Informatique Tronc Commun

PTSI-PT*

Séquence 4

Programmation dynamique
Théme : Résolution de problémes d’optimisation discréte

Objectifs

Réaliser une programmation dynamique;

Connaitre la propriété de sous-structure optimale;

Reconnaitre le chevauchement de sous-problémes;

Calcul de bas en haut ou par mémoisation ;

Reconstruction d’une solution optimale & partir de I'information calculée.

Table des matiéres

[Cours - Programmation dynamique|

(TD 1 - Exercices de mise en jambe|

(TD 2 - Découpe de barres d’acier|

T

(D 4 - Postes de montage industriel|

22

23

26

26

Informatique - PTSI-PT* Cours - Programmation dynamique

Cours - Programmation dynamique

1 Probléme de l’effet de recouvrement : Un premier exemple

1.1 Un exemple pour bien comprendre

Le calcul de <n> peut étre réalisé a ’aide de la formule de Pascal :
p

)=+ 6
= +
p p p—1
De plus, nous vérifions :
Sip>n,<n>—0, sin—p,<n>—1 etsip—0,<n>—1
p p p

La fonction récursive que 'on peut programmer est donc :

1 |def binom(n,p):

2 if p==0 or n==p:
3 return 1

4 elif p>n:

5 return O

6 else:

7

return binom(n-1,p-1)+binom(n-1,p)

Cette programmation de fonction est trés peu efficace. Illustrons le avec 'arbre d’appels récursifs

o

FIGURE 1 — Exemple du calcul de (2)

5 2
Dans cet exemple le calcul de (2> nécessite de réaliser 3 fois le calcul de <1> . Dés que nous passons

2
au calcul de <?g>, il faut calculer 40 116 600 fois <1> Cette méthode de résolution est donc trés peu

efficace.

page 1

Informatique - PTSI-PT* Cours - Programmation dynamique

1.2 Complexité temporelle

On va chercher & évaluer la complexité de cette fonction, on note C(n,p) le nombre d’additions
réalisées par cette fonction, on dispose des relations :

C(n,0) =C(n,p) =0 et Vpe[l,n—1], C(n,p)=C(n—-1,p—1)+C(n—1,p)+1

n
On démontre alors par récurrence sur n € N que pour tout p € [0,n], C(n,p) =) — 1. De plus,
p
la complexité temporelle est maximale lorsque n ~ p/2. Or, la formule de Stirling permet d’établir
o 2n 4m 2n . L .
I’équivalent : ~ ——; le calcul de par cette fonction est donc de complexité exponentielle.
n V™ n

1.3 Effet de recouvrement

Le probléme & résoudre, ici le calcul de <n>’ se rameéne a la résolution de deux sous-problémes :
n—1 n—1
et : sous-problémes qui sont en interaction. Par exemple, on constate sur la
p—1 P
4 4
FIGURE |1| que le calcul de (1) et le calcul de <2) font tous deux appel au méme sous-probléme : le

calcul de 1) Ainsi, la présence de sous-problémes en interaction peut faire croitre trés rapidement

la complexité d’une fonction, au point d’en rendre son usage rédhibitoire.

1.4 Programmation dynamique : démarche de résolution de bas en haut (bottom-
up)

L’approche de bas en haut ou bottom-up consiste & résoudre d’abord les problémes plus simples
(instances de taille 1), puis de plus en plus complexes (instances de taille 2), etc. jusqu’a arriver a la
résolution du probléme de la taille demandée.

Dans notre exemple présenté en FIGURE [I], la résolution par programmation dynamique se fait en
suivant le schéma suivant :

FIGURE 2 — Programmation dynamique de bas en haut : bottom-up

En général, pour réaliser ce type de solution on utilise un tableau, ici un tableau bi-dimensionnel
(n+1) x (p+1) (dont seule la partie pour laquelle i > j sera utilisée). Ce tableau sera progressivement
rempli par les valeurs des coefficients binomaux, en commencant par les plus petits (voir FIGURE .

page 2

Informatique - PTSI-PT* Cours - Programmation dynamique

FIGURE 3 — Le schéma de dépendance du calcul de (n)
p

Il faut faire attention a bien respecter la relation de dépendance (modélisée par les fleches sur le

schéma ci-dessus) pour remplir les cases de ce tableau : la case destinée a recevoir la valeur de

ne peut étre remplie qu’aprés les cases destinées & recevoir (

J

— 1 — 1

!) et <Z . > Un code réalisant ce
J

j—1

type de programmation est alors :

© 00 O Uk W

_= = = = e
U W N = O

16

def mini (numberl ,number?2):
if numberl<number2:
return numberil
else:
return number?2

import numpy as np
def binom_bottom_up(n,p):
tab=np.zeros ((n+l,p+1)) # Création du tableau
tab[:,0]=1 # lere colonne du tableau mise a 1
for i in range(l,p+1):
tab[i,i]l=1 # Diagonale de (pxp) mise & 1
for i in range(2,n+1):
for j in range(l,mini(p,i)+1):
tab[i,jl=tab[i-1,j-1]+tab[i-1,j] # calcul de la relation de ré
currence
return tab[n,pl]

Au prix d’un cofit spatial (la création du tableau) cet algorithme est plus efficace que I’algorithme
récursif naif initial puisque sa complexité temporelle est maintenant en O(np).

R
|

Remarque 1

n
Toutes les cases du tableau sont ici complétées. Cela est inutile pour le seul calcul de () :
p

seules les cases grisées sont nécessaires.

page 3

Informatique - PTSI-PT* Cours - Programmation dynamique

Conclusion

La programmation dynamique de ce calcul permet de réduire drastiquement les cofits de calcul.
Un inconvénient non négligeable réside dans la perte de lisibilité de 1’algorithme, comparative-
ment a l'algorithme récursif.

1.5 Programmation dynamique : démarche de résolution de haut en bas (top-
down)

n
Dans la section précédente, nous avons vu un moyen plus efficace de calculer (> Cependant ; la

lecture de I'algorithme obtenu n’est pas si simple que cela. L’idéal serait donc de combiner 1’élégance
de la programmation récursive avec 'efficacité dynamique.

Ce principe s’appuie sur une démarche de haut en bas a I'aide de la mémoTisation. On va associer
a la fonction un dictionnaire qui va mémoriser le résultat du calcul réalisé. Ainsi, a chaque fois que
le programme aura besoin de calculer une valeur, il ira voir dans le dictionnaire si la valeur dont il
a besoin a déja été calculée, et ne réalisera le calcul que dans le cas contraire, en ajoutant ensuite la
nouvelle valeur calculée au dictionnaire. Le calcul du coefficient binomial va alors prendre la forme qui
suit :

1 |binom_dict = {} # binom_dict est une variable qui sera utilisée comme variable
globale dans la fonction binom
2
3 |def binom(n, p):
4 if (n, p) not in binom_dict: # Test pour savoir si le tuple (n,p) est une cl
€ du dictionnaire binom_dict
5 if p == 0 or n == p: # Cas de base
6 b=1
7 else:
8 b=binom(n-1,p-1) + binom(n-1,p) # Récursion
9 binom_dict [(n, p)] = b # Stockage dans le dictionnaire # binom_dict est
modifiée car un dictionnaire est mutable
10 return binom_dict [(n, p)]

On retrouve donc la structure de code récursif vu précédemment. L’ordre des éléments entrés dans
le dictionnaire est alors :

FIGURE 4 — Ordre d’entrée dans le dictionnaire

Conclusion

Cette fagon de procéder évite donc d’avoir a recalculer des valeurs déja calculées. La mémoisa-
tion rend alors I'algorithme récursif bien plus efficient. On a alors I’avantage du gain de temps
de calcul et de la simplicité de lecture de ’algorithme

page 4

Informatique - PTSI-PT* Cours - Programmation dynamique

2 Les bases

2.1 La théorie

La programmation dynamique, résout des problémes en combinant des solutions de sous-problémes.
Le mot « Programmation » dans ce contexte, fait référence a 1’établissement d’un plan pour résoudre
un probléme. La méthode de résolution envisagée est tabulaire et ne fait pas référence a I’établissement
d’un code informatique (méme si celui-ci sera a établir au final). Le fondement de 1'utilisation de
la programmation dynamique s’appuie sur le fait que 'on peut décomposer un probléme en sous-
problémes. La résolution de ces sous-problémes aménent alors & une solution admissible du probléme
initial.

La programmation dynamique peut s’appliquer lorsque les sous-problémes ne sont pas indépen-
dants, c’est-a-dire lorsque des sous-problémes ont des sous-sous-problémes communs. On parle de
recouvrement de sous-problémes. Un algorithme de programmation dynamique résout chaque sous-
sous-probléme une seule fois et mémorise sa réponse dans un tableau, évitant ainsi le recalcul de la
solution chaque fois que le sous-sous-probléme est rencontré.

