
Informatique Tronc Commun

PTSI-PT*

Séquence 4

Programmation dynamique
Thème : Résolution de problèmes d’optimisation discrète

Objectifs
• Réaliser une programmation dynamique ;
• Connaître la propriété de sous-structure optimale ;
• Reconnaître le chevauchement de sous-problèmes ;
• Calcul de bas en haut ou par mémoïsation ;
• Reconstruction d’une solution optimale à partir de l’information calculée.

Table des matières

Cours - Programmation dynamique 1

TD 1 - Exercices de mise en jambe 22

TD 2 - Découpe de barres d’acier 23

TD 3 - Le meilleur intervalle 26

TD 4 - Postes de montage industriel 26

Informatique - PTSI-PT* Cours - Programmation dynamique

Cours - Programmation dynamique

1 Problème de l’effet de recouvrement : Un premier exemple

1.1 Un exemple pour bien comprendre

Le calcul de
(
n

p

)
peut être réalisé à l’aide de la formule de Pascal :(

n

p

)
=

(
n− 1

p

)
+

(
n− 1

p− 1

)
De plus, nous vérifions :

Si p > n,

(
n

p

)
= 0, si n = p,

(
n

p

)
= 1 et si p = 0,

(
n

p

)
= 1

La fonction récursive que l’on peut programmer est donc :
1 def binom(n,p):
2 if p==0 or n==p:
3 return 1
4 elif p>n:
5 return 0
6 else:
7 return binom(n-1,p-1)+binom(n-1,p)

Cette programmation de fonction est très peu efficace. Illustrons le avec l’arbre d’appels récursifs

de
(
5

2

)
.

(
5

2

)
(
4

1

)
(
3

0

) (
3

1

)
(
2

0

) (
2

1

)
(
1

0

) (
1

1

)

(
4

2

)
(
3

2

)(
3

1

)
(
2

0

) (
2

1

) (
2

1

) (
2

2

)
(
1

0

) (
1

1

) (
1

0

) (
1

1

)

Figure 1 – Exemple du calcul de
(
5

2

)

Dans cet exemple le calcul de
(
5

2

)
nécessite de réaliser 3 fois le calcul de

(
2

1

)
. Dès que nous passons

au calcul de
(
30

15

)
, il faut calculer 40 116 600 fois

(
2

1

)
. Cette méthode de résolution est donc très peu

efficace.

page 1

Informatique - PTSI-PT* Cours - Programmation dynamique

1.2 Complexité temporelle

On va chercher à évaluer la complexité de cette fonction, on note C(n, p) le nombre d’additions
réalisées par cette fonction, on dispose des relations :

C(n, 0) = C(n, p) = 0 et ∀p ∈ J1, n− 1K, C(n, p) = C(n− 1, p− 1) + C(n− 1, p) + 1

On démontre alors par récurrence sur n ∈ N que pour tout p ∈ J0, nK, C(n, p) =
(
n

p

)
− 1. De plus,

la complexité temporelle est maximale lorsque n ' p/2. Or, la formule de Stirling permet d’établir

l’équivalent :
(
2n

n

)
∼ 4n√

πn
; le calcul de

(
2n

n

)
par cette fonction est donc de complexité exponentielle.

1.3 Effet de recouvrement

Le problème à résoudre, ici le calcul de
(
n

p

)
, se ramène à la résolution de deux sous-problèmes :(

n− 1

p− 1

)
et
(
n− 1

p

)
: sous-problèmes qui sont en interaction. Par exemple, on constate sur la

Figure 1 que le calcul de
(
4

1

)
et le calcul de

(
4

2

)
font tous deux appel au même sous-problème : le

calcul de
(
3

1

)
. Ainsi, la présence de sous-problèmes en interaction peut faire croitre très rapidement

la complexité d’une fonction, au point d’en rendre son usage rédhibitoire.

1.4 Programmation dynamique : démarche de résolution de bas en haut (bottom-
up)

L’approche de bas en haut ou bottom-up consiste à résoudre d’abord les problèmes plus simples
(instances de taille 1), puis de plus en plus complexes (instances de taille 2), etc. jusqu’à arriver à la
résolution du problème de la taille demandée.

Dans notre exemple présenté en Figure 1, la résolution par programmation dynamique se fait en
suivant le schéma suivant : (

5

2

)
(
4

1

)
(
3

0

)
(
4

2

)
(
3

1

) (
3

2

)
(
2

0

) (
2

1

) (
2

2

)
(
1

0

) (
1

1

)
Figure 2 – Programmation dynamique de bas en haut : bottom-up

En général, pour réaliser ce type de solution on utilise un tableau, ici un tableau bi-dimensionnel
(n+1)× (p+1) (dont seule la partie pour laquelle i > j sera utilisée). Ce tableau sera progressivement
rempli par les valeurs des coefficients binomaux, en commençant par les plus petits (voir Figure 3).

page 2

Informatique - PTSI-PT* Cours - Programmation dynamique

jp0 1

i

n

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

(
n
p

)

(
i−1
j−1
) (

i−1
j

)
(
i
j

)

Figure 3 – Le schéma de dépendance du calcul de
(
n

p

)
Il faut faire attention à bien respecter la relation de dépendance (modélisée par les flèches sur le

schéma ci-dessus) pour remplir les cases de ce tableau : la case destinée à recevoir la valeur de
(
i

j

)
ne peut être remplie qu’après les cases destinées à recevoir

(
i− 1

j − 1

)
et
(
i− 1

j

)
. Un code réalisant ce

type de programmation est alors :
1 def mini(number1 ,number2):
2 if number1 <number2:
3 return number1
4 else:
5 return number2
6
7 import numpy as np
8 def binom_bottom_up(n,p):
9 tab=np.zeros ((n+1,p+1)) # Création du tableau

10 tab [: ,0]=1 # 1ere colonne du tableau mise à 1
11 for i in range(1,p+1):
12 tab[i,i]=1 # Diagonale de (pxp) mise à 1
13 for i in range(2,n+1):
14 for j in range(1,mini(p,i)+1):
15 tab[i,j]=tab[i-1,j-1]+ tab[i-1,j] # calcul de la relation de ré

currence
16 return tab[n,p]

Au prix d’un coût spatial (la création du tableau) cet algorithme est plus efficace que l’algorithme
récursif naïf initial puisque sa complexité temporelle est maintenant en O(np).

D
es

ig
n

ed
 b

y
fr

ee
p

ik
.c

o
m

Remarque 1

Toutes les cases du tableau sont ici complétées. Cela est inutile pour le seul calcul de
(
n

p

)
:

seules les cases grisées sont nécessaires.

page 3

Informatique - PTSI-PT* Cours - Programmation dynamique

Conclusion
La programmation dynamique de ce calcul permet de réduire drastiquement les coûts de calcul.
Un inconvénient non négligeable réside dans la perte de lisibilité de l’algorithme, comparative-
ment à l’algorithme récursif.

1.5 Programmation dynamique : démarche de résolution de haut en bas (top-
down)

Dans la section précédente, nous avons vu un moyen plus efficace de calculer
(
n

p

)
. Cependant ; la

lecture de l’algorithme obtenu n’est pas si simple que cela. L’idéal serait donc de combiner l’élégance
de la programmation récursive avec l’efficacité dynamique.

Ce principe s’appuie sur une démarche de haut en bas à l’aide de la mémoïsation. On va associer
à la fonction un dictionnaire qui va mémoriser le résultat du calcul réalisé. Ainsi, à chaque fois que
le programme aura besoin de calculer une valeur, il ira voir dans le dictionnaire si la valeur dont il
a besoin a déjà été calculée, et ne réalisera le calcul que dans le cas contraire, en ajoutant ensuite la
nouvelle valeur calculée au dictionnaire. Le calcul du coefficient binomial va alors prendre la forme qui
suit :

1 binom_dict = {} # binom_dict est une variable qui sera utilisée comme variable
globale dans la fonction binom

2
3 def binom(n, p):
4 if (n, p) not in binom_dict: # Test pour savoir si le tuple (n,p) est une cl

é du dictionnaire binom_dict
5 if p == 0 or n == p: # Cas de base
6 b=1
7 else:
8 b=binom(n-1,p-1) + binom(n-1,p) # Récursion
9 binom_dict [(n, p)] = b # Stockage dans le dictionnaire # binom_dict est

modifiée car un dictionnaire est mutable
10 return binom_dict [(n, p)]

On retrouve donc la structure de code récursif vu précédemment. L’ordre des éléments entrés dans
le dictionnaire est alors : (

5

2

)
(
4

1

)
(
3

0

)
(
4

2

)
(
3

1

) (
3

2

)
(
2

0

) (
2

1

) (
2

2

)
(
1

0

) (
1

1

)
Figure 4 – Ordre d’entrée dans le dictionnaire

Conclusion
Cette façon de procéder évite donc d’avoir à recalculer des valeurs déjà calculées. La mémoïsa-
tion rend alors l’algorithme récursif bien plus efficient. On a alors l’avantage du gain de temps
de calcul et de la simplicité de lecture de l’algorithme

page 4

Informatique - PTSI-PT* Cours - Programmation dynamique

2 Les bases

2.1 La théorie

La programmation dynamique, résout des problèmes en combinant des solutions de sous-problèmes.
Le mot «Programmation » dans ce contexte, fait référence à l’établissement d’un plan pour résoudre
un problème. La méthode de résolution envisagée est tabulaire et ne fait pas référence à l’établissement
d’un code informatique (même si celui-ci sera à établir au final). Le fondement de l’utilisation de
la programmation dynamique s’appuie sur le fait que l’on peut décomposer un problème en sous-
problèmes. La résolution de ces sous-problèmes amènent alors à une solution admissible du problème
initial.

