# ENTRAÎNEMENT D'UNE BOITE DE VITESSE DE TOUR

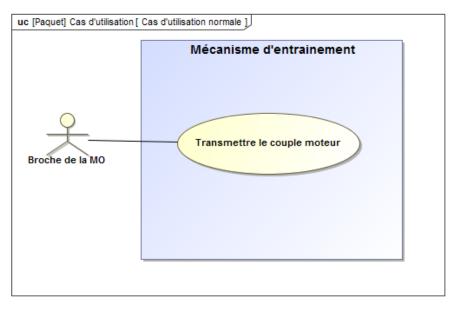
# I Cahier des charges fonctionnels

## I.1 Présentation du problème

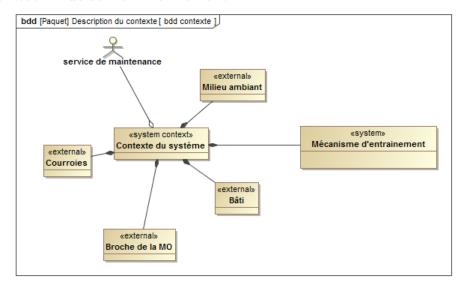
### I.1.1 Le produit et son marché

Une entreprise de sous-traitance utilise pour la maintenance de ses appareillages de production, des tours parallèles conventionnels.

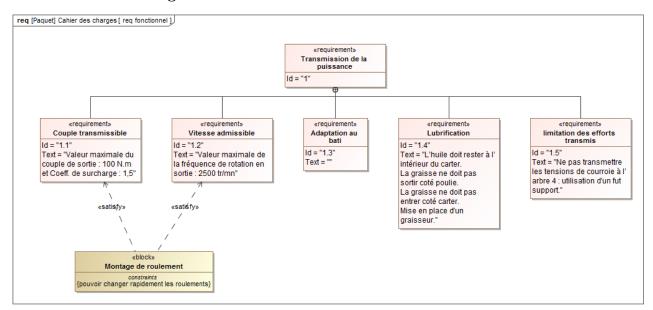
Ces tours parallèles sont équipés de boîtes mécaniques à six vitesses (le dessin d'ensemble de la boîte de vitesses ne vous est pas fourni).


# I.1.2 Contexte du projet

L'arbre de sortie 4 de la boîte de vitesses entraîne en rotation une poulie 8 et six courroies trapézoïdales. Il est guidé dans le bâti par 2 roulements : un roulement à billes à contact oblique à deux rangées de billes (situé à gauche du dessin) et un roulement à billes à contact radial (n° 6004).


#### Limites de l'étude

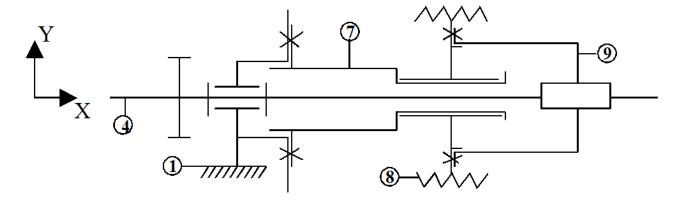
Le travail demandé porte sur le montage de la poulie (mise en position et entraı̂nement) sur un fourreau (fût-support 7) par l'intermédiaire de deux roulements à billes à contact radial ( $n^{\circ}$  6009).


### I.2 Énoncé fonctionnel du besoin



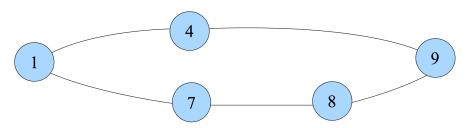
#### I.2.1 Identification de son environnement




## I.2.2 Énoncé des exigences fonctionnelles



# II Principe proposé


#### II.1 Schéma d'architecture

Une première phase de l'étude a permis de déterminer le schéma d'architecture incomplet suivant :



| Repère des pièces | Désignation                   |
|-------------------|-------------------------------|
| 1                 | Bâti                          |
| 4                 | Arbre de sortie de BdV        |
| 7                 | Fût-support                   |
| 8                 | Poulie à gorges trapézoïdales |
| 9                 | Flasque entraîneur            |