La programmation dynamique est, en général, appliquée aux problémes d’optimisation. C’est-

a~dire des problémes ot ’on recherche la combinaison de paramétres permettant d’obtenir I'optimum
d’une fonction objectif.
Exemple 1
Le probleme du rendu de monnaie est un probléme d’optimisation. Les paramétres sont les devises
possibles a rendre (1€, 2€, 5€, etc.). La fonction objectif est la quantité de devises rendues. Il y a une
contrainte : on ne doit pas rendre plus ou moins d’argent que nécessaire. On cherche donc a rendre
le moins de devises possibles dans le rendu de monnaie tout en s’assurant qu’on rende bien la bonne
quantité d’argent.

Le développement d’un algorithme de programmation dynamique peut étre découpé en quatre
étapes :

1. Caractériser la structure d’une solution optimale : c’est le point clé;

2. Définir récursivement la valeur d’une solution optimale ;

3. Calculer la valeur d’une solution optimale de maniére ascendante (bottom-up) ou descendante

(top-down) ;

4. Construire une solution optimale & partir des informations calculées.

Les étapes 1-3 forment la base d’une résolution de probléme & la mode de la programmation
dynamique. On peut omettre 1’étape 4 si 'on n’a besoin que de la valeur d’une solution optimale.
Lorsqu’on effectue I'étape 4, on gére parfois des informations supplémentaires pendant le calcul de
I’étape 3 pour faciliter la construction d’une solution optimale.

2.2 Un exemple pour mieux comprendre

2.2.1 Présentation du probléme

FIGURE 5 — Exemple de pyramide de nombres

page 5

Informatique - PTSI-PT* Cours - Programmation dynamique

En FIGURE |5} on considére la pyramide de nombres entiers. Celle-ci est représentée par un graphe
orienté, dont chacun des sommets étiquetés de ey a eg porte la valeur figurant & sa droite. On cherche
le chemin allant de ey (sommet de la pyramide) a I'un quelconque des éléments de la base (eg, e7, eg
ou eg) traversant des nombres dont la somme est maximale.

2.2.2 Caractérisation de la structure d’une solution optimale

Le calcul du chemin de valeur maximale associé & 1’élément e; est noté sqpt(€;).

ﬁv’; Exemple d’application 1

Q1. Donnez 'expression de sqp:(e7) en fonction des sommets auxquels est reliés e7.

Q2. Donnez 'expression de sqpt(eg) en fonction des sommets auxquels est reliés eg.

Q3. Que constatez-vous ?

Q4. Observez-vous le méme phénomeéne constaté pour le calcul de sqp(€3), Sopt(€4) OU Sopt(€5) 7

Q5. Que pouvez-vous en conclure ?

D’aprés ce que nous venons de réaliser, nous avons exhibé
mais nous n’avons pas exhibé ! C’est-a-~dire que pour I'instant nous n’avons
pas démontré que la solution optimale du probléme peut s’obtenir a partir des solutions optimales de
sous-problémes. Mais nous ’avons presque fait !

On note sgo; = max (Sopt(€6), Sopt (€7), Sopt(€8), Sopt (€9)) la solution du probléme recherché. D’aprés
les réponses aux questions [I| et [2, pour déterminer le calcul du chemin de valeur maximale associé aux
éléments eg, e7, eg et eg, il est nécessaire de calculer le chemin de valeur maximale associé aux éléments
es, e4, e5 etc. De ce fait, la solution s,, répond a ce critére de solution & un probléme
a sous-structure optimale. De plus, le fait que certains sous-problémes soient communs
nous fait penser que la programmation dynamique est parfaitement adapté pour trouver
la réponse au probléme donné.

page 6

Informatique - PTSI-PT* Cours - Programmation dynamique

2.2.3 Définition récursive du probléme a résoudre

h+1
Soit la pyramide de hauteur h ayant n = Zk éléments (voir FIGURE [6)). Appelons v(i) la
k=1
valeur de 'élément e;, prg(i) et prd(i) les numéros des (au plus) deux prédécesseurs possibles (gauche
et droite) de e; sur tout chemin de ey & e;. La valeur s,y (e;) dépend en général de celles de ses deux
prédécesseurs et le cas des éléments n’ayant qu’un ou pas de prédécesseur doit étre traité séparément.

@aéﬁﬁ

FI1GURE 6 — Une pyramide de nombres

7

1

@ . .
: ﬁ*; Exemple d’application 2

4

~-

On pose I (respectivement ;) désigne I’ensemble des indices de la branche la plus & droite
(respectivement gauche).

Q6. Déterminer les relations de récurrence & mettre en place pour résoudre le probléme.

\

2.2.4 Reésolution tabulaire du probléme

Dans cette partie, on va résoudre a ’aide d’un tableau le probléme de la pyramide de nombres
présentées & la FIGURE [5| Dans chaque case du tableau, on va indiquer la valeur maximale permettant
d’accéder au sommet e;. On indiquera également le prédécesseur de e; permettant d’accéder & cette
valeur maximale (¢a ne vous rappelle rien 7).

page 7

Informatique - PTSI-PT* Cours - Programmation dynamique

7

M

G 3 g
LAY Exemple d’application 3

I

=

Q7. Compléter le tableau permettant de résoudre le probléme présenté en FIGURE [5] par une
démarche bottom-up.

12
0

€0 €1 €2 €3 €4 €5 €6 €7 €g €9

On constate que la démarche bottom-up n’est pas spécifiquement difficile & mettre en place sur cet
exemple dés que l'on connait facilement les prédécesseurs d’un élément. Une approche top-down est
également possible bien str mais il faut retenir (ou noter) ou I'on se situe dans la pile d’exécution.

2.2.5 Préparation du traitement informatique du probléme

On considére que la pyramide de nombres est renseignée sous forme de dictionnaire. Les clés de
ces dictionnaires sont les chaines de caractéres ei correspondant & I’élément e;. La valeur associée a
chaque clé est une liste contenant la valeur de I’élément e; ainsi que les successeurs. Si un sommet ne
dispose pas de successeurs, alors on ne renseignera dans la valeur que la valeur du sommet.
p

4\:3*5 Exemple d’application 4

Q8. Renseigner alors le dictionnaire représentatif de la pyramide de nombre de la FIGURE

Que ce soit avec une approche bottom-up ou top-down (mémoisation), il va étre plus facile de
traiter le probléme en connaissant le/les prédécesseurs d’un sommet.

Q9. Etablir une fonction dico_predecesseur (G:dict)->dict prenant en argument un graphe
orienté G et renvoyant un dictionnaire des prédécesseurs des éléments. Le prédécesseur de eg
sera indiqué comme étant égal a None.

page 8

Informatique - PTSI-PT* Cours - Programmation dynamique

2.2.6 Approche bottom-up

Voici un code proposant une approche bottom-up traitant le probléme de la pyramide de nombres.

1
2

'S

10
11
12

13

14

15

16

17

18

19

20

21

22

23
24

def position_tableau(sommet):
return int(sommet[1:]) # Un sommet est noté ei, pour récupérer la valeur de
i, on fait donc int (sommet[1:]) afin de ne pas tenir compte du e et d’
avoir la valeur numérique de 1

def bottom_up(G):
predecesseur_graphe=dico_predecesseur(G) # Dictionnaire contenant pour
chaque sommet le/les prédécesseurs de celui-ci.
valeur_ei=[0 for i in range(len(G))] # Initialisation du tableau & compléter
et qui contiendra la valeur maximale permettant d’accéder au sommet e_1i

predecesseur_ei=[None for i in range(len(G))] # Initialisation du tableau
contenant le prédecesseur de e_i qui améne a la valeur maximale.
valeur_ei[0]=G[’e0’][0] # On renseigne la seule valeur connue initialement
celle du noeud e0 qui n’a aucun prédécesseur.
n=len(G) # Ordre du graphe.
for i in range (1,n): # Parcours de chacun des noeuds.
sommet_courant=’e’+str (i) # sommet courant actuellement traité
if len(predecesseur_graphe [sommet_courant])==1: # Si ce sommet n’a qu’un
seul prédécesseur
valeur_ei[i]=valeur_ei[position_tableau(predecesseur_graphel[
sommet_courant] [0])]+G[sommet_courant] [0] # On récupére la
valeur du chemin parcouru jusqu’au prédécesseur et on y ajoute
celle du sommet courant
predecesseur_ei[i]l=predecesseur_graphe [sommet_courant] [0] # Le pré
decesseur du sommet courant est nécessairement le seul répertori
é.
elif len(predecesseur_graphe [sommet_courant])==2: # Si le sommet a deux
prédécesseurs
valeur_predecesseur_l=valeur_ei[position_tableau(predecesseur_graphe
[sommet_courant] [0])] # Récupération de la valeur maximale
obtenue jusqu’au premier prédécesseur
valeur_predecesseur_2=valeur_ei[position_tableau(predecesseur_graphe
[sommet_courant] [1])] # Récupération de la valeur maximale
obtenue jusqu’au second prédécesseur
maxi=max (valeur_predecesseur_1,valeur_predecesseur_2) # (On récupére
le max de ces deux nombres.
valeur_ei[i]=maxi+G[sommet_courant] [0] # On assigne alors la valeur
maximale permettant d’accéder au noeud ei
if maxi==valeur_predecesseur_1: # Le prédécesseur permettant d’accé
der au noeud ei avec la plus grande valeur est stocké dans le
tableau predecesseur_ei
predecesseur_ei[i]l=predecesseur_graphe [sommet_courant] [0]
else:
predecesseur_ei[i]l=predecesseur_graphe [sommet_courant] [1]
return valeur_ei,predecesseur_ei

Conclusion

L’approche bottom-up fournit donc bien un algorithme itératif mais celui-ci n’est pas forcément
toujours évident a décrypter.