La programmation dynamique peut s’appliquer lorsque les sous-problèmes ne sont pas indépen-
dants, c’est-à-dire lorsque des sous-problèmes ont des sous-sous-problèmes communs. On parle de
recouvrement de sous-problèmes. Un algorithme de programmation dynamique résout chaque sous-
sous-problème une seule fois et mémorise sa réponse dans un tableau, évitant ainsi le recalcul de la
solution chaque fois que le sous-sous-problème est rencontré.

La programmation dynamique est, en général, appliquée aux problèmes d’optimisation. C’est-
à-dire des problèmes où l’on recherche la combinaison de paramètres permettant d’obtenir l’optimum
d’une fonction objectif.

Exemple 1
Le problème du rendu de monnaie est un problème d’optimisation. Les paramètres sont les devises
possibles à rendre (1e, 2e, 5e, etc.). La fonction objectif est la quantité de devises rendues. Il y a une
contrainte : on ne doit pas rendre plus ou moins d’argent que nécessaire. On cherche donc à rendre
le moins de devises possibles dans le rendu de monnaie tout en s’assurant qu’on rende bien la bonne
quantité d’argent.

Le développement d’un algorithme de programmation dynamique peut être découpé en quatre
étapes :

1. Caractériser la structure d’une solution optimale : c’est le point clé ;
2. Définir récursivement la valeur d’une solution optimale ;
3. Calculer la valeur d’une solution optimale de manière ascendante (bottom-up) ou descendante

(top-down) ;
4. Construire une solution optimale à partir des informations calculées.
Les étapes 1–3 forment la base d’une résolution de problème à la mode de la programmation

dynamique. On peut omettre l’étape 4 si l’on n’a besoin que de la valeur d’une solution optimale.
Lorsqu’on effectue l’étape 4, on gère parfois des informations supplémentaires pendant le calcul de
l’étape 3 pour faciliter la construction d’une solution optimale.

2.2 Un exemple pour mieux comprendre

2.2.1 Présentation du problème

e0 12

e1 2

e3 9

e6 6

e2 5

e5 3

e9 8

e4 7

e7 4 e8 1

Figure 5 – Exemple de pyramide de nombres

page 5

Informatique - PTSI-PT* Cours - Programmation dynamique

En Figure 5, on considère la pyramide de nombres entiers. Celle-ci est représentée par un graphe
orienté, dont chacun des sommets étiquetés de e0 à e9 porte la valeur figurant à sa droite. On cherche
le chemin allant de e0 (sommet de la pyramide) à l’un quelconque des éléments de la base (e6, e7, e8
ou e9) traversant des nombres dont la somme est maximale.

2.2.2 Caractérisation de la structure d’une solution optimale

Le calcul du chemin de valeur maximale associé à l’élément ei est noté sopt(ei).

D
es

ig
n

ed
 b

y
ra

w
p

ix
el

.c
o

m
 /

F
re

ep
ik Exemple d’application 1

Q1.Donnez l’expression de sopt(e7) en fonction des sommets auxquels est reliés e7.

Q2.Donnez l’expression de sopt(e8) en fonction des sommets auxquels est reliés e8.

Q3.Que constatez-vous ?

Q4.Observez-vous le même phénomène constaté pour le calcul de sopt(e3), sopt(e4) ou sopt(e5) ?

Q5.Que pouvez-vous en conclure ?

D’après ce que nous venons de réaliser, nous avons exhibé
mais nous n’avons pas exhibé ! C’est-à-dire que pour l’instant nous n’avons
pas démontré que la solution optimale du problème peut s’obtenir à partir des solutions optimales de
sous-problèmes. Mais nous l’avons presque fait !

On note ssol = max (sopt(e6), sopt(e7), sopt(e8), sopt(e9)) la solution du problème recherché. D’après
les réponses aux questions 1 et 2, pour déterminer le calcul du chemin de valeur maximale associé aux
éléments e6, e7, e8 et e9, il est nécessaire de calculer le chemin de valeur maximale associé aux éléments
e3, e4, e5 etc. De ce fait, la solution ssol répond à ce critère de solution à un problème
à sous-structure optimale. De plus, le fait que certains sous-problèmes soient communs
nous fait penser que la programmation dynamique est parfaitement adapté pour trouver
la réponse au problème donné.

page 6

Informatique - PTSI-PT* Cours - Programmation dynamique

2.2.3 Définition récursive du problème à résoudre

Soit la pyramide de hauteur h ayant n =

(
h+1∑
k=1

k

)
éléments (voir Figure 6). Appelons v(i) la

valeur de l’élément ei, prg(i) et prd(i) les numéros des (au plus) deux prédécesseurs possibles (gauche
et droite) de ei sur tout chemin de e0 à ei. La valeur sopt(ei) dépend en général de celles de ses deux
prédécesseurs et le cas des éléments n’ayant qu’un ou pas de prédécesseur doit être traité séparément.

e0

e1

e3

e2

e5

en−1

e4

.

.

Figure 6 – Une pyramide de nombres

D
es

ig
n

ed
 b

y
ra

w
p

ix
el

.c
o

m
 /

F
re

ep
ik Exemple d’application 2

On pose Id (respectivement Ig) désigne l’ensemble des indices de la branche la plus à droite
(respectivement gauche).

Q6.Déterminer les relations de récurrence à mettre en place pour résoudre le problème.

2.2.4 Résolution tabulaire du problème

Dans cette partie, on va résoudre à l’aide d’un tableau le problème de la pyramide de nombres
présentées à la Figure 5. Dans chaque case du tableau, on va indiquer la valeur maximale permettant
d’accéder au sommet ei. On indiquera également le prédécesseur de ei permettant d’accéder à cette
valeur maximale (ça ne vous rappelle rien ?).

page 7

Informatique - PTSI-PT* Cours - Programmation dynamique

D
es

ig
n

ed
 b

y
ra

w
p

ix
el

.c
o

m
 /

F
re

ep
ik Exemple d’application 3

Q7.Compléter le tableau permettant de résoudre le problème présenté en Figure 5 par une
démarche bottom-up.

12
∅
e0 e1 e2 e3 e4 e5 e6 e7 e8 e9

On constate que la démarche bottom-up n’est pas spécifiquement difficile à mettre en place sur cet
exemple dès que l’on connait facilement les prédécesseurs d’un élément. Une approche top-down est
également possible bien sûr mais il faut retenir (ou noter) où l’on se situe dans la pile d’exécution.

2.2.5 Préparation du traitement informatique du problème

On considère que la pyramide de nombres est renseignée sous forme de dictionnaire. Les clés de
ces dictionnaires sont les chaînes de caractères ei correspondant à l’élément ei. La valeur associée à
chaque clé est une liste contenant la valeur de l’élément ei ainsi que les successeurs. Si un sommet ne
dispose pas de successeurs, alors on ne renseignera dans la valeur que la valeur du sommet.

D
es

ig
n

ed
 b

y
ra

w
p

ix
el

.c
o

m
 /

F
re

ep
ik Exemple d’application 4

Q8.Renseigner alors le dictionnaire représentatif de la pyramide de nombre de la Figure 5

Que ce soit avec une approche bottom-up ou top-down (mémoïsation), il va être plus facile de
traiter le problème en connaissant le/les prédécesseurs d’un sommet.

Q9.Établir une fonction dico_predecesseur(G:dict)->dict prenant en argument un graphe
orienté G et renvoyant un dictionnaire des prédécesseurs des éléments. Le prédécesseur de e0
sera indiqué comme étant égal à None.

page 8

Informatique - PTSI-PT* Cours - Programmation dynamique

2.2.6 Approche bottom-up

Voici un code proposant une approche bottom-up traitant le problème de la pyramide de nombres.
1 def position_tableau(sommet):
2 return int(sommet [1:]) # Un sommet est noté ei, pour récupérer la valeur de

i, on fait donc int(sommet [1:]) afin de ne pas tenir compte du e et d’
avoir la valeur numérique de i

3
4 def bottom_up(G):
5 predecesseur_graphe=dico_predecesseur(G) # Dictionnaire contenant pour

chaque sommet le/les prédécesseurs de celui -ci.
6 valeur_ei =[0 for i in range(len(G))] # Initialisation du tableau à compléter

et qui contiendra la valeur maximale permettant d’accéder au sommet e_i
.

7 predecesseur_ei =[None for i in range(len(G))] # Initialisation du tableau
contenant le prédecesseur de e_i qui amène à la valeur maximale.