# II.2 Graphe de liaison



| Repère des<br>liaisons | Désignation                | Fonction technique                               | Indications                                             |
|------------------------|----------------------------|--------------------------------------------------|---------------------------------------------------------|
| 1 - 4                  | Pivot                      | Guider, supporter et positionner l'arbre 4       | Déjà réalisé sur<br>l'épure                             |
| 1 - 7                  | Encastrement<br>démontable | Supporter et positionner le fût-support          | /                                                       |
| 7 - 8                  | Pivot                      | Guider, supporter et positionner la poulie 8     | 2 roulements à<br>billes à contact<br>radial, à définir |
| 4 - 9                  | Glissière                  | Transmettre le couple moteur                     | Cannelures ou clavette, à définir                       |
| 8 - 9                  | Encastrement<br>démontable | Assurer la transmission<br>d'effort entre 8 et 9 | Liaison<br>encastrement par<br>vis                      |

# III Étude de conception en construction mécanique

### III.1 Présentation du travail à réaliser

## III.1.1 Notice justificative

Q1. Liaison 1 - 7 : Commentez la liaison entre le bâti 1 et le Fût-support 7.

Liaison encastrement réalisée par appui-plan prépondérant, centrage court et des vis CHC pour empêcher la rotation du fût.

**Q2.** Liaison 1 - 4 : Du côté gauche, l'arbre 4 est guidé et positionné sur le bâti par un roulement à billes à deux rangées de billes à contact oblique. Analysez les arrêts axiaux, commentez. Modélisez la liaison 1 - 4 en modélisant chaque roulement. Qu'en pensez-vous?

Les bagues extérieures du roulement à double rangées de billes à contact oblique sont bloquées, à droite par un chapeau et à gauche par un boitier centré sur la bague extérieure. Des vis CHC maintiennent les 2 arrêts. Il devrait y avoir des cales de réglages ou un jeu fonctionnel non représenté sur le dessin. (Vu le diamètre extérieur de l'arrêt de droite, un autre couvercle doit exister sur la boite de vitesse???). Il n'y a pas d'arrêts axiaux sur le second roulement (1 rangée de billes à contact radial) pour permettre la dilatation de l'arbre. On peut modéliser le montage par une liaison pivot en parallèle d'une liaison linéaire annulaire. Le montage est donc hyperstatique classiquement utilisé pour le montage d'arbre long.

Q3. Liaison 4 - 9. Le couple maxi à transmettre est de  $150\,\mathrm{N}\cdot\mathrm{m}$ . Quelles solutions technologiques peut-on envisager pour réaliser cette liaison. Le constructeur pour des raisons économiques et de sécurité, souhaiterait privilégier une solution de transmission par obstacle (clavette ou cannelures droites). Dimensionner chacune de ces solutions et justifier le choix d'utiliser des cannelures : L=25,  $6\times16\times22.$  La pression admissible au matage est de 100 MPa.

- Frettage
- Clavette
- Cannelures
- Goupilles
- Soudage

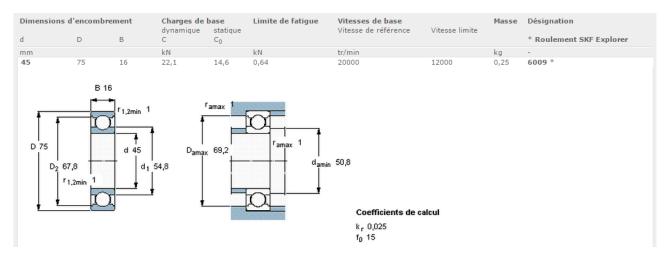
Dans notre cas d'étude, le couple est élevé et il y a besoin d'une solution démontable donc pas de soudage ni de goupille. Le frettage serait trop coûteux et potentiellement long en terme de maintenance.

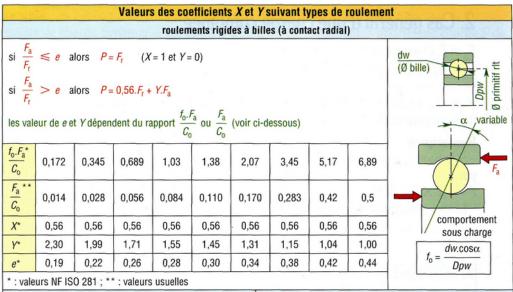
## Calcul de la longueur de clavette

- Surface de contact :  $S_{mat} = \frac{b}{2} L$

- $P_{adm} = 100 \text{ MPa}$   $F_T = \frac{2.C_{mot}}{D}$   $F_T < S_{mat} \times P_{adm}$   $\frac{2.C_{mot}}{D} < \frac{b}{2}.L \times P_{adm}$
- $D = \frac{D}{2}$   $L > \frac{4.C_{mot}}{D.b.P_{adm}} = \frac{4 \times 150.10^3}{20 \times 6 \times 100 = 50 \text{ mm}}$   $L \ge 1.5D \text{ donc solution par cannelures}$

La clavette serait trop longue.


