Informatique Tronc Commun

PTSI-PT*

Séquence 4

Programmation dynamique

Table des matiéres

MD 1 - Traversée du désert 1

Informatique - PTSI-PT*

TD Info - Programmation dynamique

I - Traversée du désert

—— Objectif
Dans cet exercice, on s’intéresse a deux fonctions coits différentes (donc deux objectifs différents) que
l’on va résoudre par deux approches différentes

1 Présentation du probléme

Un voyageur souhaite traverser un désert d’une oasis A & une oasis B. Afin de réussir & traverser
le désert, il dispose d’une gourde. Si malencontreusement, cette gourde vient & étre vide, le voyageur
meurt de soif instantanément (sorte de Koh-Lanta de I'extréme). Le chemin le plus court est en ligne
droite. Sur celui-ci, des puits sont disposés de afin de permettre au voyageur de remplir sa gourde.

Les puits sont numérotés de 0 & n — 1 (le puits numéro 0 (respectivement n — 1) étant le puits de
l'oasis de départ (respectivement d’arrivée)). Quand le voyageur arrive & un puits, il choisit entre deux
possibilités a) poursuivre sa route, ou b) remplir sa gourde. S'il fait le second choix, il vide sa gourde
dans le sable avant de la remplir entiérement au puits afin d’avoir de 1'eau fraiche. A I'arrivée, il vide
la gourde.

On présente dans ce tableau la distance entre le puits de I'oasis A et les autres.

N° du puits 0|12 3|4 |5] 6 | 7| (arivée)
Distance (en km) [0 [8 | 9| 16 | 18 | 24 | 27 | 32

La capacité V de la gourde est de 107 et le voyageur consomme 1 /¢ au km.

2 Reésolution du probléme : Parcourir la distance avec le moins d’ar-
réts possibles

Q1. Le voyageur veut faire le moins d’arréts possible. Quelles sont les solutions permettant de résoudre
ce probléme d’optimisation.

Q2. Parmi les solutions trouvées, quelle est celle correspondant & celle de la solution gloutonne ?

On va chercher & programmer une programmation gloutonne afin de résoudre le probléme de fagon
générale. On décompose cette résolution en deux fonctions.
Pour notre exemple, on pose T=[8,9,16,18,24,27,32], la liste des distances des puits au point de
départ.

Q3. Programmer une fonction distance_max retournant 'indice du puits pouvant étre atteint de ma-
niére gloutonne. Les arguments de cette fonction seront :

e T, liste des distances des puits au point de départ.

e distance_parcourue, paramétre de la distance déja parcourue;

e distance_gourde, paramétre de la distance maximale parcourable avec la gourde remplie;
Vérifier que distance_max(T,9,10) renvoie bien 3. En effet, 'indice 3 du tableau T correspond au
puits numéro 4.

Q4. Créer une fonction parcours_puits(T, distance_gourde) qui renvoie la liste des puits de T que
le voyageur doit traverser pour faire le moins d’arréts possibles pour atteindre l'oasis d’arrivée en
respectant 1’algorithme glouton.

Informatique - PTSI-PT*

3 Résolution du probléme : Parcourir la distance avec le moins de
dépenses

Le voyageur souhaite refaire le méme trajet que précédemment sauf que la législation a évolué...
A chaque puits, y compris celui de I'oasis d’arrivée, un gardien lui fait payer autant d’unités de la
monnaie locale que le carré du nombre de litres d’eau restant dans sa gourde & 'arrivée du trongon
qu’il a parcouru. Le probléme est de choisir les puits ot il doit s’arréter pour payer le moins possible.

Q5. Quel est le résultat d’une stratégie gloutonne ? Existe-t-il une meilleure solution ? Conclure sur la
validité de 'utilisation d’une stratégie gloutonne.

On cherche a trouver la solution a I'aide d’une programmation dynamique dont les éléments sont :

e popt (i) : somme minimale payée au total depuis le puits numéro 0 (I'oasis de départ) jusqu’au
puits numéro ¢, étant donné que le voyageur s’arréte et paye la taxe au puits numéro ¢ ;

e d(i,j) : nombre de kilométres entre le puits numéro ¢ et le puits numéro j;

e distance_gourde=D : la distance parcourable avec la gourde.

Q6. Compléter la relation de récurrence suivante :

popt(0) = .ooeeee.
popt(i) = min (........... i CITTP — e)2) 0<ig<n—1
jeloi—1]
et el <o

Q7. Quelle est la valeur de popt que 'on doit calculer pour résoudre le probléme ?

Q8. Calculer manuellement popt(1), popt(2), popt(3) et donner le puits prédécesseur optimal des
puits 1, 2, 3.

Q9. Programmer une fonction calcul_popt(i,liste_popt,D,T) d’arguments :
e un entier i : pour lequel on effectue le calcul de popt (i) ;
e une liste liste_popt : contenant les résultat de popt des ¢ premiers puits : popt (0), popt (1),
-+, popt(i-1);
e un flottant D : la distance parcourable avec la gourde;
e une liste T : liste des distances des puits au point de départ.
et retournant la valeur de popt (i) ainsi que le puits prédécesseur optimal au puits <.

Q10. Résoudre alors le probléme en créant deux tableaux :
e une liste POPT contenant les différentes valeurs de popt (1) ;
e une liste MP contenant le meilleur prédécesseur des éléments MP[i]. Ainsi, MP[i] renvoie le
meilleur prédécesseur pour atteindre le puits i. Pour le puits 0, on impose MP[0]=None, car
il n’y a pas de prédécesseur au puits 0.

Q11. Donner alors, la somme minimale qu’il est possible d’avoir versé au total lorsque l'on arrive a
I’oasis d’arrivée et donner la succession de puits ou il faut s’arréter pour que cela se produise.

page 2

	TD 1 - Traversée du désert