8 valeur_ei [0]=G[’e0’][0] # On renseigne la seule valeur connue initialement :
celle du noeud e0 qui n’a aucun prédécesseur.

9 n=len(G) # Ordre du graphe.
10 for i in range (1,n): # Parcours de chacun des noeuds.
11 sommet_courant=’e’+str(i) # sommet courant actuellement traité
12 if len(predecesseur_graphe[sommet_courant])==1: # Si ce sommet n’a qu’un

seul prédécesseur
13 valeur_ei[i]= valeur_ei[position_tableau(predecesseur_graphe[

sommet_courant][0])]+G[sommet_courant][0] # On récupère la
valeur du chemin parcouru jusqu’au prédécesseur et on y ajoute
celle du sommet courant

14 predecesseur_ei[i]= predecesseur_graphe[sommet_courant][0] # Le pré
decesseur du sommet courant est nécessairement le seul répertori
é.

15 elif len(predecesseur_graphe[sommet_courant])==2: # Si le sommet a deux
prédécesseurs

16 valeur_predecesseur_1=valeur_ei[position_tableau(predecesseur_graphe
[sommet_courant][0])] # Récupération de la valeur maximale
obtenue jusqu’au premier prédécesseur

17 valeur_predecesseur_2=valeur_ei[position_tableau(predecesseur_graphe
[sommet_courant][1])] # Récupération de la valeur maximale
obtenue jusqu’au second prédécesseur

18 maxi=max(valeur_predecesseur_1 ,valeur_predecesseur_2) # On récupère
le max de ces deux nombres.

19 valeur_ei[i]=maxi+G[sommet_courant][0] # On assigne alors la valeur
maximale permettant d’accéder au noeud ei

20 if maxi== valeur_predecesseur_1: # Le prédécesseur permettant d’accé
der au noeud ei avec la plus grande valeur est stocké dans le
tableau predecesseur_ei

21 predecesseur_ei[i]= predecesseur_graphe[sommet_courant][0]
22 else:
23 predecesseur_ei[i]= predecesseur_graphe[sommet_courant][1]
24 return valeur_ei ,predecesseur_ei

Conclusion
L’approche bottom-up fournit donc bien un algorithme itératif mais celui-ci n’est pas forcément
toujours évident à décrypter.

2.2.7 Approche par mémoïsation

L’approche par mémoïsation que l’on propose de mettre en place doit notamment permettre de
déterminer la valeur des sommets n’ayant pas de successeurs. En effet, le chemin de longueur maximale
aboutira forcément à l’un d’entre eux.

page 9

Informatique - PTSI-PT* Cours - Programmation dynamique

D
es

ig
n

ed
 b

y
ra

w
p

ix
el

.c
o

m
 /

F
re

ep
ik Exemple d’application 5

Q10.Créer une fonction sommets_sans_successeur(G:dict)->list, retournant la liste des
sommets qui n’ont pas de successeurs. Ce sont ces sommets qui nous permettront d’initialiser
notre calcul.

Q11.Voici un code (un peu naïf) que vous devez compléter et qui utilise une approche par mémoïsation.
1 def top_down(G):
2 predecesseur_graphe=dico_predecesseur(G) # Dictionnaire contenant pour

chaque sommet le/les prédécesseurs de celui -ci.
3 dico_valeur_ei ={} # Initialisation du tableau à compléter et qui contiendra

la valeur maximale permettant d’accéder au sommet e_i.
4 dico_predecesseur_ei ={} # Initialisation du tableau contenant le pré

decesseur de e_i qui amène à la valeur maximale.
5 sommet_a_traiter=sommets_sans_successeur(G) # Récupération des sommets sans

successeurs
6 for sommet in sommet_a_traiter: # Itération
7 memoisation(sommet ,predecesseur_graphe ,dico_valeur_ei ,

dico_predecesseur_ei)
8 return dico_valeur_ei ,dico_predecesseur_ei
9

10 def memoisation(sommet ,predecesseur_graphe ,dico_valeur_ei ,dico_predecesseur_ei)
:

11 pred=predecesseur_graphe[sommet] # Récupération du/des prédécesseur(s) du
sommet

12 ## Cas de base
13 if sommet ==’e0’:
14 dico_valeur_ei[sommet]=G[sommet][0]
15 dico_predecesseur_ei[sommet]=None
16 ## Cas où le sommet se trouve sur la branche droite ou gauche
17 elif len(pred)==1:
18 if sommet not in dico_valeur_ei: # Si la valeur_ei du chemin de longueur

maximale aboutissant à ei n’a pas été enregistrée...
19 nombre=memoisation (..)
20 dico_valeur_ei[sommet]=..........+........ # Calcul de valeur_ei du

sommet courant
21 dico_predecesseur_ei[sommet]=................# Récupération du prédé

cesseur de ei aboutissant au chemin de plus grande valeur
22 ## Cas où le sommet dispose de 2 prédécesseurs
23 else:
24 if sommet not in dico_valeur_ei:
25 nombre1 =.. # ... on effectue

le calcul
26 nombre2 =..
27 maxi=max(nombre1 ,nombre2) # Maximum de la valeur entre les deux
28 dico_valeur_ei[sommet]=........................
29 if maxi== nombre1: # Le prédécesseur permettant d’accéder au noeud ei

avec la plus grande valeur est stockée dans le tableau

page 10

Informatique - PTSI-PT* Cours - Programmation dynamique

predecesseur_ei
30 dico_predecesseur_ei[sommet]=pred [0]
31 else:
32 dico_predecesseur_ei[sommet]=pred [1]
33 return dico_valeur_ei[sommet]

2.2.8 Traitement des résultats

Après utilisation de la fonction top_down, on récupère deux dictionnaires contenant la valeur maxi-
male associée au chemin aboutissant au nœud ei pour ∈ J0, n−1K. Le second correspond au prédécesseur
du nœud ei du chemin de valeur maximale aboutissant à ei.
Après utilisation de la fonction bottom_up, on récupère deux listes. La première contenant la valeur
maximale associée au chemin aboutissant au nœud ei pour ∈ J0, n − 1K. La seconde correspond au
prédécesseur du nœud ei du chemin de valeur maximale aboutissant à ei.

D
es

ig
n

ed
 b

y
ra

w
p

ix
el

.c
o

m
 /

F
re

ep
ik Exemple d’application 6

Q12.Établir le code permettant d’obtenir la valeur du chemin de valeur maximale, ainsi que
celui-ci sous forme de listes contenant les nœds à parcourir. Sur l’exemple traité en Figure 5,
le résultat obtenu est : (29,[’e0’,’e1’,’e3’,’e6’]).

3 Application de la programmation dynamique

Il existe deux grandes caractéristiques que doit posséder un problème d’optimisation pour que
la programmation dynamique soit applicable : sous-structure optimale et chevauchement des sous-
problèmes.

3.1 Sous-structure optimale

La première étape de la résolution d’un problème d’optimisation via la programmation dynamique
est de caractériser la structure d’une solution optimale. Retenons qu’un problème exhibe une sous-
structure optimale si une solution optimale au problème contient en elle des solutions optimales de

page 11

Informatique - PTSI-PT* Cours - Programmation dynamique

sous-problèmes. : C’est le principe de Bellman. Chaque fois qu’un problème exhibe une sous-
structure optimale, c’est un bon indice de l’utilisation de la programmation dynamique. (Cela peut aussi
signifier qu’une stratégie gloutonne est applicable). Avec la programmation dynamique, on construit
une solution optimale du problème à partir de solutions optimales de sous-problèmes. Par conséquent,
on doit penser à vérifier que la gamme des sous-problèmes que l’on considère inclut les sous-problèmes
utilisés dans une solution optimale.

Exemple 2
Dans l’exemple de la pyramide de nombres précédemment traité, nous avons observé que la valeur de
chemin maximal jusqu’à un sommet situé à la hauteur i du graphe est atteint à partir du maximum
du/des sommets prédécesseurs à hauteur i− 1.

Exemple 3
Prenons l’exemple du plus court chemin entre deux sommets quelconques d’un graphe orienté G. Il
est facile de montrer par l’absurde qu’un chemin est de longueur minimale si et seulement si ses sous-
chemins sont de longueur minimale. Soit en effet un graphe orienté G et un chemin de a à d de longueur
minimale, qui passe par b et c (arcs en trait plein sur la Figure 7). La longueur de ce chemin est la
somme des longueurs des sous-chemins de a à b, de b à c et de c à d. Supposons qu’il existe dans le
graphe G un chemin de b à c de coût moindre (en pointillé sur la figure Figure 7) que le chemin de b
à c choisi ; il existe alors un chemin plus court de a à d, ce qui est contraire au fait que le chemin de
a à d est de longueur minimale.

a b c d

Figure 7 – Application du principe d’optimalité à la recherche du plus court chemin dans un graphe

Exemple 4
Prenons maintenant un autre exemple, la recherche du plus long chemin sans circuit entre deux sommets
quelconques d’un graphe orienté. Soit le graphe de la Figure 8. Le plus long chemin sans circuit de a
à c est de longueur 2 〈a, b, c〉, le plus long chemin sans circuit de a à b est de longueur 2 〈a, c, b〉 et le
plus long chemin sans circuit de b à c est de longueur 1. Le plus long chemin sans circuit de a à c ne
s’obtient donc pas par composition de chemins sans circuit, ce qui montre que le principe d’optimalité
n’est pas vérifié dans ce cas.

a b c

Figure 8 – Un (contre-)exemple où le principe d’optimalité ne s’applique pas.