## Validation de la longueur des cannelures


- $S_{mat} = A.L$
- Avec  $A = n \times h \times 0.75$
- $d = 16 \,\mathrm{mm} \,\,\mathrm{et} \,\, D = 20 \,\mathrm{mm}$
- n = 6

- $\begin{array}{l} \bullet \ h=0 \\ \bullet \ h=2 \\ \bullet \ F_T=\frac{2.C_{mot}}{D} \\ \bullet \ F_T=S_{mat}\times P \\ \bullet \ \frac{2.C_{mot}}{d}=P.n.h.\frac{3}{4}.L \\ \bullet \ P=\frac{8}{3}.\frac{C_{mot}}{d.n.h.L}=\frac{8\times 150.10^3}{3\times 16\times 6\times 2\times 25}=83\,\mathrm{MPa} \\ \bullet \ P<P_{adm} \ \mathbf{La} \ \mathrm{solution} \ \mathrm{par} \ \mathrm{cannelures} \ \mathrm{est} \ \mathrm{donc} \ \mathrm{bien} \ \mathrm{envisageable}. \end{array}$

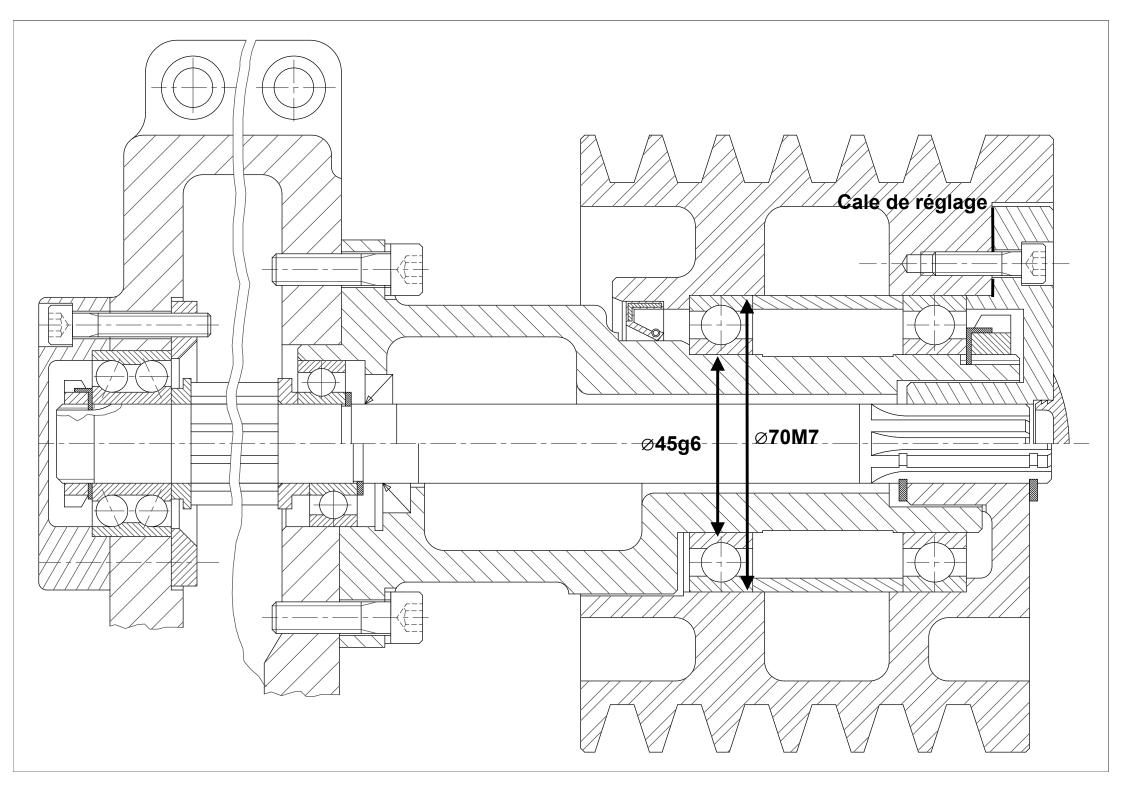
Q4. Liaison 7 - 8 : En estimant le diamètre de la poulie et supposant que la charge se répartie de manière égale sur chacun des roulements 6009 réalisant la liaison pivot, calculer la durée de vie des

roulements. Pour le calcul, on prendra les valeurs limites de couple et de vitesse. Sachant que le tour fonctionne au plus 2 h par jour, la durée de vie des roulements vous paraît-elle adaptée?