2.2.7 Approche par mémoisation

L’approche par mémoisation que l'on propose de mettre en place doit notamment permettre de
déterminer la valeur des sommets n’ayant pas de successeurs. En effet, le chemin de longueur maximale
aboutira forcément a I'un d’entre eux.

page 9

Informatique - PTSI-PT* Cours - Programmation dynamique

\

Exemple d’application 5

Q10. Créer une fonction sommets_sans_successeur (G:dict)->1list, retournant la liste des
sommets qui n’ont pas de successeurs. Ce sont ces sommets qui nous permettront d’initialiser
notre calcul.

Q11. Voici un code (un peu naif) que vous devez compléter et qui utilise une approche par mémoisation.

10

11

12
13
14
15
16
17
18

19
20

21

22
23
24
25

26
27
28
29

def top_down (G):

predecesseur_graphe=dico_predecesseur (G) # Dictionnaire contenant pour
chaque sommet le/les prédécesseurs de celui-ci.

dico_valeur_ei={} # Initialisation du tableau a compléter et qui contiendra
la valeur maximale permettant d’accéder au sommet e_i.

dico_predecesseur_ei={} # Initialisation du tableau contenant le pré
decesseur de e_i qui améne a la valeur maximale.

sommet_a_traiter=sommets_sans_successeur (G) # Récupération des sommets sans
successeurs

for sommet in sommet_a_traiter: # Itération
memoisation(sommet,predecesseur_graphe,dico_valeur_ei,

dico_predecesseur_ei)
return dico_valeur_ei,dico_predecesseur_ei

def memoisation(sommet ,predecesseur_graphe ,dico_valeur_ei,dico_predecesseur_ei)

pred=predecesseur_graphe [sommet] # Récupération du/des prédécesseur (s) du
sommet
Cas de base
if sommet==’e0’:
dico_valeur_ei[sommet]=G[sommet] [0]
dico_predecesseur_ei[sommet]=None
Cas ou le sommet se trouve sur la branche droite ou gauche
elif len(pred)==1:
if sommet not in dico_valeur_ei: # Si la valeur_ei du chemin de longueur
maximale aboutissant a ei n’a pas été enregistrée...
nombre=memoisation (.........)
dico_valeur_ei[sommet]=.......... +o # Calcul de valeur_ei du
sommet courant
dico_predecesseur_ei[sommet]=................ # Récupération du prédé
cesseur de el aboutissant au chemin de plus grande valeur
Cas ou le sommet dispose de 2 prédécesseurs
else:
if sommet not in dico_valeur_ei:
AEMOZEIL S0 6 6 6 0000000000000 00000000000600000000000 0 # ... on effectue
le calcul
MEMDEEAS 0 0 0 0 00000000000000000000006000006000600000
maxi=max (nombrel ,nombre2) # Maximum de la valeur entre les deux
dico_valeur_eilsommet]=..............
if maxi==nombrel: # Le prédécesseur permettant d’accéder au noeud ei
avec la plus grande valeur est stockée dans le tableau

page 10

Informatique - PTSI-PT* Cours - Programmation dynamique

predecesseur_ei

30 dico_predecesseur_ei[sommet]=pred[0]
31 else:

32 dico_predecesseur_ei[sommet]=pred[1]
33 return dico_valeur_ei[sommet]

2.2.8 Traitement des résultats

Aprés utilisation de la fonction top_down, on récupére deux dictionnaires contenant la valeur maxi-
male associée au chemin aboutissant au noeud e; pour € [0, n—1]. Le second correspond au prédécesseur
du neceud e; du chemin de valeur maximale aboutissant a e;.

Apreés utilisation de la fonction bottom_up, on récupére deux listes. La premiére contenant la valeur
maximale associée au chemin aboutissant au nceud e; pour € [0,n — 1]. La seconde correspond au
prédécesseur du nceud e; du chemin de valeur maximale aboutissant & e;.

7

1

@ . .
: Q*g Exemple d’application 6

?

~-

Q12. Etablir le code permettant d’obtenir la valeur du chemin de valeur maximale, ainsi que
celui-ci sous forme de listes contenant les noeds & parcourir. Sur 'exemple traité en FIGURE [5]
le résultat obtenu est : (29,[’e0’,’el1’,’e3?,%e6°]).

3 Application de la programmation dynamique

Il existe deux grandes caractéristiques que doit posséder un probléme d’optimisation pour que
la programmation dynamique soit applicable : sous-structure optimale et chevauchement des sous-
problémes.

3.1 Sous-structure optimale

La premiére étape de la résolution d’un probléme d’optimisation via la programmation dynamique
est de caractériser la structure d’une solution optimale. Retenons qu’un probléme exhibe une sous-
structure optimale si une solution optimale au probléme contient en elle des solutions optimales de

page 11

Informatique - PTSI-PT* Cours - Programmation dynamique

sous-problémes. : C’est le principe de Bellman. Chaque fois qu’un probléme exhibe une sous-
structure optimale, ¢’est un bon indice de I'utilisation de la programmation dynamique. (Cela peut aussi
signifier qu'une stratégie gloutonne est applicable). Avec la programmation dynamique, on construit
une solution optimale du probléme & partir de solutions optimales de sous-problémes. Par conséquent,
on doit penser & vérifier que la gamme des sous-problémes que ’on considére inclut les sous-problémes
utilisés dans une solution optimale.

Exemple 2

Dans Uexemple de la pyramide de nombres précédemment traité, nous avons observé que la valeur de
chemin mazimal jusqu’a un sommet situé & la hauteur ¢ du graphe est atteint & partir du mazimum
du/des sommets prédécesseurs & hauteur i — 1.

——— Exemple 3
Prenons lexemple du plus court chemin entre deuxr sommets quelconques d’un graphe orienté G. 1l
est facile de montrer par l'absurde qu’un chemin est de longueur minimale si et seulement si ses sous-
chemins sont de longueur minimale. Soit en effet un graphe orienté G et un chemin de a a d de longueur
minimale, qui passe par b et ¢ (arcs en trait plein sur la FIGURE , La longueur de ce chemin est la
somme des longueurs des sous-chemins de a a b, de b a ¢ et de ¢ a d. Supposons qu’il existe dans le
graphe G un chemin de b a ¢ de codt moindre (en pointillé sur la figure FIGURE [7]) que le chemin de b
a ¢ choisi; il existe alors un chemin plus court de a a d, ce qui est contraire au fait que le chemin de
a a d est de longueur minimale.

(O oO—@

FIGURE 7 — Application du principe d’optimalité & la recherche du plus court chemin dans un graphe

——— Exemple 4
Prenons maintenant un autre exemple, la recherche du plus long chemin sans circuit entre deux sommets
quelconques d’un graphe orienté. Soit le graphe de la FIGURE [Le plus long chemin sans circuit de a
a c est de longueur 2 {(a,b,c), le plus long chemin sans circuit de a a b est de longueur 2 (a,c,b) et le
plus long chemin sans circuit de b a ¢ est de longueur 1. Le plus long chemin sans circuit de a a ¢ ne
s’obtient donc pas par composition de chemins sans circuit, ce qui montre que le principe d’optimalité
n’est pas vérifié dans ce cas.

FIGURE 8 — Un (contre-)exemple ou le principe d’optimalité ne s’applique pas.

La découverte de la sous-structure optimale obéit au schéma général suivant :
1. Vous montrez qu’une solution du probléme consiste & faire un choix, par exemple a choisir un
sommet prédécesseur dans le probléme de la pyramide de nombre.

2. Vous supposez que, pour un probléme donné, on vous donne le choix qui conduit & une solution
optimale. Pour I'instant, vous ne vous souciez pas de la fagon dont on détermine ce choix. Vous
faites comme si on « vous le donnez tout cuit ».

3. A partir de ce choix, vous déterminez quels sont les sous-problémes qui en découlent et comment
caractériser au mieux l’espace des sous-problémes résultant.