La découverte de la sous-structure optimale obéit au schéma général suivant :
1. Vous montrez qu’une solution du problème consiste à faire un choix, par exemple à choisir un

sommet prédécesseur dans le problème de la pyramide de nombre.
2. Vous supposez que, pour un problème donné, on vous donne le choix qui conduit à une solution

optimale. Pour l’instant, vous ne vous souciez pas de la façon dont on détermine ce choix. Vous
faites comme si on « vous le donnez tout cuit ».

3. À partir de ce choix, vous déterminez quels sont les sous-problèmes qui en découlent et comment
caractériser au mieux l’espace des sous-problèmes résultant.

4. Vous montrez que les solutions des sous-problèmes employées par la solution optimale du pro-
blème doivent elles-mêmes être optimales, et ce en utilisant la technique du « couper-coller » : vous
supposez que chacune des solutions de sous-problème n’est pas optimale et vous en déduisez une
contradiction. En particulier, en « coupant » une solution de sous-problème non optimale et en la

page 12

Informatique - PTSI-PT* Cours - Programmation dynamique

« collant » dans la solution optimale, vous montrez que vous obtenez une meilleure solution pour
le problème initial, ce qui contredit l’hypothèse que vous avez déjà une solution optimale. S’il y a
plusieurs sous-problèmes, ils sont généralement similaires, de sorte que l’argument couper-coller
utilisé pour l’un peut resservir pour les autres, moyennant une petite adaptation.

Conclusion
Dans les faits, le résumé de tout cela est de réussir à établir une récurrence dont le terme
correspond à la grandeur optimale recherchée. En effet, l’établissement de la récurrence prouve
de facto que le principe d’optimalité s’applique.

3.2 Chevauchement des sous-problèmes

La seconde caractéristique que doit avoir un problème d’optimisation pour que la programmation
dynamique lui soit applicable est la suivante : l’espace des sous-problèmes doit être « réduit », au
sens où un algorithme récursif pour le problème résout constamment les mêmes sous-problèmes au
lieu d’en engendrer toujours de nouveaux. En général, le nombre total de sous-problèmes distincts
est polynomial par rapport à la taille de l’entrée. Quand un algorithme récursif repasse sur le même
problème constamment, on dit que le problème d’optimisation contient des sous-problèmes qui se
chevauchent.

Exemple 5
Nous avons très clairement illustré ce principe de chevauchement des sous-problèmes lors du calcul de(
n

p

)
où certains calculs

(
i

j

)
devaient être effectués plusieurs fois.

Le principe de mémoïsation permet assez simplement d’éviter à avoir à recalculer des sous-problèmes
déjà traités.

D
es

ig
n

ed
 b

y
ra

w
p

ix
el

.c
o

m
 /

F
re

ep
ik Exemple d’application 7

Q13.Est-ce que le principe de mémoïsation est intéressant lors du tri fusion ?

Conclusion
Dans le cadre d’un problème d’optimisation, l’utilisation de la programmation dynamique est
fortement recommandé afin de résoudre celui-ci. En général, c’est une bonne façon de traiter le
problème même si la garantie de trouver une solution (en effet, la solution n’est pas forcément
unique) n’est pas vérifiée. La programmation dynamique est préconisée lorsque :

• le principe de Bellman est applicable. Pour rappel, ne chercher pas forcément à
vérifier a priori ce principe mais établir directement la relation de récurrence ;

• Il existe un chevauchement des sous-problèmes.

page 13

Informatique - PTSI-PT* Cours - Programmation dynamique

4 Programmation dynamique et algorithme glouton

4.1 Introduction

En première année, nous avons vu un genre d’algorithme permettant de résoudre certains problèmes
d’optimisation : les algorithmes gloutons. Ceux-ci sont utilisés lorsque l’on cherche à construire la
solution optimale du problème comme une succession de choix suivant une règle heuristique appelé le
choix glouton. Pour être efficace, un algorithme glouton doit être utilisé dans le cadre d’un problème
d’optimisation où le principe de Bellman est applicable.

Le choix glouton correspond à un choix qui est la solution optimale du sous-problème considéré.
On construit alors la solution complète du problème par concaténation des différentes solutions des
sous-problèmes étudiés. Autrement dit : quand on considère le choix à faire, on fait le choix qui paraît le
meilleur pour le sous-problème courant, sans tenir compte des résultats des sous-problèmes précédents
(approche bottom-up) ou à venir (approche top-down). C’est en cela que les algorithmes gloutons
diffèrent de la programmation dynamique. En programmation dynamique, on fait un choix à chaque
étape, mais ce choix dépend généralement de la solution des sous-problèmes.

Conclusion
La programmation dynamique se caractérise par la résolution par taille croissante de tous
les problèmes locaux, la stratégie gloutonne consiste à choisir à partir du problème global un
seul type de problème local et un seul en suivant une heuristique, c’est-à-dire une stratégie
permettant de faire un choix rapide : le choix glouton

4.2 Un problème bien connu : le problème du sac à dos

4.2.1 Présentation

Le problème du sac à dos est un problème fort célèbre. Il est connu de par le fait qu’il possède la
propriété d’être NP-complet 1. La formulation de ce problème est très simple mais sa résolution est
difficile dans un temps raisonnable.

Il existe deux variantes de ce problème :
• On souhaite remplir un sac à dos d’objets fractionnables ayant la plus grande valeur possible

sans dépasser un certain poids. Chaque objet a une valeur et une masse.
• On souhaite remplir un sac à dos d’objets non fractionnables ayant la plus grande valeur

possible sans dépasser un certain poids. Chaque objet a une valeur et une masse.
La nuance entre ces deux problèmes est donc que les objets à emporter dans le sac peuvent être

fractionnables ou non.

4.2.2 Version fractionnable

Formalisation du problème
Dans sa version fractionnable le problème se formalise de la façon suivante : Soient des objets définis

par des 2-uplets (valeur,masse). L’ensemble des n objets à disposition sont donc rassemblés dans
l’ensemble O = ((v1,m1), (v2,m2), · · · , (vn,mn)). On a donc vi et mi qui sont respectivement la valeur
et la masse de l’objet i. La masse à ne pas dépasser dans le sac à dos est notée M .

Dans cette version du problème, les objets sont fractionnables, ce qui implique que la solution

optimale est une solution où le sac est rempli (en supposant bien sûr que
n∑

i=1

mi ≥ M , ce qui est le

cas sinon, le problème ne se pose pas). On précise que lorsqu’on fractionne un objet, sa valeur est
également fractionnée. On note xi la fraction choisie de l’objet i.

1. Voir la chaîne youtube « ScienceEtonnante » https ://www.youtube.com/watch ?v=AgtOCNCejQ8 qui traite de
l’importance de ce genre de problème.

page 14

Informatique - PTSI-PT* Cours - Programmation dynamique

Q14.Écrire mathématiquement le problème d’optimisation à résoudre.

Traitement d’un exemple
Un promeneur souhaite transporter dans son sac à dos le fruit de sa cueillette. La cueillette est belle,

mais trop importante pour être entièrement transportée dans le sac à dos. Des choix doivent être faits
(on peut appeler cela du gâchis et le gâchis, c’est mal.). Il faut que la masse totale des fruits choisis
ne dépasse pas la capacité maximale du sac à dos. Les fruits cueillis ont des valeurs différentes, et le
promeneur souhaite que son chargement soit de la plus grande valeur possible (cupide en plus...).

Les informations nécessaires sont :

Fruits cueillis Quantité ramassée Valeur totale des fruits cueillis
Framboises 1 kg 15e
Myrtilles 3 kg 48e
Fraises 4 kg 50e

La masse totale que peut transporter le sac est de 5 kg.

Q15.Résoudre "à la main" le problème du sac à dos qui vous ai présenté. Quelle grandeur non rensei-
gnée directement dans le tableau ci-dessous avez-vous dû calculer pour trouver la solution optimale ?

Q16.Décrire l’algorithme glouton qui permet de résoudre le problème du sac à dos en version frac-
tionnable.

page 15

Informatique - PTSI-PT* Cours - Programmation dynamique

Q17.Compléter le code suivant permettant de résoudre par un algorithme glouton, le problème du sac
à dos dans sa version fractionnable.

