Initialisation du revenu possible pour une barre de longueur n

20 for i in range(1l,n+1):

21 temp=memoisation_coupe_barre(p,n-i,r,compteur)

22 rev=max (rev,p[i]+temp [0])

23 compteur=temp [1]

24 r[n]=rev # Mise & jour de r

25 return rev,compteur

26

27 >>> solution,compteur ,tableau_r=couper_barre(p,10)

28 | >>> print (compteur)

29 56

On trouve alors que le nombre d’appels réalisé est de . Ce qui réduit considérablement le temps de
calculs par rapport & la solution récursive naive précédente.

4 Programmation dynamique bottom-up

Q9. Compléter le code. Vérifier les résultats obtenus.

1| p=[0,1,5,8,9,10,17,17,20,24,30]
2| def couper_barre(p:[int],n:int)->int:

page 7

Informatique - PTSI-PT*

3 r=[-1 for i in range(len(p))] # Initialisation du tableau qui contiendra la
résolution du probléme pour r[il]

4 r[0]1=0 # Pour r_0=0.

5 for j in range(1l,n+1):

6 rev=-1 # Initialisation

7 for i in range(1l,j+1):

8 rev=max (rev,p[i]l+r[j-i])

9 rljl=rev

10 return r[n]

11

12 | >>>print (couper_barre(p,10))

13 30

page 8