4. Vous montrez que les solutions des sous-problémes employées par la solution optimale du pro-
bléme doivent elles-mémes étre optimales, et ce en utilisant la technique du « couper-coller » : vous
supposez que chacune des solutions de sous-probléme n’est pas optimale et vous en déduisez une
contradiction. En particulier, en « coupant » une solution de sous-probléme non optimale et en la

page 12

Informatique - PTSI-PT* Cours - Programmation dynamique

« collant » dans la solution optimale, vous montrez que vous obtenez une meilleure solution pour
le probléme initial, ce qui contredit I’hypothése que vous avez déja une solution optimale. S’il y a
plusieurs sous-problémes, ils sont généralement similaires, de sorte que ’argument couper-coller
utilisé pour I'un peut resservir pour les autres, moyennant une petite adaptation.

Conclusion

Dans les faits, le résumé de tout cela est de réussir & établir une récurrence dont le terme
correspond & la grandeur optimale recherchée. En effet, I’établissement de la récurrence prouve
de facto que le principe d’optimalité s’applique.

3.2 Chevauchement des sous-problémes

La seconde caractéristique que doit avoir un probléme d’optimisation pour que la programmation
dynamique lui soit applicable est la suivante : ’espace des sous-problémes doit étre « réduit », au
sens ol un algorithme récursif pour le probléme résout constamment les mémes sous-problémes au
lieu d’en engendrer toujours de nouveaux. En général, le nombre total de sous-problémes distincts
est polynomial par rapport a la taille de I'entrée. Quand un algorithme récursif repasse sur le méme
probléme constamment, on dit que le probléme d’optimisation contient des sous-problémes qui se
chevauchent.
Exemple 5
Nous avons trés clairement illustré ce principe de chevauchement des sous-problémes lors du calcul de

n)
< > ot certains calculs () devaient étre effectués plusieurs fois.
p J

Le principe de mémofisation permet assez simplement d’éviter & avoir a recalculer des sous-problémes
déja traités.
- @ . .
CAd Exemple d’application 7

'l

Q13. Est-ce que le principe de mémoisation est intéressant lors du tri fusion ?

Conclusion
Dans le cadre d’un probléme d’optimisation, ’utilisation de la programmation dynamique est
fortement recommandé afin de résoudre celui-ci. En général, c’est une bonne fagon de traiter le
probléme méme si la garantie de trouver une solution (en effet, la solution n’est pas forcément
unique) n’est pas vérifiée. La programmation dynamique est préconisée lorsque :
e le principe de Bellman est applicable. Pour rappel, ne chercher pas forcément a
vérifier a priori ce principe mais établir directement la relation de récurrence;

e]I existe un chevauchement des sous-problémes.

page 13

Informatique - PTSI-PT* Cours - Programmation dynamique

4 Programmation dynamique et algorithme glouton

4.1 Introduction

En premiére année, nous avons vu un genre d’algorithme permettant de résoudre certains problémes
d’optimisation : les algorithmes gloutons. Ceux-ci sont utilisés lorsque ’on cherche & construire la
solution optimale du probléme comme une succession de choix suivant une régle heuristique appelé le
choix glouton. Pour étre efficace, un algorithme glouton doit étre utilisé dans le cadre d’un probléme
d’optimisation ot le principe de Bellman est applicable.

Le choix glouton correspond & un choix qui est la solution optimale du sous-probléme considéré.
On construit alors la solution compléte du probléme par concaténation des différentes solutions des
sous-problémes étudiés. Autrement dit : quand on considére le choix & faire, on fait le choix qui parait le
meilleur pour le sous-probléme courant, sans tenir compte des résultats des sous-problémes précédents
(approche bottom-up) ou a venir (approche top-down). C’est en cela que les algorithmes gloutons
différent de la programmation dynamique. En programmation dynamique, on fait un choix a chaque
étape, mais ce choix dépend généralement de la solution des sous-problémes.

Conclusion
La programmation dynamique se caractérise par la résolution par taille croissante de tous
les problémes locaux, la stratégie gloutonne consiste a choisir a partir du probléme global un
seul type de probléme local et un seul en suivant une heuristique, c’est-a-dire une stratégie
permettant de faire un choix rapide : le choix glouton

4.2 Un probléme bien connu : le probléme du sac a dos
4.2.1 Présentation

Le probléme du sac & dos est un probléme fort célébre. Il est connu de par le fait qu’il posséde la
propriété d’étre NP—completE]. La formulation de ce probléme est trés simple mais sa résolution est
difficile dans un temps raisonnable.

Il existe deux variantes de ce probléme :

e On souhaite remplir un sac a dos d’objets fractionnables ayant la plus grande valeur possible

sans dépasser un certain poids. Chaque objet a une valeur et une masse.

e On souhaite remplir un sac & dos d’objets non fractionnables ayant la plus grande valeur
possible sans dépasser un certain poids. Chaque objet a une valeur et une masse.
La nuance entre ces deux problémes est donc que les objets & emporter dans le sac peuvent étre
fractionnables ou non.

4.2.2 Version fractionnable

Formalisation du probléme
Dans sa version fractionnable le probléme se formalise de la fagon suivante : Soient des objets définis
par des 2-uplets (valeur,masse). L’ensemble des n objets a disposition sont donc rassemblés dans
I'ensemble O = ((v1,my), (v2,m2), -+, (Vn,My)). On a donc v; et m; qui sont respectivement la valeur
et la masse de 'objet 7. La masse a ne pas dépasser dans le sac & dos est notée M.
Dans cette version du probléme, les objets sont fractionnables, ce qui implique que la solution
n

optimale est une solution ou le sac est rempli (en supposant bien sir que Zml > M, ce qui est le
i=1

cas sinon, le probléme ne se pose pas). On précise que lorsqu’on fractionne un objet, sa valeur est

également fractionnée. On note x; la fraction choisie de I'objet 3.

1. Voir la chaine youtube « ScienceEtonnante » https ://www.youtube.com/watch 7v=AgtOCNCejQ8 qui traite de
I'importance de ce genre de probléme.

page 14

Informatique - PTSI-PT* Cours - Programmation dynamique

Q14. Ecrire mathématiquement le probléme d’optimisation & résoudre.

Traitement d’un exemple
Un promeneur souhaite transporter dans son sac a dos le fruit de sa cueillette. La cueillette est belle,
mais trop importante pour étre entiérement transportée dans le sac a dos. Des choix doivent étre faits
(on peut appeler cela du gachis et le gachis, c’est mal.). Il faut que la masse totale des fruits choisis
ne dépasse pas la capacité maximale du sac a dos. Les fruits cueillis ont des valeurs différentes, et le
promeneur souhaite que son chargement soit de la plus grande valeur possible (cupide en plus...).
Les informations nécessaires sont :

Fruits cueillis | Quantité ramassée | Valeur totale des fruits cueillis
Framboises 1kg 15€
Myrtilles 3kg 48€
Fraises 4kg 50€

La masse totale que peut transporter le sac est de 5kg.

Q15. Résoudre "a la main" le probléme du sac & dos qui vous ai présenté. Quelle grandeur non rensei-
gnée directement dans le tableau ci-dessous avez-vous dii calculer pour trouver la solution optimale ?

Q16. Décrire I'algorithme glouton qui permet de résoudre le probléme du sac & dos en version frac-
tionnable.

page 15

Informatique - PTSI-PT* Cours - Programmation dynamique

Q17. Compléter le code suivant permettant de résoudre par un algorithme glouton, le probléme du sac
a dos dans sa version fractionnable.

1 def sac_a_dos(L:[list],capacite:int)->1list,int,int:
2)3
3 Entrées : L est une liste de listes des éléments pouvant &tre mis dans le
sac & dos sous la forme : ["nom objet",valeur ,masse]
4 capacite est la la masse maximale que peut transporter le sac a
dos
5 Sortie : liste sac contenant les éléments de L et correspondant au
chargement effectué. La valeur de celui-ci ainsi que sa masse
6 20
7 ## lere étape : On indique le prix au kilo de chaque objet et on 1’indique
dans la liste L et on trie la liste L suivant ce critére
8 for i in range(len(L)): # On parcourt 1’ensemble des éléments & choisir
9 LEid.append (. ..ottt et e e e et) # Ajout de 1°
indicateur prix au kilo
10 L=sorted (L,key=lambda elem:elem[3],reverse=True) # La liste L est maintenant
triée dans l’ordre décroissant suivant le prix au kilo des objets
11 ## 2eme étape : Initialisation des variables
12 masse_sac = 0 # masse actuellement dans le sac
13 sac=[] # 4 1’initialisation, le sac est vide
14 i=0 # i sert d’indice dans la liste L
15 valeur = 0 # valeur du chargement
16 ## 3eme étape : Mise en place de 1l’algorithme glouton
17 @INALLE cco0oco0o0oo0o0000000000 and:# tant qu’on n’a pas parcouru
toute la cueillette (cas ou la capacité du sac & dos est suffisante pour
prendre toute la cueillette) et que la masse du sac n’a pas atteint sa
capacité (cas ou la cueillette est trop importante)
18 fruit = L[i]
19 capacite_restante = capacite - masse_sac
20 A% ©0000000000000000000000 : # si la quantité du i-eme fruit est supé
rieure a la capacité restante du sac
21 fruitf[2] = # on modifie la quantité de fruit pour
n’en prendre que la quantité correspondant a la capacité
restante
22 SAC. e (fruit) # On met le fruit dans le sac
23 valeur = valeur + # 0On calcule la nouvelle valeur du
chargement
24 masse_sac = masse_sac + # On calcule la nouvelle masse du sac
25 i=i+1 # On incrémente i pour passer au fruit suivant de la cueillette
26 return sac,valeur ,masse_sac

On implémente la cueillette par la liste :

llcueillette = [["framboises",15,1], ["myrtilles" ,48,3], ["fraises" ,50,4]].