1 def sac_a_dos(L:[list],capacite:int)->list ,int ,int:
2 ’’’
3 Entrées : L est une liste de listes des éléments pouvant être mis dans le

sac à dos sous la forme : ["nom objet",valeur ,masse]
4 capacite est la la masse maximale que peut transporter le sac à

dos
5 Sortie : liste sac contenant les éléments de L et correspondant au

chargement effectué. La valeur de celui -ci ainsi que sa masse
6 ’’’
7 ## 1ere étape : On indique le prix au kilo de chaque objet et on l’indique

dans la liste L et on trie la liste L suivant ce critère
8 for i in range(len(L)): # On parcourt l’ensemble des éléments à choisir
9 L[i]. append (...) # Ajout de l’

indicateur prix au kilo
10 L=sorted(L,key=lambda elem:elem[3], reverse=True) # La liste L est maintenant

triée dans l’ordre décroissant suivant le prix au kilo des objets
11 ## 2eme étape : Initialisation des variables
12 masse_sac = 0 # masse actuellement dans le sac
13 sac =[] # à l’initialisation , le sac est vide
14 i=0 # i sert d’indice dans la liste L
15 valeur = 0 # valeur du chargement
16 ## 3eme étape : Mise en place de l’algorithme glouton
17 while and:# tant qu’on n’a pas parcouru

toute la cueillette (cas où la capacité du sac à dos est suffisante pour
prendre toute la cueillette) et que la masse du sac n’a pas atteint sa

capacité (cas où la cueillette est trop importante)
18 fruit = L[i]
19 capacite_restante = capacite - masse_sac
20 if : # si la quantité du i-eme fruit est supé

rieure à la capacité restante du sac
21 fruit [2] = # on modifie la quantité de fruit pour

n’en prendre que la quantité correspondant à la capacité
restante

22 sac.(fruit) # On met le fruit dans le sac
23 valeur = valeur + # On calcule la nouvelle valeur du

chargement
24 masse_sac = masse_sac + # On calcule la nouvelle masse du sac
25 i=i+1 # On incrémente i pour passer au fruit suivant de la cueillette
26 return sac ,valeur ,masse_sac

On implémente la cueillette par la liste :
1 cueillette = [["framboises" ,15,1], ["myrtilles" ,48,3], ["fraises" ,50,4]].

Q18.À la suite de la fonction sac_a_dos(L,capacite) tapez la ligne de code permettant de l’uti-
liser pour déterminer les quantités de fruits à choisir pour remplir le sac à dos, à partir de la liste
cueillette.

4.2.3 Version non fractionnable

Formalisation du problème
Dans sa version non fractionnable du problème du sac à dos, les objets doivent être choisi en plein.

On note toujours O = ((v1,m1), (v2,m2), · · · , (vn,mn)) l’ensemble des objets disponibles. On a donc
vi et mi qui sont respectivement la valeur et la masse de l’objet i. La masse à ne pas dépasser dans le
sac à dos est notée M .

Q19.Écrire mathématiquement le problème d’optimisation à résoudre.

page 16

Informatique - PTSI-PT* Cours - Programmation dynamique

Traitement d’un exemple
On suppose maintenant que les éléments à transporter ne sont pas fractionnables. Les fruits parmi

lesquels le cueilleur doit choisir sont présentés ci-dessous :

Fruits cueillis Masse d’un fruit Quantité disponible Prix au kilo
Melon de cavaillon 1 kg 1 3e/kg

Melon jaune 2 kg 1 2,5e/kg
Pastèque 3 kg 1 2e/kg

L’objectif est toujours de placer dans le sac à dos le chargement de valeur maximale, de masse
totale inférieure à 5 kg. Par contre, les éléments n’étant pas fractionnables, il est possible que les choix
successifs mènent à un chargement qui ne remplit pas complètement le sac à dos.

On se propose de tester la méthode gloutonne pour cette nouvelle formulation.

Q20.En utilisant la même heuristique que pour la version fractionnable, quel résultat obtenez-vous ?
(Valeur et masse dans le sac à dos). Quel est la solution optimale ?

Conclusion
L’utilisation d’un algorithme glouton, ne permet de résoudre de façon systématique le problème
du sac à dos dans sa version non fractionnable avec une heuristique choisie. L’utilisation de la
programmation dynamique semble plus appropriée pour ce type de problème.

Programmation dynamique pour résoudre le problème du sac à dos
Pour résoudre ce problème, nous allons noter f(k,M) la valeur maximale qu’il est possible d’atteindre

avec k objets potentiels pour un poids total égal àM . Si l’objet d’indice k est dans la solution optimale,
alors mk 6 M et f(k,M) = vk + f(k − 1,M −mk) ; s’il n’y est pas alors f(k,M) = f(k − 1,M). On
en déduit :

f(k,M) =

{
max

(
vk + f (k − 1,M −mk) , f (k − 1,M)

)
si mk 6M

f(k − 1,M) sinon

M0 1

k

n

0

1

Mmax

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

f(k − 1,M −mk) f(k − 1,M)

f(k,M)

Figure 9 – Le schéma de dépendance du sac à dos

page 17

Informatique - PTSI-PT* Cours - Programmation dynamique

Pour calculer cette valeur, nous allons utiliser un tableau bi-dimensionnel de taille (n+1)×(Mmax+
1) destiné à contenir les valeurs de f(k,M) pour k ∈ J0, nK et M ∈ J0,MmaxK. Avec Mmax la masse
maximale transportable dans le sac. Dans le problème, on considère que la valeur et la masse des objets
est sous forme d’entiers (chose que l’on peut toujours faire). Nous prendrons comme valeurs initiales
f(0,M) = f(k, 0) = 0, et notre but est de calculer f(n,Mmax).

Dans un premier temps, on considère que les noms des objets, leur valeur et leur masse sont stockés
dans 3 listes différentes dans un ordre qui est le même pour les 3 listes.

1 def sac_a_dos(v:[int],m:[int],Mmax:int)->int:
2 ’’’
3 Fonction permettant de calculer f(n,Mmax) par une approche dynamique.
4 Entrées :
5 - v : liste des valeurs des objets
6 - m : liste des masses des objets
7 - Mmax : entier , représentant la masse maximale transportable
8 Sortie :
9 - f(n,Mmax) retourne la valeur maximale transportable dans le sac pour une

masse totale inférieure ou égale à Mmax
10 ’’’
11 n = len(v) # Nombre d’objets potentiellement à transporter
12 f = np.zeros ((n + 1, Mmax + 1), dtype=int) # Création d’un tableau numpy de

taille n+1 x Mmax+1 qui sera composé d’entiers
13 for k in range(n):
14 for W in range(0, Mmax + 1):
15 if m[k] <= W:
16 f[k + 1, W] = max(v[k] + f[k, W - m[k]], f[k, W])
17 else:
18 f[k + 1, W] = f[k, W]
19 return f[n, Mmax]

D
es

ig
n

ed
 b

y
ra

w
p

ix
el

.c
o

m
 /

F
re

ep
ik Exemple d’application 8

Q21.Appliquer la fonction sac_a_dos sur le problème de cueillette précédent. En complétant
notamment le tableau suivant avec les listes suivantes : v=[3,5,6], m=[1,2,3].

M0 1 2 3 4 5

n

0

1

2

3

0 0 0 0 0 0

0

0

0

D
es

ig
n

ed
 b

y
fr

ee
p

ik
.c

o
m

Remarque 2

Cet algorithme calcule la valeur maximale qui peut être emportée dans le sac, mais pas la façon
d’y parvenir. Pour la connaître il faut utiliser le tableau calculé par la fonction précédente, et
retrouver le chemin qui mène de la case initiale à la case finale.

page 18

Informatique - PTSI-PT* Cours - Programmation dynamique

1 def objets_a_choisir(v:[int],m:[int],nom:[str],Mmax:int) ->[(str ,int ,int)]:
2 ’’’
3 Fonction permettant de calculer la liste des objets remplissant le sac avec

la plus grande valeur possible sans dépasser la masse Mmax
4 Entrées :
5 - v : liste des valeurs des objets
6 - m : liste des masses des objets
7 - nom : liste des noms des objets
8 - Mmax : entier , représentant la masse maximale transportable
9 Sortie :

10 - Liste des objets avec leur nom , valeur et masse
11 ’’’
12 f = sacAdos(v, m, Mmax) # Calcul de f(n,Mmax)
13 sac = [] # >Initialisation du sac
14 k, W = len(c), Mmax
15 while k > 0:
16 if f[k, W] > f[k - 1, W]:
17 sac.append ((nom[k-1],v[k - 1], m[k - 1]))
18 W -= w[k - 1]
19 k -= 1
20 return sac

On peut également créer un tableau, de taille n + 1 × (Mmax + 1) qui ne contiendra uniquement
les chaînes de caractères des différents objets présents dans le sac.

