Feuille d'exercices n°9 premium

- 1. corrigé Dans un espace euclidien E, soit p et q deux projecteurs orthogonaux.
- **1.** Démontrer que si pour tout $x \in E$, $||p(x)|| \le ||q(x)||$, alors $\operatorname{Ker}(q) \subset \operatorname{Ker}(p)$.
- 2. Établir la réciproque.
- **2.** corrigé Soit E un espace préhilbertien. Pour tous vecteurs (u_1, \ldots, u_p) de E, on note $G(u_1, \ldots, u_p)$ la matrice de $\mathcal{M}_p(\mathbb{R})$ dont le coefficient d'indices (i, j) est $\langle u_i, u_j \rangle$.
- 1. On suppose que la famille (u_1, \ldots, u_p) est liée. Démontrer que $\det(G(u_1, \ldots, u_p)) = 0$ (on pourra par exemple supposer que u_p est combinaison linéaire de u_1, \ldots, u_{p-1}).
- **2.** On suppose que $det(G(u_1,\ldots,u_p))=0$.
- (a) Justifier que l'une des colonnes de $G(u_1, \ldots, u_p)$ est combinaison linéaire des autres. Par la suite, on pourra supposer qu'il s'agit de la dernière.
- (b) Démontrer alors que u_p est combinaison linéaire des vecteurs u_1, \ldots, u_{p-1} .
- (c) Quel résultat a-t-on établi?
- **3.** Soit F un sous-espace vectoriel de E; on suppose que F est de dimension finie p et que (e_1,\ldots,e_p) est une base de F. Soit $x\in E$. En écrivant x=u+n avec $u\in F$ et $n\in F^\perp$, démontrer que

$$d(x,F) = \sqrt{\frac{\det(G(e_1,\ldots,e_p,x))}{\det(G(e_1,\ldots,e_p))}}.$$

1. énoncé

- 1. Soit $x \in \operatorname{Ker} q$; il s'agit donc de démontrer que $x \in \operatorname{Ker} p$. Or $q(x) = \vec{0}$, donc $\|q(x)\| = 0$ et comme $\|p(x)\| \le \|q(x)\|$, on a aussi $\|p(x)\| = 0$ c'est à dire $p(x) = \vec{0}$ i.e. $x \in \operatorname{Ker} p$. L'inclusion est donc démontrée.
- 2. Rappelons que p étant une projection orthogonale, on a l'inégalité de Bessel:

$$\forall x \in E, \ \|p(x)\| \le \|x\|.$$

En effet, on écrit $x=x_1+x_2$ avec $x_1\in {\rm Im}\; p$ et $x_2\in {\rm Ker}\; p$; alors par définition d'une projection, $p(x)=x_1$ et par définition d'une projection orthogonale, on a $x_1\perp x_2$. On peut alors appliquer le théorème de Pythagore:

$$||x||^2 = ||x_1 + x_2||^2 = ||x_1||^2 + ||x_2||^2 \ge ||x_1||^2,$$

(car $||x_2||^2 \ge 0$), ce qui démontre que $||x||^2 \ge ||p(x)||^2$. Cela étant, on écrit

$$x = x_1 + x_2, \ x = x_1' + x_2'$$

avec $x_1 \in \text{Im } p, \ x_2 \in \text{Ker } p, \ x_1' \in \text{Im } q, \ x_2' \in \text{Ker } q, \ \text{si bien que}$

$$p(x) = x_1, q(x) = x'_1.$$

On a

$$x_2' = x - x_1'$$

et comme par hypothèse $\operatorname{Ker} q \in \operatorname{Ker} p$, on a $x_2' \in \operatorname{Ker} p$ et donc $x - x_1' \in \operatorname{Ker} p$. En conséquence, $p(x - x_1') = \vec{0}$ et donc, par linéarité, $p(x) = p(x_1')$. Du rappel ci-dessus appliqué à x_1' , on a

$$||p(x_1')|| \le ||x_1'||$$

c'est à dire

$$||p(x_1')|| \le ||q(x)||$$

et comme $p(x'_1) = p(x)$, le résultat s'ensuit.