Q18. A la suite de la fonction sac_a_dos(L,capacite) tapez la ligne de code permettant de I'uti-
liser pour déterminer les quantités de fruits & choisir pour remplir le sac & dos, & partir de la liste
cueillette.

4.2.3 Version non fractionnable

Formalisation du probléme

Dans sa version non fractionnable du probléme du sac & dos, les objets doivent étre choisi en plein.
On note toujours O = ((v1,m1), (v2, m2), -+, (vn, my)) 'ensemble des objets disponibles. On a donc
v; et m; qui sont respectivement la valeur et la masse de 'objet i. La masse & ne pas dépasser dans le
sac a dos est notée M.

Q19. Ecrire mathématiquement le probléme d’optimisation & résoudre.

page 16

Informatique - PTSI-PT* Cours - Programmation dynamique

Traitement d’un exemple
On suppose maintenant que les éléments a transporter ne sont pas fractionnables. Les fruits parmi
lesquels le cueilleur doit choisir sont présentés ci-dessous :

Fruits cueillis Masse d’un fruit | Quantité disponible | Prix au kilo
Melon de cavaillon 1kg 1 3€ kg
Melon jaune 2kg 1 2,5€ /kg
Pasteque 3kg 1 2€ /kg

L’objectif est toujours de placer dans le sac & dos le chargement de valeur maximale, de masse
totale inférieure & 5 kg. Par contre, les éléments n’étant pas fractionnables, il est possible que les choix
successifs ménent & un chargement qui ne remplit pas complétement le sac & dos.

On se propose de tester la méthode gloutonne pour cette nouvelle formulation.

Q20. En utilisant la méme heuristique que pour la version fractionnable, quel résultat obtenez-vous ?
(Valeur et masse dans le sac & dos). Quel est la solution optimale ?

Conclusion

" Lutilisation d’'un algorithme glouton, ne permet de résoudre de fagon systématique le probléme
du sac a dos dans sa version non fractionnable avec une heuristique choisie. L’utilisation de la
programmation dynamique semble plus appropriée pour ce type de probléme.

Programmation dynamique pour résoudre le probléme du sac a dos

Pour résoudre ce probléme, nous allons noter f(k, M) la valeur maximale qu’il est possible d’atteindre
avec k objets potentiels pour un poids total égal & M. Si I’objet d’indice k est dans la solution optimale,
alors my < M et f(k,M) =wvx + f(k—1,M —myg); s'il n’y est pas alors f(k,M) = f(k—1,M). On
en déduit :

~f max(vp + f(k—1,M—my), f(k—1,M)) sim <M
f(k’M)_{ f(k—1,M) sinon
O 1 e Mgz M
ojojojofojOojO|O0O]oO
110
N
flk =1, M —my) — f(k—1,M) —
U] ?
0 =
f(k, M)
0
0
n |0
k

FIGURE 9 — Le schéma de dépendance du sac & dos

page 17

Informatique - PTSI-PT* Cours - Programmation dynamique

Pour calculer cette valeur, nous allons utiliser un tableau bi-dimensionnel de taille (n+1) X (M 42+
1) destiné a contenir les valeurs de f(k, M) pour k € [0,n] et M € [0, Myaz]. Avec Mg, la masse
maximale transportable dans le sac. Dans le probléme, on considére que la valeur et la masse des objets
est sous forme d’entiers (chose que I'on peut toujours faire). Nous prendrons comme valeurs initiales
f(0,M) = f(k,0) =0, et notre but est de calculer f(n, Mqaz).

Dans un premier temps, on considére que les noms des objets, leur valeur et leur masse sont stockés
dans 3 listes différentes dans un ordre qui est le méme pour les 3 listes.

1 |def sac_a_dos(v:[int],m:[int],Mmax:int)->int:
2 20
3 Fonction permettant de calculer f(n,Mmax) par une approche dynamique.
4 Entrées
5 - v : liste des valeurs des objets
6 - m : liste des masses des objets
7 - Mmax : entier, représentant la masse maximale transportable
8 Sortie
9 - f(n,Mmax) retourne la valeur maximale transportable dans le sac pour une
masse totale inférieure ou égale a Mmax
10 2
11 n len(v) # Nombre d’objets potentiellement & transporter
12 f = np.zeros((n + 1, Mmax + 1), dtype=int) # Création d’un tableau numpy de
taille n+1 x Mmax+1l qui sera composé d’entiers
13 for k in range(n):
14 for W in range(0, Mmax + 1):
15 if m[k] <= W:
16 flk + 1, W] = max(v[k] + f[k, W - m[k]], fl[k, Wl)
17 else:
18 flkx + 1, Wl = f[k, W]
19 return f[n, Mmax]
- @ . .
;1 a@v’; Exemple d’application 8
i
Q21. Appliquer la fonction sac_a_dos sur le probléme de cueillette précédent. En complétant
notamment le tableau suivant avec les listes suivantes : v=[3,5,6], m=[1,2,3].
o 1 2 3 4 5 M
0O0j]0|10|0[0|O0]O0
110
210
310
n
2 Remarque 2
Cet algorithme calcule la valeur maximale qui peut étre emportée dans le sac, mais pas la fagon
d’y parvenir. Pour la connaitre il faut utiliser le tableau calculé par la fonction précédente, et
retrouver le chemin qui méne de la case initiale a la case finale.

page 18

Informatique - PTSI-PT* Cours - Programmation dynamique

w N

© 00 N O U

10
11
12
13
14
15
16
17
18
19
20

def

objets_a_choisir(v:[int],m:[int] ,nom:[str],Mmax:int) ->[(str,int,int)]:
23
Fonction permettant de calculer la liste des objets remplissant le sac avec

la plus grande valeur possible sans dépasser la masse Mmax
Entrées
- v : liste des valeurs des objets
- m : liste des masses des objets
- nom : liste des noms des objets
- Mmax : entier, représentant la masse maximale transportable
Sortie
- Liste des objets avec leur nom, valeur et masse
200
f = sacAdos(v, m, Mmax) # Calcul de f(n,Mmax)
sac = [] # >Initialisation du sac
k, W = len(c), Mmax
while k > O:

if f[k, W] > f[k - 1, W]l:

sac.append ((nom[k-1] ,v[k - 1], m[k - 11))
W -=wlk - 1]

k -=1

return sac

On peut également créer un tableau, de taille n + 1 X (M4, + 1) qui ne contiendra uniquement
les chaines de caractéres des différents objets présents dans le sac.

© 00 O U W NN

—_
=]

—_
[

12
13
14

15

16

17
18
19
20
21
22
23
24
25
26
27
28

def

sac_a_dos(v:[int] ,m: [int] ,nom: [str],Mmax:int)->int, [str]:

200

Fonction permettant de calculer f(n,Mmax) par une approche dynamique.