Le diamètre de la poulie  $D_p=150\,\mathrm{mm}$ , la vitesse de rotation est  $N=2500\,\mathrm{trs/min}$  et couple moteur  $C_{mot}=150\,\mathrm{N\cdot m}$ . L'effort radial est  $F_R=\frac{2.C_{mot}}{D_p}=\frac{2\times150}{150.10^{-3}}=2\,\mathrm{kN}$ . A diviser par 2 car, 2 roulements.


lements. 
$$L_N = \left(\frac{C}{P}\right)^3 = 10793.10^6 \text{ trs et ainsi} \left[L_h = \frac{L_N \times 10^6}{60 \times N} = 72\,000 \,\text{h}\right].$$

Sachant que le tour fonctionne deux heures par jour, cela revient à une durée de vie de 100 ans. Le dimensionnement des roulements est donc très important (surdimensionné??)

#### III.1.2 Dessin d'étude de construction mécanique

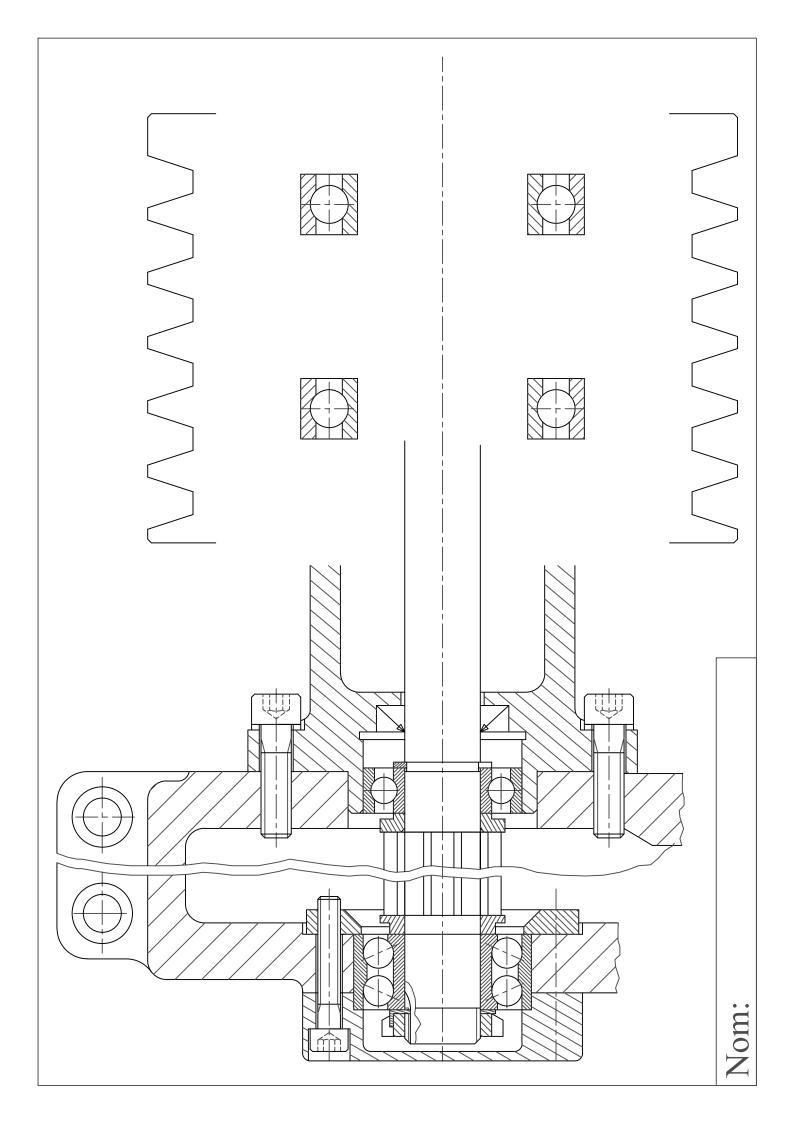
Q5. Réaliser la conception mécanique comprenant :

- Le montage de la poulie 8 sur le fût-support 7;
- L'entraînement de l'arbre 4 avec la poulie 8 via le flasque 9
- L'étanchéité et la lubrification



