
Informatique - PTSI-PT*

Correction TD Info - Programmation dynamique

I - Exercices de mise en jambe

1 Suite récurrente simple

Q1. Effectuer une programmation itérative d’une fonction u_iter d’argument n:int permettant de

calculer un. Vérifier que vous obtenez u10 = 3628 800.

Cette question ne doit normalement pas vous poser de problèmes. Il s’agit du genre de questions que

vous aviez lors des premiers TDs d’informatique l’année dernière. Il est important de savoir traiter cet

exemple.

1 def u_iter(n:int)->int:
2 u=1 # Initialisation u0

3 for i in range(1,n+1): # Boucle de n itérations commençant à 1 car u1=1*u0

4 u=i*u # U_n=n*U_(n-1)

5 return u
6
7 >>> print(u_iter (10))
8 3628800

Q2. Effectuer une programmation récursive d’une fonction u_rec d’argument n:int permettant de

calculer un. Vérifier que vous obtenez u10 = 3628 800.

1 def u_rec(n:int)->int:
2 # Cas de base

3 if n==0:
4 return 1
5 # Cas récursif

6 else:
7 return n*u_rec(n-1)
8 >>> print(u_rec (10))
9 3628800

Q3. Justifiez que le principe de programmation dynamique ne s’applique pas dans ce cas d’étude (par

exemple pas besoin de memoïsation).

La programmation récursive effectuée n’effectue pas de calculs redondants. En effet, la relation de

récurrence est « simple ». Le calcul de un nécessite de connaître un�1 etc. Ces calculs étant liés de

manière simples, il n’y a pas de redondances dans ceux-ci. En construisant l’arbre d’appels récursifs,

on a :

un un�1 etc. u1 u0

On constate alors l’inutilité de mettre en place une mémoïsation pour résoudre ce problème.

page 1

Informatique - PTSI-PT*

2 Suite de Fibonacci

Q4. Effectuer une programmation récursive d’une fonction fibo d’argument n:int permettant de

calculer un. Vérifier que vous obtenez u10 = 55.

1 def fibo(n:int)->int :
2 # Cas de base

3 if n==0:
4 return 0
5 elif n==1:
6 return 1 # Cas récursif

7 else:
8 return fibo(n-1)+fibo(n-2)

Q5. Construire l’arbre d’appels récursifs de fibo(5). Justifier alors que la programmation dynamique

est tout à fait indiqué pour résoudre plus efficacement ce problème.

fibo(1) fibo(0)

fibo(2) fibo(1) fibo(1) fibo(0) fibo(1) fibo(0)

fibo(3) fibo(2) fibo(2) fibo(1)

fibo(4) fibo(3)

fibo(5)

On constate qu’il y a une redondance importante de calculs. Par exemple, on calcule deux fois fibo(3).
On peut donc utiliser le principe de mémoïsation pour éviter d’avoir à refaire ce calcul. Une approche

bottom-up est également envisageable.

Q6. Effectuer une programmation dynamique top-down (principe de mémoïsation) en vous appuyant

sur la structure de code proposée. Dans le cadre d’une mémoïsation, cette structure est à
privilégier. Vérifier que fibonacci(10) renvoie bien 55.

1 def fibonacci(n:int)->int:
2 tab_fab =[0 for i in range(n+1)] # Initialisation du tableau de mémoïsation

3 tab_fab [1]= # Initialisation utile pour u_1 , u_0 est initialis

é à 0

4 resultat=memoisation(n,tab_fab) # renvoie le résultat de u_n

5 return resultat
6
7 def memoisation(n,tab_fab):
8 # tab_fab est une liste qui est mise à jour d’appels en appels tout en

conservant les valeurs renseignées grâce à l’effet de bord.

9 if n==0:
10 return
11 elif n==1:
12 return
13 else :
14 if tab_fab[n]!=0:
15 return
16 else:
17 resultat= +

page 2

Informatique - PTSI-PT*

18 tab_fab[n]=.............
19 return

1 def fibonacci(n:int)->int:
2 tab_fab =[0 for i in range(n+1)] # Initialisation du tableau de mémoïsation

3 tab_fab [1]=1 # Initialisation utile pour u_1 , u_0 est initialisé à 0

4 resultat=memoisation(n,tab_fab) # renvoie le résultat de u_n

5 return resultat
6
7 def memoisation(n,tab_fab):
8 # tab_fab est une liste qui est mise à jour d’appels en appels tout en

conservant les valeurs renseignées grâce à l’effet de bord.

