Maths - Interrogation 2 - corrigé

$$\int_0^x f(t)dt = \int_0^x \frac{t}{1+t^2} - \frac{t}{2+t^2}dt = \frac{1}{2} \left[\ln(t^2+1) - \ln(t^2+2) \right]_0^x = \frac{1}{2} \ln\left(\frac{x^2+1}{x^2+2}\right) + \frac{1}{2} \ln 2.$$

On fait tendre x vers $+\infty$ et il vient que I est une intégrale convergente et que $I=\frac{1}{2}\ln 2$.

Exercice 2 (6 points)

- 1. La fonction $x \mapsto \frac{1}{(1+x^2)^{\frac{3}{2}}}$ est définie sur \mathbb{R}^+ et elle est continue sur cet ensemble. De plus, $\frac{1}{(1+x^2)^{\frac{3}{2}}} \sim \frac{1}{x^3}$. Comme l'intégrale $\int_1^{+\infty} \frac{1}{t^3} dt$ converge, l'intégrale I converge
- 2. La fonction f est dérivable sur \mathbb{R}^{+*} et $f'(x) = \frac{1}{2} \left(-\frac{1}{t^2} 1 \right) < 0$ donc f est strictement décroissante. De plus $\lim_{t \to 0} f = +\infty$ et $\lim_{t \to 0} f = -\infty$, donc f est bijective (c'est une conséquence du théorème des valeurs intermédiaires).
- 3. Par le changement de variable suggéré :

$$\begin{split} I &= \int_0^1 \frac{1}{\left(1 + \left(\frac{1-t^2}{2t}\right)^2\right)^{3/2}} \times \frac{1}{2} \left(\frac{1}{t^2} + 1\right) \mathrm{d}t \\ &= \frac{1}{2} \int_0^1 \frac{(4t^2)^{3/2}}{(1+t^2)^3} \times \frac{1+t^2}{t^2} \mathrm{d}t \\ &= 4 \int_0^1 \frac{t}{(1+t^2)^2} \mathrm{d}t = 2 \left[-\frac{1}{1+t^2} \right]_0^1 = 1 \end{split}$$

Exercice 3 (5 points)

- 1. L'intégrale est généralisée parce que la fonction $t \mapsto t^2 \ln t$ n'est pas définie en 0. Comme $|t^2 \ln t| \leq |\ln t|$ pour tout $t \in]0,1]$ et la fonction $t \longmapsto \ln t$ est intégrable sur]0,1], l'intégrale I est convergente.
- 2. On pose $u(t) = \ln t$ et $v(t) = \frac{1}{3}t^3$. Par croissance comparée, $u(t) \times v(t)$ tend vers 0 lorsque t tend vers 0. Donc, par intégration par parties:

$$I = \left[\frac{1}{3}t^3 \ln t\right]_0^1 - \int_0^1 \frac{1}{3}t^2 dt = -\frac{1}{9}.$$

Exercice 4 (5 points) $f(t) \underset{t \to -1}{\sim} \frac{1}{\sqrt{3}} \times \frac{1}{t+1}$ et $t \longmapsto \frac{1}{t+1}$ n'est pas intégrable sur]-1,2] ($\alpha=1\geqslant 1$). Donc f n'est pas

 $f(t) \underset{t \to 2+}{\sim} \frac{1}{3\sqrt{t-2}} \text{ et } t \longmapsto \frac{1}{\sqrt{t-2}} \text{ est intégrable sur } [2,3] \ (\alpha = \frac{1}{2} < 1).$

 $f(t) \stackrel{\sim}{\underset{t \to +\infty}{\sim}} \frac{1}{t^{3/2}}$ et $t \longmapsto \frac{1}{t^{3/2}}$ est intégrable sur $[3, +\infty]$ $(\alpha = \frac{3}{2} > 1)$.

On en déduit que f est intégrable sur $]2, +\infty[$.