**Q6. Liaison 8 - 9** : Si cette liaison est notamment réalisée à l'aide de vis, déterminer-s'en alors le nombre nécessaire et le diamètre permettant de transmettre le couple de la poulie. La qualité des vis est 8.8, le facteur de frottement entre les surfaces 8 et 9 est f=0.1.

| d<br>(mm)  | pas<br>gros | S <sub>eq</sub> en mm <sup>2</sup> section résistante | <i>D</i> <sub>1</sub> (mm) | $D_2 = d_2$ (mm) | <i>d</i> <sub>3</sub> (mm) | pas fins<br>recommandé         |
|------------|-------------|-------------------------------------------------------|----------------------------|------------------|----------------------------|--------------------------------|
| 1          | 0,25        | 0,460                                                 | 0,729                      | 0,838            | 0,693                      |                                |
| (1,1)      | 0,25        | 0,588                                                 | 0,829                      | 0,938            | 0,793                      |                                |
| 1,2        | 0,25        | 0,732                                                 | 0,929                      | 1,038            | 0,893                      |                                |
| (1,4)      | 0,30        | 0,983                                                 | 1,075                      | 1,205            | 1,032                      | 0,2                            |
| 1,6        | 0,35        | 1,27                                                  | 1,221                      | 1,373            | 1,171                      | 0,2                            |
| (1,8)      | 0,35        | 1,70                                                  | 1,421                      | 1,573            | 1,371                      | 0,2                            |
| 2          | 0,4         | 2,07                                                  | 1,567                      | 1,740            | 1,509                      | 0,25                           |
| (2,2)      | 0,45        | 2,48                                                  | 1,713                      | 1,908            |                            |                                |
| 2,5        | 0,45        | 3,39                                                  | 2,013                      | 2,208            | 1,648                      | 0,35                           |
| 3          | 0,5         | 5,03                                                  | 2,459                      | 2,200            | 1,948                      | 0,35                           |
| (3,5)      | 0,5         | 6,78                                                  |                            | 2,675            | 2,387                      | 0,35                           |
| 4          | 0,6         | 0,70                                                  | 2,850                      | 3,110            | 2,764                      | 0,35                           |
|            |             | 8,78                                                  | 3,242                      | 3,545            | 3,141                      | 0,5                            |
| (4,5)      | 0,75        | 11,3                                                  | 3,688                      | 4,013            | 3,580                      | 0,5                            |
| 5<br>6     | 0,8         | 14,2                                                  | 4,134                      | 4,480            | 4,019                      | 0,5                            |
| (7)        |             | 20,1                                                  | 4,918                      | 5,350            | 4,773                      | 0,75                           |
| (7)<br>8   | 1 05        | 28,9                                                  | 5,918                      | 6,350            | 5,773                      | 0,75                           |
| 8          | 1,25        | 36,6                                                  | 6,647                      | 7,188            | 6,466                      | 1 - (0,75)                     |
| 10         | 1,5         | 58,0                                                  | 8,376                      | 9,026            | 8,160                      | 1,25 - (1 - 0,75)              |
| 12         | 1,75        | 84,3                                                  | 10,106                     | 10,863           | 9,853                      | 1,5 - (1,25 - 1)               |
| (14)       | 2           | 115                                                   | 11,835                     | 12,701           | 11,546                     | 1,5 - (1,25 - 1)               |
| 16         | 2           | 157                                                   | 13,835                     | 14,701           | 13,546                     | 1,5 - (1)                      |
| (18)       | 2,5         | 192                                                   | 15,294                     | 16,376           | 14,933<br>16,933           | 2 - (1,5 - 1)                  |
| 20         | 2,5         | 245                                                   | 17,294                     | 18,376           | 16,933                     | 2 - (1,5 - 1)<br>2 - (1,5 - 1) |
| (22)<br>24 | 2,5         | 303                                                   | 19,294                     | 20,376           | 18,933<br>20,319           | 2 - (1,5 - 1)                  |
| 24         | 3           | 353                                                   | 20,752                     | 22,051           | 20,319                     | 2 - (1,5 - 1)                  |
| (27)<br>30 | 3           | 459                                                   | 23,752                     | 25,051           | 23,319                     | 2 - (1,5 - 1)                  |
| 30         | 3,5         | 561                                                   | 26,211                     | 27,727           | 25,706                     | 2 - (1,5 - 1)                  |
| (33)       | 3,5         | 694                                                   | 29,211                     | 30,727           | 28,706                     | 2 - (1,5)                      |
| 36         | 4           | 817                                                   | 31,670                     | 33,402           | 31,093                     | 3 - (2 - 1,5)                  |
| (39)       | 4           | 976                                                   | 34,670                     | 36,402           | 34,093                     | 3 - (2 - 1,5)                  |
| 42         | 4,5         | 1 121                                                 | 37,129                     | 39,077           | 36,479                     | 4 - (3 - 2 - 1,5)              |
| (45)       | 4,5         | 1 306                                                 | 40,129                     | 42,077           | 39,479                     | 4 - (3 - 2 - 1,5)              |
| 48         | 5           | 1 473                                                 | 42,587                     | 44,752           | 41,866                     | 4 - (3 - 2 - 1,5)              |
| (52)       | 5           | 1 758                                                 | 46,587                     | 48,752           | 45,866                     | 4 - (3 - 2 - 1,5)              |
| 56         | 5,5         | 2 030                                                 | 50,046                     | 52,428           | 49,252                     | 4 - (3 - 2 - 1,5)              |
| (60)       | 5,5         | 2 362                                                 | 54,046                     | 56,428           | 53,252                     | 4 - (3 - 2 - 1,5)              |
| 64         | 6           | 2 676                                                 | 57,505                     | 60,103           | 56,639                     | 4 - (3 - 2 - 1,5)              |