9 if n==0:
10 return tab_fab [0]
11 elif n==1:
12 return tab_fab [1]
13 else :
14 if tab_fab[n]!=0:
15 return tab_fab[n]
16 else:
17 resultat=memoisation(n-1,tab_fab)+memoisation(n-2,tab_fab)
18 tab_fab[n]= resultat
19 return resultat
20
21 >>> print(fibonacci (10))
22 55

Q7. Reprendre cette question mais en utilisant un dictionnaire pour réaliser la mémoïsation.

Ici, on crée un dictionnaire tab_fab qu’on initialise seulement avec les deux premières valeurs connues

de la suite de Fibonacci à savoir u0 et u1. On le complétera au fur et à

1 def fibonacci(n:int)->int:
2 tab_fab ={0:0 ,1:1}# Initialisation du tableau de mémoïsation ,

3 resultat=memoisation(n,tab_fab) # renvoie le résultat de u_n

4 return resultat
5
6 def memoisation(n,tab_fab):
7 # tab_fab est un dictionnaire qui est mis à jour d’appels en appels tout en

conservant les valeurs renseignées grâce à l’effet de bord

8 if n==0:
9 return tab_fab [0]

10 elif n==1:
11 return tab_fab [1]
12 else :
13 if n in tab_fab: # Si n est une clé de la dictionnaire tab_fab ...

14 return tab_fab[n]
15 else:
16 resultat=memoisation(n-1,tab_fab)+memoisation(n-2,tab_fab)
17 tab_fab[n]= resultat
18 return resultat
19
20 >>> print(fibonacci (10))
21 55

Q8. Effectuer maintenant une programmation bottom-up fibo_bottom_up afin de calculer un. Celle-ci

se fera en débutant par le calcul de u2, puis de u3 etc. Vous serez attentif à ne pas utiliser un tableau

pour stocker les résultats.

page 3

Informatique - PTSI-PT*

1 def fibo_bottom_up(n:int)->int:
2 u_old_old =0 # u_old_old représente u(i-2)

3 u_old=1 # u_old représente u(i-1)

4 for i in range(2,n+1) : # Calcul de u_2 jusque u_n

5 u=u_old_old+u_old # Calcul de u(i) en fonction de u(i-2) et u(i-1)

6 # Mise à jour des données. ATTENTION à l’ordre dans lequel la mise à

jour est faite.

7 u_old_old=u_old
8 u_old=u
9 return u

Dans ce code, il faut faire attention de ne pas écrire :

1 u_old=u
2 u_old_old=u_old

Car dans ce cas, vous obtenez la même valeur de u, de u_old et de u_old_old.

II - Découpe de barres d’acier

1 Approche par force brute

Q1. En considérant les doublons possibles, quel est le nombre de possibilités de découpes de la barre

de longueur n ?

On considère une barre de longueur n. On va utiliser un code binaire pour spécifier si la découpe est

réalisée. Pour la valeur 0, la barre n’est pas coupée, pour la valeur 1, la barre est coupée. Par exemple,

pour une barre de longueur 4, le code suivant 011 signifie qu’après 1 cm la barre n’est pas coupée,

après 2 cm la barre est coupée et après 3 cm la barre est coupée. Ainsi, la découpe obtenue est : un

morceau de 2 cm et deux morceaux de 1 cm. De ce fait, pour une barre de longueur n, le mot binaire

associé aux découpes possibles a une taille de n� 1. C’est-à-dire que le nombre de découpes possibles

en tenant compte des doublons est 2n�1
.

Q2. Quand bien même il y a des découpes équivalentes possibles, une approche par force brute vous

paraît-elle possible pour un nombre n conséquent ?

La complexité du problème étant exponentielle avec les doublons, quand bien même ceux-ci sont

éliminés, celle-ci restera de toute façon importante (elle restera exponentielle en réalité).

Une approche par force brute est donc irréaliste.

2 Analyse du problème

Q3. En supposant que r0 = 0, écrire alors le problème rn sous sa nouvelle forme.

De cette façon, on pose le problème sous la forme :

rn = max
16i6n

(pi + rn�i)

page 4

Informatique - PTSI-PT*

Q4. On pose la liste p=[0,1,5,8,9,10,17,17,20,24,30], le tableau des prix. Établir la programma-

tion d’une fonction couper_barre d’arguments p et d’un entier n, longueur de la barre avec n6len(p)-1
permettant de résoudre le problème de découpe proposé.