1 def sac_a_dos(v:[int],m:[int],nom:[str],Mmax:int)->int ,[str]:
2 ’’’
3 Fonction permettant de calculer f(n,Mmax) par une approche dynamique.
4 Entrées :
5 - v : liste des valeurs des objets
6 - m : liste des masses des objets
7 - nom : liste des noms des objets
8 - Mmax : entier , représentant la masse maximale transportable
9 Sortie :

10 - f(n,Mmax) retourne la valeur maximale transportable dans le sac pour une
masse totale inférieure ou égale à Mmax

11 - tab_nom(n,Mmax)[1:] retourne les noms des objets de valeur maximale
transportable dans le sac pour un masse totale inférieure ou égale à
Mmax

12 ’’’
13 n = len(v) # Nombre d’objets potentiellement à transporter
14 f = np.zeros ((n + 1, Mmax + 1), dtype=int) # Création d’un tableau numpy de

taille n+1 x Mmax+1 qui sera composé d’entiers
15 longueur=max([len(i) for i in nom]) # Longueur maximale des chaînes de

caractères dans la liste o
16 tab_nom=np.zeros((n + 1, Mmax + 1), dtype=’<U’+len(nom)*str(longueur)) # Cré

ation d’un tableau numpy de taille n+1 x Mmax+1 qui sera composé de chaî
nes de caractères : dtype <’Unombre ’ : permet de construire un tableau de
chaîne de caractères chaque case peut contenir une chaîne de caractères
de taille nombre.

17 for k in range(n):
18 for W in range(0, Mmax + 1):
19 if m[k] <= W:
20 f[k + 1, W] = max(v[k] + f[k, W - m[k]], f[k, W])
21 if f[k + 1, W]==v[k] + f[k, W - m[k]]:
22 tab_nom[k+1,W]= tab_nom[k, W - m[k]]+’-’+nom[k]
23 else:
24 tab_nom[k+1,W]= tab_nom[k,W]
25 else:
26 f[k + 1, W] = f[k, W]
27 tab_nom[k+1,W]= tab_nom[k,W]
28 return f[n,Mmax],tab_nom[n,Mmax][1:]

page 19

Informatique - PTSI-PT* Cours - Programmation dynamique

Résolution par approche top-down (mémoïsation)
Nous n’avons pas utilisé ici la technique de mémoïsation pour résoudre le problème. Cette dernière,

lorsqu’elle est utilisée, nous permet de moins nous préoccuper de l’ordre de dépendance qui est géré
par la récursivité :

1 def sacAdos(v:[int], m:[int], Mmax:int)->int:
2 dico = {}
3 def f(k, M):
4 if (k, M) not in dico: # Si on n’a pas déjà calculé f(k,M)
5 if k == 0 or M == 0: # Cas de base
6 x=0
7 # On écrit nos 2 relations de récurrence
8 elif m[k - 1] <= M:
9 x = max(v[k - 1] + f(k - 1, M - m[k - 1]), f(k - 1, M))

10 else:
11 x = f(k - 1, M)
12 dico[(k, M)] = x #On stocke le résultat dans le dictionnaire de clé

(k,M)
13 return dico[(k, M)]
14 return f(len(v), Mmax)

4.3 Un autre problème : le rendu de monnaie

4.3.1 Présentation du problème

On souhaite minimiser le nombre de pièces et de billets rendus par un automate qui rend la monnaie
tout en garantissant que le total rendu vaut une certaine somme fixée par le problème. La fonction
objectif est donc de minimiser la quantité de monnaie rendue tout en respectant la contrainte suivante :
la monnaie rendue correspond bien à la quantité d’argent à rendre effectivement.

Hypothèse : On suppose que vous avez un stock illimité de pièces et billets ;
Le système monétaire utilisé est un n-uplet V = (v0, v1, · · · , vn−1) où vi représente la valeur de la

ième devise. On note X = (x0, x1, · · · , xn−1) le n-uplet contenant le nombre de devises rendu. Ainsi, xi
représente le nombre de la ième devise rendu. On note S la somme à rendre.

La somme à rendre peut donc être calculée par : S =
n∑

i=1

xi.vi.

Q22.Exprimer le problème d’optimisation que l’on cherche à résoudre.

4.3.2 Résolution par algorithme glouton

Dans ce problème, on travaille avec l’ancien système monétaire britannique (avant 1971) s’appuyant
sur le penny avec le système monétaire suivant (sans tenir compte des 1/2 pennies)

monnaie = [1,3,6,12,24,30,60,240]

Q23.À l’aide de l’algorithme glouton, donnez la réponse au problème de rendu de monnaie obtenu
pour rendre somme= 48 cts ? Quelle est la résolution optimale de ce problème ?

4.3.3 Programmation dynamique 2

Soit X la somme à rendre, on notera Nb(X) le nombre minimum de pièces à rendre. Nous allons
nous poser la question suivante : Si je suis capable de rendre Y avec Nb(Y) pièces, quelle somme suis-je
capable de rendre avec 1 +Nb(Y) pièces ?

Si j’ai à ma disposition la liste de pièces suivante : v0, v1, v2,· · · , vn−1 et que je suis capable de
rendre Y cts, je suis donc aussi capable de rendre :

• Y − v0
• Y − v1
2. D’après : https ://pixees.fr/informatiquelycee/n_site/nsi_term_algo_progdyn.html

page 20

Informatique - PTSI-PT*

• Y − v2
• · · ·
• Y − vn−1

(à condition que vi (avec i ∈ J0, n− 1K)) soit inférieure ou égale à la somme restant à rendre.)
Exemple : si je suis capable de rendre 72 cts et que j’ai à ma disposition des pièces de 2 cts, 5 cts,

10 cts, 50 cts et 1 euro, je peux aussi rendre :
• 72− 2 = 70 cts

• 72− 5 = 67 cts

• 72− 10 = 62 cts

• 72− 50 = 22 cts

• On ne peut pas utiliser de pièce de 1 euro.
Autrement dit, si Nb(X − vi) (avec i ∈ J0, n− 1K) est le nombre minimal de pièces à rendre pour

le montant X − vi, alors Nb(X) = 1 +Nb(X − vi) est le nombre minimal de pièces à rendre pour un
montant X. Nous avons donc la formule de récurrence suivante :

Si X = 0 : Nb(X) = 0
Si X > 0 : Nb(X) = 1 + min

0≤i≤n−1 et vi≤X
Nb(X − vi)

4.3.4 Programmation sous Python

1 def rendu_monnaie_rec(V,X):
2 if X==0:
3 return 0
4 else:
5 mini = 1000
6 for i in range(len(V)):
7 if V[i]<=X:
8 nb = 1 + rendu_monnaie_rec(V,X-V[i])
9 if nb<mini:

10 mini = nb
11 return mini

Comme vous l’avez sans doute remarqué, pour être sûr de renvoyer le plus petit nombre de pièces,
on attribue dans un premier temps la valeur 1000 à la variable mini (cette valeur 1000 est arbitraire, il
faut juste une valeur suffisamment grande : on peut partir du principe que nous ne rencontrerons jamais
de cas où il faudra rendre plus de 1000 pièces), ensuite, à chaque appel récursif, on « sauvegarde » le
plus petit nombre de pièces dans cette variable mini. Par contre, on ne sait pas quelles pièces rendre...

page 21

Informatique - PTSI-PT*

TD Info - Programmation dynamique

I - Exercices de mise en jambe

Objectif
L’objectif de ces différents « petits » exercices est de prendre en main la programmation dynamique
sur des exemples simples. Les deux orientations de programmation dynamique « bottom-up » et « top-
down » sont abordées.

1 Suite récurrente simple

On considère la suite (un)n∈N définie par un = n× un−1 avec u0 = 1.

Q1.Effectuer une programmation itérative d’une fonction u_iter d’argument n:int permettant de
calculer un. Vérifier que vous obtenez u10 = 3628 800.

Q2.Effectuer une programmation récursive d’une fonction u_rec d’argument n:int permettant de
calculer un. Vérifier que vous obtenez u10 = 3628 800.

Q3. Justifiez que le principe de programmation dynamique ne s’applique pas dans ce cas d’étude (par
exemple pas besoin de memoïsation).

2 Suite de Fibonacci

La suite de Fibonacci (un)n∈N est définie de la façon suivante :

un = un−1 + un−2 avec n ∈ N et n > 2 u0 = 0 et u1 = 1

Q4.Effectuer une programmation récursive d’une fonction fibo d’argument n:int permettant de
calculer un. Vérifier que vous obtenez u10 = 55.

Q5.Construire l’arbre d’appels récursifs de fibo(5). Justifier alors que la programmation dynamique
est tout à fait indiqué pour résoudre plus efficacement ce problème.

Q6.Effectuer une programmation dynamique top-down (principe de mémoïsation) en vous appuyant
sur la structure de code proposée. Dans le cadre d’une mémoïsation, cette structure est à
privilégier. Vérifier que fibonacci(10) renvoie bien 55.

1 def fibonacci(n:int)->int:
2 tab_fab =[0 for i in range(n+1)] # Initialisation du tableau de mémoïsation
3 tab_fab [1]= # Initialisation utile pour u_1 , u_0 est initialis

é à 0
4 resultat=memoisation(n,tab_fab) # renvoie le résultat de u_n
5 return resultat
6
7 def memoisation(n,tab_fab):
8 # tab_fab est une liste qui est mise à jour d’appels en appels tout en

conservant les valeurs renseignées grâce à l’effet de bord.
9 if n==0:

10 return

page 22

Informatique - PTSI-PT*

11 elif n==1:
12 return
13 else :
14 if tab_fab[n]!=0:
15 return
16 else:
17 resultat= +
18 tab_fab[n]=.............
19 return

Q7.Reprendre cette question mais en utilisant un dictionnaire pour réaliser la mémoïsation.