Entrées

- v : liste des valeurs des objets

- m : liste des masses des objets

- nom : liste des noms des objets

- Mmax : entier, représentant la masse maximale transportable

Sortie

- f(n,Mmax) retourne la valeur maximale transportable dans le sac pour une
masse totale inférieure ou égale a Mmax

- tab_nom(n,Mmax) [1:] retourne les noms des objets de valeur maximale
transportable dans le sac pour un masse totale inférieure ou égale a
Mmax

len(v) # Nombre d’objets potentiellement a transporter

f = np.zeros((n + 1, Mmax + 1), dtype=int) # Création d’un tableau numpy de
taille n+1 x Mmax+1 qui sera composé d’entiers

longueur=max ([len(i) for i in nom]) # Longueur maximale des chaines de
caractéres dans la liste o

tab_nom=np.zeros((n + 1, Mmax + 1), dtype=’<U’+len(nom)*str(longueur)) # Cré

ation d’un tableau numpy de taille n+1 x Mmax+1l qui sera composé de chail

nes de caractéres : dtype<’Unombre’ : permet de construire un tableau de

B
1]

chaine de caractéres chaque case peut contenir une chaine de caractéres
de taille nombre.
for k in range(n):
for W in range(0, Mmax + 1):
if m[k] <= W:
flk + 1, Wl = max(v[k] + f[k, W - m[k]], f[k, W])
if flk + 1, Wl==v[k] + f[k, W - m[k]]:
tab_nom[k+1,W]l=tab_nom[k, W - m[k]]+’-’+noml[k]
else:
tab_nom[k+1,W]l=tab_noml[k,W]
else:
flk + 1, Wl = f[k, Wl
tab_nom[k+1,W]l=tab_noml[k,W]
return f[n,Mmax],tab_nom[n,Mmax][1:]

page 19

Informatique - PTSI-PT* Cours - Programmation dynamique

Résolution par approche top-down (mémoisation)

Nous n’avons pas utilisé ici la technique de mémoisation pour résoudre le probléme. Cette derniére,
lorsqu’elle est utilisée, nous permet de moins nous préoccuper de l'ordre de dépendance qui est géré
par la récursivité :

1 |def sacAdos(v:[int], m:[int], Mmax:int)->int:

2 dico = {}

3 def f(k, M):

4 if (k, M) not in dico: # Si on n’a pas déja calculé f(k,M)

5 if k == 0 or M == 0: # Cas de base

6 x=0

7 # On écrit nos 2 relations de récurrence

8 elif m[k - 1] <= M:

9 x = max(vlk - 1] + f(k - 1, M - m[k - 1]1), £f(k - 1, M))

10 else:

11 x = f(k - 1, M)

12 dico[(k, M)] = x #0n stocke le résultat dans le dictionnaire de clé
(k,M)

13 return dicol[(k, M)]

14 return f(len(v), Mmax)

4.3 Un autre probléme : le rendu de monnaie
4.3.1 Présentation du probléme

On souhaite minimiser le nombre de piéces et de billets rendus par un automate qui rend la monnaie
tout en garantissant que le total rendu vaut une certaine somme fixée par le probléme. La fonction
objectif est donc de minimiser la quantité de monnaie rendue tout en respectant la contrainte suivante :
la monnaie rendue correspond bien & la quantité d’argent a rendre effectivement.

Hypothése : On suppose que vous avez un stock illimité de piéces et billets ;

Le systéme monétaire utilisé est un n-uplet V' = (vg,v1, -+ ,v,—1) ol v; représente la valeur de la
i®™¢ devise. On note X = (zg, 21, ,Tn_1) le n-uplet contenant le nombre de devises rendu. Ainsi, z;

représente le nombre de la ™€ devise rendu. On note S la somme & rendre.
n

La somme & rendre peut donc étre calculée par : S = g ;..
i=1

Q22. Exprimer le probléme d’optimisation que ’on cherche & résoudre.

4.3.2 Résolution par algorithme glouton

Dans ce probléme, on travaille avec ’ancien systéme monétaire britannique (avant 1971) s’appuyant
sur le penny avec le systéme monétaire suivant (sans tenir compte des 1/2 pennies)

monnaie = [1,3,6,12,24,30,60,240]

Q23. A l'aide de ’algorithme glouton, donnez la réponse au probléme de rendu de monnaie obtenu
pour rendre somme= 48 cts? Quelle est la résolution optimale de ce probléme ?

4.3.3 Programmation dynamiqueﬂ

Soit X la somme a rendre, on notera Nb(X) le nombre minimum de piéces a rendre. Nous allons
nous poser la question suivante : Si je suis capable de rendre Y avec Nb(Y') pieces, quelle somme suis-je
capable de rendre avec 1 4+ Nb(Y') piéces?

Si j’ai & ma disposition la liste de piéces suivante : vg, v1, V2, -+, Un—1 €t que je suis capable de
rendre Y cts, je suis donc aussi capable de rendre :

oY — Vo

oY — (%]

2. D’aprés : https ://pixees.fr/informatiquelycee/n_site/nsi_term algo progdyn.html

page 20

Informatique - PTSI-PT*

oY — vy

P

oV — Un—1
(& condition que v; (avec i € [0,n — 1])) soit inférieure ou égale & la somme restant a rendre.)

Exemple : si je suis capable de rendre 72 cts et que j’ai & ma disposition des piéces de 2 cts, 5 cts,
10 cts, 50 cts et 1euro, je peux aussi rendre :

o 72 —2="T0cts

e 72 —5=067cts

e 72 —10=62cts

o 72 —50 =22cts

e On ne peut pas utiliser de piéce de 1 euro.

Autrement dit, si Nb(X —v;) (avec i € [0,n — 1]) est le nombre minimal de piéces & rendre pour
le montant X — v;, alors Nb(X) =1+ Nb(X — v;) est le nombre minimal de piéces & rendre pour un
montant X. Nous avons donc la formule de récurrence suivante :

Si X =0: Nb(X)
Si X >0: Nb(X)

0
1+ min NbH(X —v;)

0<i<n—1et v;<X

4.3.4 Programmation sous Python

1 |def rendu_monnaie_rec(V,X):
2 if X==0:

3 return O

4 else:

5 mini = 1000

6 for i in range(len(V)):
7 if V[i]l<=X:

8 nb = 1 + rendu_monnaie_rec(V,X-V[i])
9 if nb<mini:

10 mini = nb
11 return mini

Comme vous 'avez sans doute remarqué, pour étre str de renvoyer le plus petit nombre de piéces,
on attribue dans un premier temps la valeur 1000 & la variable mini (cette valeur 1000 est arbitraire, il
faut juste une valeur suffisamment grande : on peut partir du principe que nous ne rencontrerons jamais
de cas ot il faudra rendre plus de 1000 piéces), ensuite, a chaque appel récursif, on « sauvegarde » le
plus petit nombre de piéces dans cette variable mini. Par contre, on ne sait pas quelles piéces rendre...

page 21

Informatique - PTSI-PT*

TD Info - Programmation dynamique

I - Exercices de mise en jambe

—— Objectif
L’objectif de ces différents « petits » exercices est de prendre en main la programmation dynamique
sur des exemples stmples. Les deux orientations de programmation dynamique « bottom-up » et « top-
down » sont abordées.

1 Suite récurrente simple

On considére la suite (uy)pen définie par u, = n X u,—1 avec ug = 1.

Q1. Effectuer une programmation itérative d’une fonction u_iter d’argument n:int permettant de
calculer u,,. Vérifier que vous obtenez w1y = 3 628 800.

Q2. Effectuer une programmation récursive d’une fonction u_rec d’argument n:int permettant de
calculer u,,. Vérifier que vous obtenez u1y = 3628 800.

Q3. Justifiez que le principe de programmation dynamique ne s’applique pas dans ce cas d’étude (par
exemple pas besoin de memoisation).

2 Suite de Fibonacci

La suite de Fibonacci (uy,)nen est définie de la fagon suivante :

Up = Up—1+Up—2 avecn €Netn>2 wyyg=0etu; =1

Q4. Effectuer une programmation récursive d’une fonction fibo d’argument n:int permettant de
calculer u,,. Vérifier que vous obtenez u19 = 55.

Q5. Construire 'arbre d’appels récursifs de fibo(5). Justifier alors que la programmation dynamique
est tout & fait indiqué pour résoudre plus efficacement ce probléme.

Q6. Effectuer une programmation dynamique top-down (principe de mémoisation) en vous appuyant
sur la structure de code proposée. Dans le cadre d’une mémoisation, cette structure est a
privilégier. Vérifier que fibonacci(10) renvoie bien 55.

1 def fibonacci(m:int)->int:

2 tab_fab=[0 for i in range(n+1)] # Initialisation du tableau de mémoisation

3 tab_fab[1]l= # Initialisation utile pour u_1, u_0 est initialis
é a o0

4 resultat=memoisation(n,tab_fab) # renvoie le résultat de u_n

5 return resultat

6

7 def memoisation(n,tab_fab):

8 # tab_fab est une liste qui est mise a jour d’appels en appels tout en
conservant les valeurs renseignées grdce a l’effet de bord.

9 if n==0:

10 POBUED 0000000000000

page 22

Informatique - PTSI-PT*

11 elif n==1:

12 POBUEURNL. 6000000000000

13 else

14 if tab_fab[n]!=0:

15 return

16 else:

17 resultat= ¥ 6000000000000
18 tab_fab[nl=.............

19 TEABEFEE coccocoococooaooo

Q7. Reprendre cette question mais en utilisant un dictionnaire pour réaliser la mémofsation.

Q8. Effectuer maintenant une programmation bottom-up fibo_bottom_up afin de calculer w,. Celle-ci
se fera en débutant par le calcul de ug, puis de us etc. Vous serez attentif & ne pas utiliser un tableau
pour stocker les résultats.

