VIII- Espaces vectoriels préhilbertiens et euclidiens

b) Orthogonalité en dimension quelconque

Vecteurs orthogonaux, sous-espaces orthogonaux. Orthogonal d'un sous-espace vectoriel. Théorème de Pythagore. Famille orthogonale, famille orthonormale.

Toute famille orthogonale de vecteurs non nuls est libre. Algorithme d'orthonormalisation de Gram-Schmidt.

c) Bases orthonormales

Existence de bases orthonormales en dimension finie. Coordonnées d'un vecteur dans une base orthonormale; expression du produit scalaire et de la norme.

Expression matricielle du produit scalaire et de la norme dans une base orthonormale.

Matrice d'un endomorphisme dans une base orthonormale.

d) Projection orthogonale sur un sous-espace de dimension finie

Si F est un sous-espace de dimension finie d'un espace préhilbertien, alors F et F^{\perp} sont supplémentaires.

Projection orthogonale sur un sous-espace vectoriel F de dimension finie. Expression du projeté orthogonale dans une base orthonormale de F.

Distance d'un vecteur x à un sous-espace vectoriel F de dimension finie.

Le projeté orthogonal de x sur F est l'unique élément de F qui minimise la distance de x à un vecteur de F.

B- Isométries d'un espace euclidien

a) Isométries vectorielles

Un endomorphisme d'un espace euclidien E est un isométrie vectorielle s'il conserve la norme. Caractérisation par la conservation du produit scalaire, par l'image d'une base orthonormale. Symétrie orthogonale par rapport à un sous-espace. Réflexion.

Groupe orthogonal d'un espace euclidien E.

Si un sous-espace est stable par une isométrie vectorielle, son orthogonal l'est aussi.

b) Matrices orthogonales

Une matrice M de $\mathcal{M}_n(\mathbb{R})$ est dite orthogonale si $MM^{\top} = I_n$.

Caractérisation à l'aide des colonnes ou des lignes de M. Groupe orthogonal.

Si \mathcal{B}_0 est une base orthonormale de E, une base \mathcal{B} de E est orthonormale si et seulement si la matrice de passage de \mathcal{B}_0 à \mathcal{B} est orthogonale.

Si \mathcal{B} est une base orthonormale de E et u un endomorphisme de E, alors u est une isométrie vectorielle de E si et seulement si $\operatorname{Mat}_{\mathcal{B}}(u)$ est orthogonale.

c) Matrices symétriques réelles

Matrice symétrique réelle. Les sous-espaces propres d'une matrice symétrique réelle sont deux à deux orthogonaux.

Pour toute matrice symétrique réelle A, il existe une matrice orthogonale P et une matrice diagonale D telles que $A = PDP^{-1}$.

Questions de cours:

1. Montrer que si M et N sont des matrices orthogonales alors M^{-1} et MN sont orthogonales.

Vérifions que $(M^{-1})^{\top}M^{-1}=I$, c'est-à-dire que $(M^{-1})^{\top}$ est l'inverse de M^{-1} .

En transposant $MM^{-1}=I$, on a $(M^{-1})^{\top}M^{\top}=I$. Comme M est orthogonale, on a $M^{\top}=M^{-1}$ et on en déduit que $(M^{-1})^{\top}$ est l'inverse de M^{-1} .

Si M et N sont des matrices orthogonales, on a :

$$(MN)^{\scriptscriptstyle \top}(MN) = N^{\scriptscriptstyle \top} M^{\scriptscriptstyle \top} MN = N^{\scriptscriptstyle \top} I^{\scriptscriptstyle \top} N = I$$

Cela prouve que MN est une matrice orthogonale.

2. Montrer que les sous-espaces propres d'une matrice symétrique sont deux à deux orthogonaux.

Soit A une matrice symétrique, λ et μ deux valeurs propres distinctes de A. Soit $X \in E_{\lambda}(A)$ et $Y \in E_{\mu}(A)$.

On a

$$\langle AX, Y \rangle = (AX)^{\mathsf{T}}Y = X^{\mathsf{T}}A^{\mathsf{T}}Y = X^{\mathsf{T}}AY = \langle X, AY \rangle$$

Mais aussi $AX = \lambda X$ et $AY = \mu Y$, donc :

$$\lambda \langle X, Y \rangle = \mu \langle X, Y \rangle$$

Donc $\langle X, Y \rangle = 0$. On en déduit que $E_{\lambda}(A)$ et $E_{\mu}(A)$ sont orthogonaux.

3. Montrer qu'une isométrie vectorielle conserve le produit scalaire. Que peut-on dire des valeurs propres réelles d'une isométrie vectorielle?

Pour le premier point, on utilise l'identité de polarisation (qu'il faut savoir justifier!).

Soit u une isométrie vectorielle. Donc ||u(x)|| = ||x||. Si λ est une valeur propre réelle de u alors il existe un vecteur x non nul de E tel que $u(x) = \lambda x$. Donc :

$$||x|| = ||u(x)|| = ||\lambda x|| = |\lambda|||X||.$$

Comme x est non nul, on en déduit que $|\lambda| = 1$.