1 p=[0,1,5,8,9,10,17,17,20,24,30]
2 def couper_barre(p:[int],n:int)->int:
3 ’’’ Fonction permettant de trouver le revenu maximal possible pour une barre

de longueur n
4 Entrée :
5 - liste p : tableau des prix
6 - n : longueur de la barre
7 La longueur de la liste p est plus grande que n d’une unité.
8 Sortie :
9 - rev : revenu maximal possible pour la découpe des barres ’’’

10 # On traite le cas de base

11 if n==0:
12 return 0
13 # Cas récursif

14 else:
15 rev=0
16 for i in range(1,n+1):
17 rev=max(rev ,p[i]+ couper_barre(p,n-i))
18 return rev

Q5. Modifier votre fonction, pour compter le nombre d’appels récursifs. Tester que votre code fonc-

tionne en vérifiant que vous obtenez le bon résultat de revenu maximal pour des barres de longueur

différentes. Pour n = 4 et n = 10, combien d’appels sont effectués ? Effectuer une conjecture sur le

nombre d’appels à la fonction à réaliser pour obtenir la solution du problème.

On va utiliser un compteur que l’on va incrémenter au début de la fonction. Dans chaque return, on

va retourner la valeur du compteur pour pouvoir l’exploiter lors du prochain appel récursif. On aurait

également pu utiliser une variable globale.

1 p=[0,1,5,8,9,10,17,17,20,24,30]
2 def couper_barre(p:[int],n:int ,compt =0) ->int:
3 # Par défaut , la valeur du compteur vaut 0

4 compt +=1
5 # On traite le cas de base

6 if n==0:
7 return 0,compt
8 # Cas récursif

9 else:
10 rev=0
11 for i in range(1,n+1):
12 temp=couper_barre(p,n-i,compt)
13 rev=max(rev ,p[i]+temp [0])
14 compt=temp [1]
15 return rev ,compt

ou

1 p=[0,1,5,8,9,10,17,17,20,24,30]
2 compt=0
3 def couper_barre(p:[int],n:int)->int:
4 global compt
5 compt +=1
6 # On traite le cas de base

7 if n==0:
8 return 0,compt
9 # Cas récursif

10 else:

page 5

Informatique - PTSI-PT*

11 rev=0
12 for i in range(1,n+1):
13 rev=max(rev ,p[i]+ couper_barre(p,n-i))
14 return rev

1 >>> print(couper_barre(p,4))
2 (10 ,16)
3 >>> print(couper_barre(p,10))
4 (30 ,1024)

Pour n = 4, on trouve qu’il faut 16 appels à la fonction couper_barre pour résoudre le problème et

pour n = 10, il faut 1024 appels à cette même fonction.

On peut conjecturer que le nombre d’appels à la fonction est de 2n.

Q6. Pour n = 4, dessiner l’arbre d’appels récursifs et justifier qu’une programmation dynamique est

envisageable.

r4

r3 r2 r1 r0

r2 r1 r0 r1 r0 r0

r1 r0 r0 r0

r0

On constate, par exemple, sur ce graphe des appels de la fonction que le sous-problème r2 est appelé

deux fois. Celui-ci faisant appels à d’autres sous-problèmes, on retrouve une propriété de sous-structure

optimale. La programmation dynamique est donc toute indiquée pour résoudre ce problème.

3 Programmation dynamique top-down : mémoïsation

Q7. Compléter le code permettant de résoudre le problème. Que contient la liste r ?

1 p=[0,1,5,8,9,10,17,17,20,24,30]
2 def couper_barre(p:[int],n:int)->int:
3 r=[-1 for i in range(len(p))] # Initialisation du tableau qui contiendra la

résolution du problème pour r[i]

4 r[0]=0 # Pour r_0 =0.

5 return memoisation_coupe_barre(p,n,r)
6
7 def memoisation_coupe_barre(p,n,r):
8 # Si la solution est connue

9 if r[n]>=0:
10 return r[n]
11 # Cas de base du problème récursif

12 if n==0:
13 return 0

page 6

Informatique - PTSI-PT*

14 # Cas récursif

15 else:
16 rev=-1 # Initialisation du revenu possible pour une barre de longueur n

17 for i in range(1,n+1):
18 rev=max(rev ,p[i]+ memoisation_coupe_barre(p,n-i,r))
19 r[n]=rev # Mise à jour de r

20 return rev
21
22 >>> solution ,tableau_r=couper_barre(p,10)
23 >>> print(solution ,tableau_r)
24 30 [0, 1, 5, 8, 10, 13, 17, 18, 22, 25, 30]

La liste r contient donc l’ensemble des solutions au problème ri avec i 2 J0, nK.