II - Découpe de barres d’acier

1 Présentation

—— Objectif
Un vendeur de matiére brute propose la découpe de barre d’acier. Il existe cependant deur conditions :
e La découpe ne peut se faire que par nombre entier de centimeétres;
e Le priz de vente d’un morceau de barre d’acier dépend non linéairement de sa longueur.
L’objectif du probleme étudié est de déterminer le revenu maximum qu’on peut attendre de la vente
d’une tige de n centimétres.

Le probléme algorithmique posé est le suivant :

e Entrée : une longueur n > 0 et une table de prix P contenant les prix p; en € d’un morceau de
longueur ¢ avec ¢ € [1,n];

e Sortie : Le revenu maximum que 'on peut obtenir pour des tiges de longueur n.

La table des prix P est donnée ci-dessous :

Longueur ¢ 1 2 3 4) 6 7 8 9 10

Prix p; en € 1 5 8 9 10 17 17 20 24 30

TABLE 1 — Tableau des prix P

Par exemple, pour une barre de longueur n = 4, les uniques (donc sans doublons) facons de
découper la barre sont :

T8 0D COCH (e
008

Ainsi, le meilleur revenu est obtenu en découpant la barre en deux morceaux de taille 2. Le revenu
obtenu est 10€.

2 Approche par force brute

L’approche par force brute consiste & tester toutes les possibilités de découpe et de calculer le
revenu obtenu pour chacune d’elle. C’est souvent une approche triviale qui peut s’avérer efficace si le
probléme est de « taille » raisonnable.

page 23

Informatique - PTSI-PT*

Q1. En considérant les doublons possibles, quel est le nombre de possibilités de découpes de la barre
de longueur n ?

Q2. Quand bien méme il y a des découpes équivalentes possibles, une approche par force brute vous
parait-elle possible pour un nombre n conséquent ?

3 Analyse du probléme

Un peu plus formellement, une barre de longueur n peut étre découpée en k morceaux. On a alors
n =1 +Lly +---+ ¥} et le revenu associé est r, = py, +pg, + - -+ py,. En dressant une analyse de cas
pour différentes longueurs de départ, on obtient les revenus optimaux suivants :

] n ‘ Tn ‘ Solution optimale ‘

1 1 1 (pas de découpe)

2 2 (pas de découpe)

3 8 3 (pas de découpe)

4 10 242

5 13 2+3

6 17 6 (pas de découpe)

7 18 1+6o0u2+2+3

8 22 24+6---

TABLE 2 — Solution du probléme pour des tailles n petites

De cette analyse on peut constater qu’il est impossible de poser le choix le plus intéressant au
départ pour une solution optimale. Par exemple, dans le cas ot n = 3, on ne peut pas savoir si le
revenu optimal sera obtenu avec une découpe commengant & 1cm et/ou & 2cm ou sans découpe. 11
sera nécessaire de considérer tous les cas et ne retenir que la solution optimale. On arrive alors a la
relation ci-dessous pour une barre de longueur n au départ.

n = INax (Pn, T+ 1,72+ p—2, " ,Tp—1+ Tl)
On constate que cette version est assez complexe & résoudre car, il faut résoudre pour chaque
élément deux problémes : 7, et rp, avec p € [1,n — 1]. On peut simplifier cette approche :

e Toute solution optimale & une découpe la plus & gauche qui ne sera pas redécoupée. Par exemple
pour une barre de longueur n = 7.

(q O _— (q q O . Solution : Découpe
2/2/3
~— ~—— S~ \\/J

Découpe Sous-probléme Déc. Déc. Sous-probléme
A résoudre A résoudre

e On peut calculer 7, en considérant toutes les tailles pour la premiere découpe et en combinant
avec le découpage optimal pour la partie a droite;

e Pour chaque cas, on n’a donc qu’a résoudre un seul sous-probléme (au lieu de deux), celui du
découpage de la partie droite ;

Q3. En supposant que rg = 0, écrire alors le probléme r, sous sa nouvelle forme.

Q4. On pose la liste p=[0,1,5,8,9,10,17,17,20,24,30], le tableau des prix. Etablir la programma-
tion d’une fonction couper_barre d’arguments p et d’un entier n, longueur de la barre avec n<len(p) -1
permettant de résoudre le probléme de découpe proposé.

Q5. Modifier votre fonction, pour compter le nombre d’appels récursifs. Tester que votre code fonc-
tionne en vérifiant que vous obtenez le bon résultat de revenu maximal pour des barres de longueur

page 24

Informatique - PTSI-PT*

différentes. Pour n = 4 et n = 10, combien d’appels sont effectués? Effectuer une conjecture sur le
nombre d’appels & la fonction & réaliser pour obtenir la solution du probléme.

Q6. Pour n = 4, dessiner I'arbre d’appels récursifs et justifier qu’une programmation dynamique est
envisageable.
4 Programmation dynamique top-down : mémoisation

On va utiliser deux fonctions pour résoudre ce probléme. Une fonction principale et une fonction
auxiliaire qui fera le calcul et utilisera un tableau r pour gérer le processus de mémoisation.

1| p=[0,1,5,8,9,10,17,17,20,24,30]

2 def couper_barre(p:[int],n:int)->int:

3 r=[-1 for i in range(len(p))] # Initialisation du tableau qui contiendra la
résolution du probléme pour r[il]

4 r[0]=0 # Pour r_0=0.

5 return memoisation_coupe_barre(p,n,r)

6

7| def memoisation_coupe_barre(p,n,r):

8 # Si la solution est connue

9 if r[n]>=0:

10 TEBUEND 6000000000000 # A compléter

11 # Cas de base du probléme récursif

12 if n==0:

13 TEBUEND 0000000000000 # A compléter

14 # Cas récursif

15 else:

16 T@¥Sc0000000000000 # A compléter

17 for i in range(1,n+1):

18 @Y S0 000000000000 # A compléter

19 rlnl=.......... ... # A compléter

20 PABUER 5000000000000 # A compléter

Q7. Compléter le code permettant de résoudre le probléme. Que contient la liste r?

Q8. Modifier votre code pour savoir combien d’appels a la fonction memoisation_coupe_barre.

5 Programmation dynamique bottom-up

L’approche que I'on va mettre en place est ici différente, on va d’abord résoudre les problémes les
plus simples rg, r1, etc. Aprés la résolution de ces problémes « élémentaires », on peut construire des
solutions plus complexes. La structure de code utilisée est la suivante :

1 p=00,1,5,8,9,10,17,17,20,24,30]

2 | def couper_barre(p:[int],n:int)->int:

3 r=[-1 for i in range(len(p))] # Initialisation du tableau qui contiendra la
résolution du probléme pour r[il]

4 r[0]=0 # Pour r_0=0.

5 for j in range(1,n+1):

6 rev=....... # Initialisation

7 for i in range(1,.......): # A compléter

8 $2CN750 0060000000000 # A compléter

9 rljl=....... # A compléter

10 TEBUEM co0oco0o000000000 # A compléter

Q9. Compléter le code. Vérifier les résultats obtenus.

page 25

Informatique - PTSI-PT*

III - Le meilleur intervalle

—— Objectif
Dans cet exercice, on va chercher a mettre en place une relation de récurrence permettant de résoudre
un probléeme simple & comprendre. On va également s’intéresser a 'optimisation du codt mémoire de
celui-ci.

On dispose d’un tableau T fixe, de taille n. Il ne contient que des valeurs réelles positives. Il existe
(au moins) deux indices ¢ et j, définissant 'intervalle [i, j] avec 0 < ¢ < j < n — 1, tel que la valeur
T[j1—T[i] (appelé écart) est maximale. Par exemple, si T=[9,15,10,12,8,18,20,71, le meilleur écart
est de valeur 12. Il est unique et obtenu pour ¢ =4 et j = 6.

Remarque : Si le tableau est monotone décroissant cette valeur est nulle et correspond & n’importe
quel intervalle de type [i,4] pour 0 <i < n — 1.

Q1.On appelle vmi (k) la valeur du (d’un) meilleur écart se terminant ezactement en position k.
Quelles sont les valeurs de vmi (0), vmi (1), ---, vmi(7) sur 'exemple précédent ?

Q2. Préciser comment obtenir la valeur du (d’un) meilleur écart du tableau T a partir de vmi(0),
vmi(1), ---, vmi(n-1).

Q3. Etablir une relation de récurrence permettant le calcul de vmi (k). Pour cela, vous rechercherez
notamment le lien entre vmi (k) et vmi(k-1).

Q4. Une approche top-down ou bottom-up est-elle nécessaire pour déterminer de maniére efficace la
valeur de vmi (k) pour un k fixé?

Q5. Une approche top-down ou bottom-up est-elle envisageable afin de réponde au probléme initial,
a savoir : déterminer le meilleur écart T[j]1—T[i]. Proposer celle qui offre la meilleure complexité
spatiale et temporelle en justifiant votre réponse.