2. énoncé

1. La famille (u_1, \ldots, u_p) étant supposée liée, c'est que l'un des vecteurs (au moins) est combinaison linéaire des autres; quitte à les permuter, on peut supposer que u_p est combinaison linéaire de u_1, \ldots, u_{p-1} : il existe des scalaires $\alpha_1, \ldots, \alpha_{p-1}$ tels que

$$u_p = \alpha_1 u_1 + \ldots + \alpha_{p-1} u_{p-1}.$$

Examinons la dernière colonne de $G(u_1, \ldots, u_p)$. Son premier coefficient (i = 1, j = p) est $\langle u_1, u_p \rangle$, c'est à dire

$$\langle u_1, \alpha_1 u_1 + \ldots + \alpha_{n-1} u_{n-1} \rangle$$

ou encore

$$\alpha_1\langle u_1, u_1\rangle + \ldots + \alpha_{p-1}\langle u_1, u_{p-1}\rangle.$$

De la même manière, le deuxième coefficient (i = 2, j = p) vaut

$$\alpha_1\langle u_2, u_2\rangle + \ldots + \alpha_{p-1}\langle u_2, u_{p-1}\rangle$$

et le dernier coefficient (i = p, j = p) vaut

$$\alpha_1\langle u_p, u_2\rangle + \ldots + \alpha_{p-1}\langle u_p, u_{p-1}\rangle$$

et on voit que la dernière colonne C_p de $G(u_1,\ldots,u_p)$ est combinaison de ses p-1 premières C_1,\ldots,C_{p-1} :

$$C_p = \alpha_1 C_1 + \ldots + \alpha_{p-1} C_{p-1}.$$

La matrice $G(u_1, \ldots, u_p)$ comporte donc une colonne qui est combinaison d'autres colonnes: elle n'est pas de rang p, donc non inversible, et c'est pourquoi $\det(G(u_1, \ldots, u_p)) = 0$.

- **2.** C'est la réciproque de la propriété précédente: si $\det(G(u_1,\ldots,u_p))=0$, c'est que $G(u_1,\ldots,u_p)$ n'est pas inversible; elle n'est donc pas de rang p et c'est pourquoi l'une de ses colonnes est combinaison des autres.
- **3.** Quitte à permuter les vecteurs, on peut supposer la dernière colonne de $G(u_1, \ldots, u_p)$ est combinaison des autres: il existe donc des scalaires $\alpha_1, \ldots, \alpha_{p-1}$ tels que

$$C_p = \alpha_1 C_1 + \ldots + \alpha_{p-1} C_{p-1}.$$

C'est donc que l'on a, au niveau du premier, puis du deuxième . . . et jusqu'au dernier coefficient de cette colonne

$$\langle u_1, u_p \rangle = \alpha_1 \langle u_1, u_1 \rangle + \ldots + \alpha_{p-1} \langle u_1, u_{p-1} \rangle,$$

$$\langle u_2, u_p \rangle = \alpha_1 \langle u_2, u_2 \rangle + \ldots + \alpha_{p-1} \langle u_2, u_{p-1} \rangle,$$

$$\vdots$$

$$\langle u_p, u_p \rangle = \alpha_1 \langle u_p, u_2 \rangle + \ldots + \alpha_{p-1} \langle u_p, u_{p-1} \rangle.$$

Ou encore, en "dé-développant" les produits scalaires qui figurent dans les membres de droite:

$$\langle u_1, u_p \rangle = \langle u_1, \alpha_1 u_1 + \ldots + \alpha_{p-1} u_{p-1} \rangle,$$

$$\langle u_2, u_p \rangle = \langle u_2, \alpha_1 u_1 + \ldots + \alpha_{p-1} u_{p-1} \rangle,$$

$$\vdots$$

$$\langle u_p, u_p \rangle = \langle u_p, \alpha_1 u_1 + \ldots + \alpha_{p-1} u_{p-1} \rangle$$

et en faisant tout passer à gauche:

$$\langle u_1, u_p - (\alpha_1 u_1 + \ldots + \alpha_{p-1} u_{p-1}) \rangle = 0,$$

$$\langle u_2, u_p - (\alpha_1 u_1 + \ldots + \alpha_{p-1} u_{p-1}) \rangle = 0,$$

$$\vdots$$

$$\langle u_p, u_p - (\alpha_1 u_1 + \ldots + \alpha_{p-1} u_{p-1}) \rangle = 0.$$

Le vecteur $u_p - (\alpha_1 u_1 + \ldots + \alpha_{p-1} u_{p-1})$ a donc un produit scalaire nul avec u_1 , avec u_2 , ..., avec u_p donc, par bilinárité du produit scalaire, avec tout combinaison des vecteurs $u_1, u_2, \ldots u_p$ et donc en particulier avec lui-même! C'est à dire: le carré de

la norme du vecteur $u_p - (\alpha_1 u_1 + \ldots + \alpha_{p-1} u_{p-1})$ est nul; c'est la preuve que ce vecteur | En décoposant alors la dernière colonne de $G(u_1, \ldots, u_p, x)$ on obtient alors est nul i.e.

$$u_p = \alpha_1 u_1 + \ldots + \alpha_{p-1} u_{p-1},$$

ce qui démontre que u_p est combinaison linéaire des vecteurs u_1, \ldots, u_{p-1} .