Q8. Modifier votre code pour savoir combien d’appels à la fonction memoisation_coupe_barre.

On utilise une variable locale.

1 p=[0,1,5,8,9,10,17,17,20,24,30]
2 def couper_barre(p:[int],n:int)->int:
3 r=[-1 for i in range(len(p))] # Initialisation du tableau qui contiendra la

résolution du problème pour r[i]

4 r[0]=0 # Pour r_0 =0.

5 compteur =0
6 solution ,compteur=memoisation_coupe_barre(p,n,r,compteur)
7 return solution ,compteur ,r
8
9 def memoisation_coupe_barre(p,n,r,compteur):

10 compteur +=1
11 # Si la solution est connue

12 if r[n]>=0:
13 return r[n]
14 # Cas de base du problème récursif

15 if n==0:
16 return 0
17 # Cas récursif

18 else:
19 rev=-1 # Initialisation du revenu possible pour une barre de longueur n

20 for i in range(1,n+1):
21 temp=memoisation_coupe_barre(p,n-i,r,compteur)
22 rev=max(rev ,p[i]+temp [0])
23 compteur=temp [1]
24 r[n]=rev # Mise à jour de r

25 return rev ,compteur
26
27 >>> solution ,compteur ,tableau_r=couper_barre(p,10)
28 >>> print(compteur)
29 56

On trouve alors que le nombre d’appels réalisé est de 56 . Ce qui réduit considérablement le temps de

calculs par rapport à la solution récursive naïve précédente.

4 Programmation dynamique bottom-up

Q9. Compléter le code. Vérifier les résultats obtenus.

1 p=[0,1,5,8,9,10,17,17,20,24,30]
2 def couper_barre(p:[int],n:int)->int:

page 7

Informatique - PTSI-PT*

3 r=[-1 for i in range(len(p))] # Initialisation du tableau qui contiendra la

résolution du problème pour r[i]

4 r[0]=0 # Pour r_0 =0.

5 for j in range(1,n+1):
6 rev=-1 # Initialisation

7 for i in range(1,j+1):
8 rev=max(rev ,p[i]+r[j-i])
9 r[j]=rev

10 return r[n]
11
12 >>>print(couper_barre(p,10))
13 30

III - Le meilleur intervalle

Q1. On appelle vmi(k) la valeur du (d’un) meilleur intervalle se terminant exactement en position k.
Quelles sont les valeurs de vmi(0), vmi(1), · · · , vmi(7) sur l’exemple précédent ?

D’après l’exemple précédent, on a vmi(0)= 0, vmi(1)= 6, vmi(2)= 1, vmi(3)= 3, vmi(4)= 0, vmi(5)=
10, vmi(6)= 12 et vmi(7)= 0

Q2. Préciser comment obtenir la valeur du (d’un) meilleur intervalle du tableau T à partir de vmi(0),
vmi(1), · · · , vmi(n-1).

Il suffit de déterminer le maximum des valeurs de vmi(k) pour 0 6 k 6 n� 1.

Q3. Établir une relation de récurrence permettant le calcul de vmi(k). Pour cela, vous rechercherez

notamment le lien entre vmi(k) et vmi(k-1).

On pose ` (1 6 ` 6 k � 1) l’indice du début du meilleur intervalle se terminant exactement en k � 1.
On a :

T[k]�T[`]= (T[k]�T[k-1]) + (T[k-1]�T[`]) =T[k]�T[k-1]+vmi(k-1)

Si T[k]�T[k-1]+vmi(k-1) est négatif, l’intervalle [k, k] est le meilleur intervalle se terminant en

k et sa valeur vaut 0. On en déduit la récurrence :

8
<

:

vmi(0) = 0

vmi(k) = max

✓⇢
0,
T[k]� T[k� 1] + vmi(k� 1)

�◆
1 6 k 6 n� 1

Q4. Une approche top-down ou bottom-up est-elle nécessaire pour déterminer de manière efficace la

valeur de vmi(k) pour un k fixé ?

Non, ce type d’approche n’est pas nécessaire car il n’y a pas de chevauchement de sous-problèmes.

Q5. Une approche top-down ou bottom-up est-elle envisageable afin de réponde au problème initial, à

savoir : déterminer le meilleur intervalle T[j]�T[i]. Proposer celle qui offre la meilleure complexité

spatiale et temporelle en justifiant votre réponse.

page 8