Q6. Etablir alors un programme permettant de déterminer la valeur du meilleur écart sur I’exemple
proposé T=[9,15,10,12,8,18,20,7].

Q7. Modifier votre code pour connaitre non seulement la valeur du meilleur écart mais également
I'intervalle [i, j] correspondant a cette valeur.

IV - Postes de montage industriel

—— Objectif
Dans une usine automobile, un atelier a deux chaines de montage (voir FIGURE , Un chdssis arrive
sur chaque chaine, puis passe par un certain nombre de postes ot on lui ajoute des piéces; une fois
terminée, l'auto sort par l'autre extrémité de la chaine. L’objectif est de déterminer la facon de faire
transiter le chdssis de poste en poste et éventuellement en le faisant passer entre les deux chaines de
montage pour réaliser l’assemblage le plus rapide.

1 Présentation

Chaque chaine de montage a n stations, numérotées j = 1,2,--- ,n. On représente le ™€ poste
de la chaine i (avec i valant 1 ou 2) par S; ;. Le j®™° poste de la chaine 1 (S; ;) fait le méme travail
que le j¥™€ poste de la chaine 2 (S2,5)- Les postes ont été installés & des époques différentes et avec des
technologies différentes; ainsi, le temps de montage varie d’un poste & 'autre, méme quand il s’agit
de postes fonctionnement identiques mais situés sur des chaines différentes. Le temps de montage au
poste S; ; est a; ;. Comme le montre la FIGURE un chéssis arrive au poste 1 de I'une des chaines,

page 26

Informatique - PTSI-PT*

puis passe de poste en poste. On a aussi un temps d’arrivée e; pour le chassis qui entre sur la chaine
1, et un temps de sortie x; pour 'auto achevée qui sort de la chaine i.

Normalement, une fois qu'un chéssis arrive sur une chaine de montage, il ne circule que sur cette
chaine. Le temps de passage d’un poste a I’autre sur une méme chaine est négligeable. En cas d’urgence,
toutefois, il se peut que I'on veuille accélérer le délai de fabrication d’une automobile. En pareil cas, le
chéssis transite toujours par les n postes dans ’ordre, mais le chef d’atelier peut faire passer une auto
partiellement construite d’une chaine & 'autre, et ce aprés chaque poste. Le temps de transfert d’un
chassis depuis la chaine i et aprés le poste S; j est ¢;;, aveci=1,2et j =1,2,.--- ,n —1 (car, aprés
le n®™€ poste, c’est fini).

Le probléme consiste & déterminer quels sont les postes a sélectionner sur la chaine 1 et sur la chaine
2 pour minimiser le délai de transit d’une auto & travers ’atelier.

Poste S11 Poste S12 Poste S13 Poste S14 Poste S ,,—1 Poste St

(a1.9) (a13)
ai,1 ai,2 ai,3 ai.4
N N

entrée
des
chassis ! !
chaine 2 |(@2,1 3

chaine 1

sortie
des
autos

(49
o 060

Poste Sa1 Poste Sa2 Poste Sz 3 Poste Sa4 Poste S ,,—1 Poste Sa

FIGURE 10 — Caractéristiques générales des chaines de montage

2 Probléme a traiter

Le probléme traité est le suivant :

Q1. En supposant qu’il y ait n postes de travail sur les chaines de montage, déterminer le nombre de
possibilités de choisir les postes de travail pour réaliser le montage des automobiles. Une approche par
force brute est-elle envisageable pour trouver la solution optimale ?

3 Formulation du probléme a résoudre

Notre objectif ultime est de déterminer le délai le plus court par lequel un chéssis traverse tout
I’atelier, délai que nous noterons f*. Le chéssis doit aller au poste n de I'une ou I'autre des chaines 1
et 2, et de 1a aller vers la sortie de l'atelier. On note f;[j] le délai le plus court possible avec lequel le
chassis va du point de départ et est traité au poste 5; ;.

Q2. Exprimer f* en fonction de fi[n], fa[n], x1 et za.

Q3. Exprimer f1[1] et f2[1] en fonction respectivement de e, aj 1 et eg, az .

Voyons maintenant comment calculer f;[j] pour j = [2,n]. En nous focalisant sur f1[j], rappelons-
nous que le chemin optimal passant par le poste Sy ; est soit le chemin optimal passant par le poste

page 27

Informatique - PTSI-PT*

Poste S11 Poste S12 Poste S13 Poste S14 Poste S15 Poste S

chaine 1 7 @

WAWANWAWA
®
e st
(D
ERVARVARVERY,
o OO0

chaine 2 8 @ @

Poste S21 Poste Sao Poste So3 Poste Sa4 Poste So5 Poste Sz ¢

FIGURE 11 — Probléme traité

S1,j—1 suivi du passage direct au poste 57 j, soit le chemin optimal passant par le poste Sa;_1 suivi
d’un transfert de la chaine 2 a la chaine 1 et suivi enfin du passage au poste S ;.

Q4. Exprimer alors la relation entre fi[j], filj — 1|, a1, f2[j — 1], t2,j—1. Faire de méme pour fa[j].

Q5. Donner alors les deux relations de récurrence pour j = [1,n] traduisant le calcul de f1[j] et fa[j].

4 Programmation récursive

La formulation du probléme obtenue au paragraphe précédent, permet donc de réaliser une pro-
grammation récursive afin de déterminer f*. Pour réaliser le codage de cette programmation récursive,
nous définissons les listes suivantes et les variables suivantes :

1 el,e2,x1,x2=2,4,3,2 # Valeur des coilits d’entrée et de sortie des chaines de
montage.

2 a1=[7,9,3,4,8,4] # Temps de passage sur les postes de montage de la chaine 1.

a2=[(8,5,6,4,5,7] # Temps de passage sur les postes de montage de la chaine 2.
4 t1=[2,3,1,3,4] # Temps de transfert des postes de la chaine 1 vers la chaine 2.

5 t2=[2,1,2,2,1] # Temps de transfert des postes de la chaine 2 vers la chaine 1.

Q6. Etablir une programmation récursive (en utilisant potentiellement deux fonctions récursives) afin
de déterminer fi[n] et fa[n].

Q7. Sur 'exemple traité, quelles sont alors les valeurs de f1[6] et f2[6] 7

Q8. Etablir alors le code permettant de calculer f*.

Q9. Mettre en place un compteur (ou deux compteurs) permettant de connaitre le nombre d’appels ef-
fectués a la (ou les) fonction(s) récursive(s). Que peut-on conjecturer sur le nombre d’appels nécessaires
aux fonctions récursives pour résoudre le probléme ?

5 Programmation dynamique par mémoisation : Approche top-down

On constate que le nombre d’appels récursifs est important. Des appels a des calculs identiques se

page 28

Informatique - PTSI-PT*

fait de maniére conséquente. Une programmation dynamique est donc toute indiquée pour améliorer
Iefficacité du code. On propose ici une approche par mémoisation.

Q10. Effectuer une programmation dynamique par mémoisation du probléme des postes de montage.
Vérifier que vous obtenez bien le méme résultat que précédemment pour f*. N’hésitez pas a utiliser
deux fonctions de mémoisation pour résoudre le probléme au besoin (une pour le calcul de f; et I'autre
pour celui de fa).

6 Programmation dynamique : approche bottom-up

Q11. Effectuer une programmation dynamique bottom-up pour résoudre ce probléme. On précise qu’il
n’est pas indispensable de créer un tableau contenant les différentes valeurs de fi et fs.

On va maintenant chercher a reconstruire la solution pour savoir sur quel poste doit passer le chéssis
automobile pour que le montage soit réalisé le plus rapidement possible. Mais avant cela, cherchons a
déterminer manuellement la solution.

On donne les deux tableaux suivants qui seront a compléter :

L s [1[2]3[4][5]6] L 4 [[2][3[4]5]6]
AL 9 [18 4[j]
fL] [1216 LE[1]2

TABLE 3 — Le premier tableau représente les durées les plus courtes pour terminer les opérations
d’assemblage sur chaque poste de chaque chaine. Le second tableau renseigne sur la chaine du poste
précédent au poste j courant.

Q12. Sachant que ¢1[j] contient le numéro de chaine précédente pour réaliser f1[j] et de méme pour
l5[j]. Compléter les deux tableaux. En déduire la solution au probléme posé.

Q13. Modifier votre programme de programmation dynamique bottom up pour construire les deux
tableaux ¢1 et f5. Votre fonction renverra la valeur de f*, la chaine par laquelle I’automobile sort, les
tableaux ¢1 et ¢9

page 29

	Cours - Programmation dynamique
	TD 1 - Exercices de mise en jambe
	TD 2 - Découpe de barres d'acier
	TD 3 - Le meilleur intervalle
	TD 4 - Postes de montage industriel