Q8.Effectuer maintenant une programmation bottom-up fibo_bottom_up afin de calculer un. Celle-ci
se fera en débutant par le calcul de u2, puis de u3 etc. Vous serez attentif à ne pas utiliser un tableau
pour stocker les résultats.

II - Découpe de barres d’acier

1 Présentation

Objectif
Un vendeur de matière brute propose la découpe de barre d’acier. Il existe cependant deux conditions :

• La découpe ne peut se faire que par nombre entier de centimètres ;
• Le prix de vente d’un morceau de barre d’acier dépend non linéairement de sa longueur.

L’objectif du problème étudié est de déterminer le revenu maximum qu’on peut attendre de la vente
d’une tige de n centimètres.

Le problème algorithmique posé est le suivant :
• Entrée : une longueur n > 0 et une table de prix P contenant les prix pi en e d’un morceau de

longueur i avec i ∈ J1, nK ;
• Sortie : Le revenu maximum que l’on peut obtenir pour des tiges de longueur n.
La table des prix P est donnée ci-dessous :

Longueur i 1 2 3 4 5 6 7 8 9 10
Prix pi en e 1 5 8 9 10 17 17 20 24 30

Table 1 – Tableau des prix P

Par exemple, pour une barre de longueur n = 4, les uniques (donc sans doublons) façons de
découper la barre sont :

9 8 1 5 5 1111

511

Ainsi, le meilleur revenu est obtenu en découpant la barre en deux morceaux de taille 2. Le revenu
obtenu est 10e.

2 Approche par force brute

L’approche par force brute consiste à tester toutes les possibilités de découpe et de calculer le
revenu obtenu pour chacune d’elle. C’est souvent une approche triviale qui peut s’avérer efficace si le
problème est de « taille » raisonnable.

page 23

Informatique - PTSI-PT*

Q1.En considérant les doublons possibles, quel est le nombre de possibilités de découpes de la barre
de longueur n ?

Q2.Quand bien même il y a des découpes équivalentes possibles, une approche par force brute vous
paraît-elle possible pour un nombre n conséquent ?

3 Analyse du problème

Un peu plus formellement, une barre de longueur n peut être découpée en k morceaux. On a alors
n = `1 + `2 + · · ·+ `k et le revenu associé est rn = p`1 + p`2 + · · ·+ p`k . En dressant une analyse de cas
pour différentes longueurs de départ, on obtient les revenus optimaux suivants :

n rn Solution optimale
1 1 1 (pas de découpe)
2 5 2 (pas de découpe)
3 8 3 (pas de découpe)
4 10 2 + 2

5 13 2 + 3

6 17 6 (pas de découpe)
7 18 1 + 6 ou 2 + 2 + 3

8 22 2 + 6 · · ·

Table 2 – Solution du problème pour des tailles n petites

De cette analyse on peut constater qu’il est impossible de poser le choix le plus intéressant au
départ pour une solution optimale. Par exemple, dans le cas où n = 3, on ne peut pas savoir si le
revenu optimal sera obtenu avec une découpe commençant à 1 cm et/ou à 2 cm ou sans découpe. Il
sera nécessaire de considérer tous les cas et ne retenir que la solution optimale. On arrive alors à la
relation ci-dessous pour une barre de longueur n au départ.

rn = max (pn, r1 + rn−1, r2 + rn−2, · · · , rn−1 + r1)

On constate que cette version est assez complexe à résoudre car, il faut résoudre pour chaque
élément deux problèmes : rn−p et rp avec p ∈ J1, n− 1K. On peut simplifier cette approche :

• Toute solution optimale à une découpe la plus à gauche qui ne sera pas redécoupée. Par exemple
pour une barre de longueur n = 7.

Sous-problème
à résoudre

Découpe Sous-problème
à résoudre

Déc. Déc.

Solution : Découpe
2/2/3

• On peut calculer r, en considérant toutes les tailles pour la première découpe et en combinant
avec le découpage optimal pour la partie à droite ;

• Pour chaque cas, on n’a donc qu’à résoudre un seul sous-problème (au lieu de deux), celui du
découpage de la partie droite ;

Q3.En supposant que r0 = 0, écrire alors le problème rn sous sa nouvelle forme.

Q4.On pose la liste p=[0,1,5,8,9,10,17,17,20,24,30], le tableau des prix. Établir la programma-
tion d’une fonction couper_barre d’arguments p et d’un entier n, longueur de la barre avec n6len(p)-1
permettant de résoudre le problème de découpe proposé.

Q5.Modifier votre fonction, pour compter le nombre d’appels récursifs. Tester que votre code fonc-
tionne en vérifiant que vous obtenez le bon résultat de revenu maximal pour des barres de longueur

page 24

Informatique - PTSI-PT*

différentes. Pour n = 4 et n = 10, combien d’appels sont effectués ? Effectuer une conjecture sur le
nombre d’appels à la fonction à réaliser pour obtenir la solution du problème.

Q6.Pour n = 4, dessiner l’arbre d’appels récursifs et justifier qu’une programmation dynamique est
envisageable.

4 Programmation dynamique top-down : mémoïsation

On va utiliser deux fonctions pour résoudre ce problème. Une fonction principale et une fonction
auxiliaire qui fera le calcul et utilisera un tableau r pour gérer le processus de mémoïsation.

1 p=[0,1,5,8,9,10,17,17,20,24,30]
2 def couper_barre(p:[int],n:int)->int:
3 r=[-1 for i in range(len(p))] # Initialisation du tableau qui contiendra la

résolution du problème pour r[i]
4 r[0]=0 # Pour r_0 =0.
5 return memoisation_coupe_barre(p,n,r)
6
7 def memoisation_coupe_barre(p,n,r):
8 # Si la solution est connue
9 if r[n]>=0:

10 return # A compléter
11 # Cas de base du problème récursif
12 if n==0:
13 return # A compléter
14 # Cas récursif
15 else:
16 rev =............. # A compléter
17 for i in range(1,n+1):
18 rev =............. # A compléter
19 r[n]=............. # A compléter
20 return # A compléter

Q7.Compléter le code permettant de résoudre le problème. Que contient la liste r ?

Q8.Modifier votre code pour savoir combien d’appels à la fonction memoisation_coupe_barre.

5 Programmation dynamique bottom-up

L’approche que l’on va mettre en place est ici différente, on va d’abord résoudre les problèmes les
plus simples r0, r1, etc. Après la résolution de ces problèmes « élémentaires », on peut construire des
solutions plus complexes. La structure de code utilisée est la suivante :

1 p=[0,1,5,8,9,10,17,17,20,24,30]
2 def couper_barre(p:[int],n:int)->int:
3 r=[-1 for i in range(len(p))] # Initialisation du tableau qui contiendra la

résolution du problème pour r[i]
4 r[0]=0 # Pour r_0 =0.
5 for j in range(1,n+1):
6 rev =....... # Initialisation
7 for i in range (1 ,.......): # A compléter
8 rev =.............. # A compléter
9 r[j]=............. # A compléter

10 return # A compléter

Q9.Compléter le code. Vérifier les résultats obtenus.

page 25

Informatique - PTSI-PT*

III - Le meilleur intervalle

Objectif
Dans cet exercice, on va chercher à mettre en place une relation de récurrence permettant de résoudre
un problème simple à comprendre. On va également s’intéresser à l’optimisation du coût mémoire de
celui-ci.

On dispose d’un tableau T fixe, de taille n. Il ne contient que des valeurs réelles positives. Il existe
(au moins) deux indices i et j, définissant l’intervalle [i, j] avec 0 6 i 6 j 6 n − 1, tel que la valeur
T[j]−T[i] (appelé écart) est maximale. Par exemple, si T=[9,15,10,12,8,18,20,7], le meilleur écart
est de valeur 12. Il est unique et obtenu pour i = 4 et j = 6.

Remarque : Si le tableau est monotone décroissant cette valeur est nulle et correspond à n’importe
quel intervalle de type [i, i] pour 0 6 i 6 n− 1.

Q1.On appelle vmi(k) la valeur du (d’un) meilleur écart se terminant exactement en position k.
Quelles sont les valeurs de vmi(0), vmi(1), · · · , vmi(7) sur l’exemple précédent ?

Q2.Préciser comment obtenir la valeur du (d’un) meilleur écart du tableau T à partir de vmi(0),
vmi(1), · · · , vmi(n-1).

Q3.Établir une relation de récurrence permettant le calcul de vmi(k). Pour cela, vous rechercherez
notamment le lien entre vmi(k) et vmi(k-1).

Q4.Une approche top-down ou bottom-up est-elle nécessaire pour déterminer de manière efficace la
valeur de vmi(k) pour un k fixé ?

Q5.Une approche top-down ou bottom-up est-elle envisageable afin de réponde au problème initial,
à savoir : déterminer le meilleur écart T[j]−T[i]. Proposer celle qui offre la meilleure complexité
spatiale et temporelle en justifiant votre réponse.