- **4.** On a donc établi que $\det(G(u_1,\ldots,u_p))=0$ si et seulement si la famille (u_1,\ldots,u_p) est liée.
- 5. Par définition, on a alors p(x) = u et par théorème, d(x, F) = ||x p(x)|| et donc

$$d(x,F) = ||n||.$$

Ensuite, on a

$$G(e_1, \dots, e_p, x) = G(e_1, \dots, e_p, u + n)$$

$$= \begin{vmatrix} \langle e_1, e_1 \rangle & \dots & \langle e_1, e_p \rangle & \langle e_1, u + n \rangle \\ \vdots & \vdots & \vdots \\ \langle e_p, e_1 \rangle & \dots & \langle e_p, e_p \rangle & \langle e_p, u + n \rangle \\ \langle u + n, e_1 \rangle & \dots & \langle u + n, e_p \rangle & \langle u + n, u + n \rangle \end{vmatrix}.$$

On a $n \perp u_1$, $n \perp u_2$, ..., $n \perp u_n$ et donc

$$\langle e_1, u + n \rangle = \langle e_1, u \rangle + \langle e_1, n \rangle = \langle e_1, u \rangle$$

$$\vdots$$

$$\langle e_p, u + n \rangle = \langle e_p, u \rangle + \langle e_p, n \rangle = \langle e_p, u \rangle,$$

et puisque $u \perp n$, on a d'après Pythagore:

$$\langle u + n, u + n \rangle = \|u + n\|^2 = \|u\|^2 + \|n\|^2.$$

Ainsi,

$$G(e_1, \dots, e_p, u + n) = \begin{vmatrix} \langle e_1, e_1 \rangle & \dots & \langle e_1, e_p \rangle & \langle e_1, u \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle e_p, e_1 \rangle & \dots & \langle e_p, e_p \rangle & \langle e_p, u \rangle \\ \langle u, e_1 \rangle & \dots & \langle u, e_p \rangle & \|u\|^2 + \|n\|^2 \end{vmatrix}$$

Par ailleurs, rappelons que le calcul d'un déterminant est une opération multilinéaire par rapport aux colonnes (par rapport aux lignes aussi), ce qui signifie que si C_1, \ldots, C_n sont les colonnes d'une matrice M et que la colonne C_n s'écrit comme une combinaison $C_n = \alpha K_n + \beta L_n$, alors

$$\det(C_1, \dots, C_{n-1}, C_n) = \alpha \det(C_1, \dots, C_{n-1}, K_n) + \beta \det(C_1, \dots, C_{n-1}, L_n).$$

Par exemple.

$$\begin{vmatrix} a_1 & b_1 & \alpha k_1 + \beta \ell_1 \\ a_2 & b_2 & \alpha k_2 + \beta \ell_2 \\ a_3 & b_3 & \alpha k_3 + \beta \ell_3 \end{vmatrix} = \alpha \begin{vmatrix} a_1 & b_1 & k_1 \\ a_2 & b_2 & k_2 \\ a_3 & b_3 & k_3 \end{vmatrix} + \beta \begin{vmatrix} a_1 & b_1 & \ell_1 \\ a_2 & b_2 & \ell_2 \\ a_3 & b_3 & \ell_3 \end{vmatrix}.$$

$$G(e_1, \dots, e_p, u + n) = \begin{vmatrix} \langle e_1, e_1 \rangle \dots \langle e_1, e_p \rangle \langle e_1, u \rangle \\ \vdots & \vdots & \vdots \\ \langle e_p, e_1 \rangle \dots \langle e_p, e_p \rangle \langle e_p, u \rangle \\ \langle u, e_1 \rangle \dots \langle u, e_p \rangle & \|u\|^2 \end{vmatrix} + \begin{vmatrix} \langle e_1, e_1 \rangle \dots \langle e_1, e_p \rangle & 0 \\ \vdots & \vdots & \vdots \\ \langle e_p, e_1 \rangle \dots \langle e_p, e_p \rangle & 0 \\ \langle u, e_1 \rangle \dots \langle u, e_p \rangle & \|n\|^2 \end{vmatrix}.$$

Le premier déterminant n'est autre, par définition, que $\det(G(e_1,\ldots,e_p,u))$. Puisque $u \in F = \text{Vect}(e_1, \dots, e_p)$, la famille (e_1, \dots, e_p, u) est liée est alors $\det(G(e_1, \dots, e_p, u)) = 0$ d'après 1. Enfin, en développant le deuxième déterminant par rapport à sa dernière colonne, on voit qu'il vaut exactement

$$||n||^2 \det(G(e_1,\ldots,e_p)).$$

Ainsi,

$$\sqrt{\frac{\det(G(e_1,\ldots,e_p,x))}{\det(G(e_1,\ldots,e_p))}} = \sqrt{\frac{\|n\|^2 \det(G(e_1,\ldots,e_p))}{\det(G(e_1,\ldots,e_p))}} = \|n\|,$$

d'où le résultat.