| Filetage métrique à pas fin (extrait) |             |                                                          |                   |                |                      |
|---------------------------------------|-------------|----------------------------------------------------------|-------------------|----------------|----------------------|
| d<br>mm                               | pas<br>fins | S <sub>eq</sub> en mm <sup>2</sup><br>section résistante | D <sub>1</sub> mm | $D_2 = d_2$ mm | d <sub>3</sub><br>mm |
| 8                                     | 1           | 39,2                                                     | 6,917             | 7,350          | 6,773                |
| 10                                    | 1           | 64,5                                                     | 8,917             | 9,350          | 8,773                |
| 10                                    | 1,25        | 61,2                                                     | 8,647             | 9,188          | 8,466                |
| 12                                    | 1,25        | 92,1                                                     | 10,647            | 11,188         | 10,466               |
| 12                                    | 1,5         | 88,1                                                     | 10,376            | 11,026         | 10,160               |
| (14)                                  | 1,5         | 125                                                      | 12,376            | 13,026         | 12,376               |
| 16                                    | 1,5         | 167                                                      | 14,376            | 15,026         | 14,160               |
| (18)                                  | 1,5         | 216                                                      | 16,376            | 17,026         | 16,160               |
| 20                                    | 1,5         | 272                                                      | 18,376            | 19,026         | 18,160               |
| 20                                    | 2           | 258                                                      | 17,835            | 18,701         | 17,546               |
| (22)                                  | 1,5         | 333                                                      | 20,376            | 21,026         | 20,160               |
| 24                                    | 1,5         | 401                                                      | 22,376            | 23,026         | 22,160               |
| 24                                    | 2           | 384                                                      | 21,835            | 22,701         | 21,546               |
| (27)                                  | 2           | 496                                                      | 24,835            | 25,701         | 24,546               |
| 30                                    | 2           | 621                                                      | 27,835            | 28,701         | 27,546               |
| (33)                                  | 2           | 761                                                      | 30,835            | 31,701         | 30,546               |
| 36                                    | 3           | 865                                                      | 32,752            | 34,051         | 32,319               |
| (39)                                  | 3           | 1 028                                                    | 35,752            | 37,051         | 35,319               |

$$C_t = \frac{2}{3}.f.F_N.\frac{R^3-r^3}{R^2-r^2}$$
, ainsi  $F_N = \frac{3}{2.f}.C_t.\frac{R^2-r^2}{R^3-r^3}$ . Ainsi

$$F_N = \frac{3}{2 \times 0.1}.150.\frac{60^2 - 35^2}{60^3 - 35^3} = 31\,000\,\mathrm{N}$$

En choisissant, des vis de diamètre 4 mm, on trouve  $F_{max} = 0.9 \times R_e \times S_{eq} = 0.9 \times 640 \times 8.78 = 0.00 \times 10^{-10}$ 

Il faut donc  $N = \frac{F_N}{F_{max}} = \frac{31000}{5100} = 6.07$  soit 6 ou 7 vis à mettre en place. Sous l'hypothèse de pression uniforme, ce qui est une hypothèse assez forte.