Q6.Établir alors un programme permettant de déterminer la valeur du meilleur écart sur l’exemple
proposé T=[9,15,10,12,8,18,20,7].

Q7.Modifier votre code pour connaître non seulement la valeur du meilleur écart mais également
l’intervalle [i, j] correspondant à cette valeur.

IV - Postes de montage industriel

Objectif
Dans une usine automobile, un atelier a deux chaînes de montage (voir Figure 10). Un châssis arrive
sur chaque chaîne, puis passe par un certain nombre de postes où on lui ajoute des pièces ; une fois
terminée, l’auto sort par l’autre extrémité de la chaîne. L’objectif est de déterminer la façon de faire
transiter le châssis de poste en poste et éventuellement en le faisant passer entre les deux chaînes de
montage pour réaliser l’assemblage le plus rapide.

1 Présentation

Chaque chaîne de montage a n stations, numérotées j = 1, 2, · · · , n. On représente le jème poste
de la chaîne i (avec i valant 1 ou 2) par Si,j . Le jème poste de la chaîne 1 (S1,j) fait le même travail
que le jème poste de la chaîne 2 (S2,j). Les postes ont été installés à des époques différentes et avec des
technologies différentes ; ainsi, le temps de montage varie d’un poste à l’autre, même quand il s’agit
de postes fonctionnement identiques mais situés sur des chaînes différentes. Le temps de montage au
poste Si,j est ai,j . Comme le montre la Figure 10, un châssis arrive au poste 1 de l’une des chaînes,

page 26

Informatique - PTSI-PT*

puis passe de poste en poste. On a aussi un temps d’arrivée ei pour le châssis qui entre sur la chaîne
i, et un temps de sortie xi pour l’auto achevée qui sort de la chaîne i.

Normalement, une fois qu’un châssis arrive sur une chaîne de montage, il ne circule que sur cette
chaîne. Le temps de passage d’un poste à l’autre sur une même chaîne est négligeable. En cas d’urgence,
toutefois, il se peut que l’on veuille accélérer le délai de fabrication d’une automobile. En pareil cas, le
châssis transite toujours par les n postes dans l’ordre, mais le chef d’atelier peut faire passer une auto
partiellement construite d’une chaîne à l’autre, et ce après chaque poste. Le temps de transfert d’un
châssis depuis la chaîne i et après le poste Si,j est ti,j , avec i = 1, 2 et j = 1, 2, . · · · , n− 1 (car, après
le nème poste, c’est fini).
Le problème consiste à déterminer quels sont les postes à sélectionner sur la chaîne 1 et sur la chaîne
2 pour minimiser le délai de transit d’une auto à travers l’atelier.

entrée
des

chassis

e1

a1,1 a1,2 a1,3 a1,4 a1,n−1 a1,n

t1,1 t1,2 t1,3 t1,n−1

x1

e2

a2,1 a2,2 a2,3 a2,4 a2,n−1 a2,n

t2,1 t2,2 t2,3 t2,n−1
x2

sortie
des
autos

chaîne 1

chaîne 2

Poste S1,1 Poste S1,2 Poste S1,3 Poste S1,4 Poste S1,n−1 Poste S1,n

Poste S2,1 Poste S2,2 Poste S2,3 Poste S2,4 Poste S2,n−1 Poste S2,n

Figure 10 – Caractéristiques générales des chaînes de montage

2 Problème à traiter

Le problème traité est le suivant :

Q1.En supposant qu’il y ait n postes de travail sur les chaînes de montage, déterminer le nombre de
possibilités de choisir les postes de travail pour réaliser le montage des automobiles. Une approche par
force brute est-elle envisageable pour trouver la solution optimale ?

3 Formulation du problème à résoudre

Notre objectif ultime est de déterminer le délai le plus court par lequel un châssis traverse tout
l’atelier, délai que nous noterons f∗. Le châssis doit aller au poste n de l’une ou l’autre des chaînes 1
et 2, et de là aller vers la sortie de l’atelier. On note fi[j] le délai le plus court possible avec lequel le
châssis va du point de départ et est traité au poste Si,j .

Q2.Exprimer f∗ en fonction de f1[n], f2[n], x1 et x2.

Q3.Exprimer f1[1] et f2[1] en fonction respectivement de e1, a1,1 et e2, a2,1.
Voyons maintenant comment calculer fi[j] pour j = J2, nK. En nous focalisant sur f1[j], rappelons-

nous que le chemin optimal passant par le poste S1,j est soit le chemin optimal passant par le poste

page 27

Informatique - PTSI-PT*

entrée
des

chassis

2

7 9 3 4 8 4

2 3 1 3 4

3

4

8 5 6 4 5 7

2 1 2 2 1

2

sortie
des
autos

chaîne 1

chaîne 2

Poste S1,1 Poste S1,2 Poste S1,3 Poste S1,4 Poste S1,5 Poste S1,6

Poste S2,1 Poste S2,2 Poste S2,3 Poste S2,4 Poste S2,5 Poste S2,6

Figure 11 – Problème traité

S1,j−1 suivi du passage direct au poste S1,j , soit le chemin optimal passant par le poste S2,j−1 suivi
d’un transfert de la chaîne 2 à la chaîne 1 et suivi enfin du passage au poste S1,j .

Q4.Exprimer alors la relation entre f1[j], f1[j − 1], a1,j , f2[j − 1], t2,j−1. Faire de même pour f2[j].

Q5.Donner alors les deux relations de récurrence pour j = J1, nK traduisant le calcul de f1[j] et f2[j].

4 Programmation récursive

La formulation du problème obtenue au paragraphe précédent, permet donc de réaliser une pro-
grammation récursive afin de déterminer f∗. Pour réaliser le codage de cette programmation récursive,
nous définissons les listes suivantes et les variables suivantes :

1 e1,e2 ,x1 ,x2=2,4,3,2 # Valeur des coûts d’entrée et de sortie des chaînes de
montage.

2 a1=[7,9,3,4,8,4] # Temps de passage sur les postes de montage de la chaîne 1.
3 a2=[8,5,6,4,5,7] # Temps de passage sur les postes de montage de la chaîne 2.
4 t1=[2,3,1,3,4] # Temps de transfert des postes de la chaîne 1 vers la chaîne 2.

5 t2=[2,1,2,2,1] # Temps de transfert des postes de la chaîne 2 vers la chaîne 1.

Q6.Établir une programmation récursive (en utilisant potentiellement deux fonctions récursives) afin
de déterminer f1[n] et f2[n].

Q7. Sur l’exemple traité, quelles sont alors les valeurs de f1[6] et f2[6] ?

Q8.Établir alors le code permettant de calculer f∗.

Q9.Mettre en place un compteur (ou deux compteurs) permettant de connaître le nombre d’appels ef-
fectués à la (ou les) fonction(s) récursive(s). Que peut-on conjecturer sur le nombre d’appels nécessaires
aux fonctions récursives pour résoudre le problème ?

5 Programmation dynamique par mémoïsation : Approche top-down

On constate que le nombre d’appels récursifs est important. Des appels à des calculs identiques se

page 28

Informatique - PTSI-PT*

fait de manière conséquente. Une programmation dynamique est donc toute indiquée pour améliorer
l’efficacité du code. On propose ici une approche par mémoïsation.

Q10.Effectuer une programmation dynamique par mémoïsation du problème des postes de montage.
Vérifier que vous obtenez bien le même résultat que précédemment pour f∗. N’hésitez pas à utiliser
deux fonctions de mémoïsation pour résoudre le problème au besoin (une pour le calcul de f1 et l’autre
pour celui de f2).

6 Programmation dynamique : approche bottom-up

Q11.Effectuer une programmation dynamique bottom-up pour résoudre ce problème. On précise qu’il
n’est pas indispensable de créer un tableau contenant les différentes valeurs de f1 et f2.

On va maintenant chercher à reconstruire la solution pour savoir sur quel poste doit passer le châssis
automobile pour que le montage soit réalisé le plus rapidement possible. Mais avant cela, cherchons à
déterminer manuellement la solution.

On donne les deux tableaux suivants qui seront à compléter :

j 1 2 3 4 5 6
f1[j] 9 18
f2[j] 12 16

j 2 3 4 5 6
`1[j] 1 2
`2[j] 1 2

Table 3 – Le premier tableau représente les durées les plus courtes pour terminer les opérations
d’assemblage sur chaque poste de chaque chaîne. Le second tableau renseigne sur la chaîne du poste
précédent au poste j courant.

Q12. Sachant que `1[j] contient le numéro de chaîne précédente pour réaliser f1[j] et de même pour
`2[j]. Compléter les deux tableaux. En déduire la solution au problème posé.

Q13.Modifier votre programme de programmation dynamique bottom_up pour construire les deux
tableaux `1 et `2. Votre fonction renverra la valeur de f∗, la chaîne par laquelle l’automobile sort, les
tableaux `1 et `2

page 29

	Cours - Programmation dynamique
	TD 1 - Exercices de mise en jambe
	TD 2 - Découpe de barres d'acier
	TD 3 - Le meilleur intervalle
	TD 4 - Postes de montage industriel

