
Lycée B. Franklin TP PYTHON - Suites PTSI

Ce TP illustre l’utilisation de Python pour calculer les termes de suites récurrentes. On
verra aussi des calculs de sommes ou de produits.

I Suites récurrentes :

Exemple : Dans l’éditeur, ouvrez une nouvelle page, puis créez la fonction suivante :

1 def suite arithmetique(n, u0, r) :

2 ””” Cette fonction calcule et renvoie le n−ième terme de la suite
arithmétique (un) de premier terme u0 = u0 et de raison r ”””

3 u=u0 # Initialisation

4 for k in range(1,n+1) :

5 u=u+r # ou u+=r

6 return u

Enregistrez cette fonction dans un fichier, puis retournez dans la console, exécutez le
fichier et tapez les instructions suivantes :

☞ suite arithmetique(12, 3,−2) ☞ 3− 2× 12

Exercice 1: Compléter la fonction suivante :

1 def suite geometrique(n, u0, q) :

2 ””” Cette fonction calcule et renvoie le n−ième terme de la suite
géométrique (un) de premier terme u0 = u0 et de raison q ”””

3 u=u0 # Initialisation

4 for k in range(1,n+1) :

5 · · ·

6 return u

Exercice 2: Ecrire une fonction suite aritmetico geometrique(n, u0, a, b) qui calcule et
renvoie le n−ième terme de la suite arithmético-géométrique (un) de premier terme
u0 = u0 et définie par : ∀n ∈ N, un+1 = aun + b

Exercice 3: Ecrire une fonction recudouble(n, a, b, alpha, beta) qui donne la valeur de un

pour un n donné avec :

un+2 = αun+1 + βun, u0 = a, u1 = b, α = alpha, β = beta

Tester la fonction avec α = β = a = b = 1, et déterminer une valeur approchée de
un+1

un

pour les grandes valeurs de n. Comparer avec le nombre d’or.

Exercice 4: Modifier la fonction précédente pour renvoyer la liste [u0, u1, · · · , un] au lieu
de simplement un.

II Sommes et produits

1 def somme carre(n) :

2 ””” Cette fonction calcule et renvoie la somme des n premiers
carrés, 1 ∗ ∗2 + 2 ∗ ∗2 + · · ·+ n ∗ ∗2 ”””

3 s=0 # Initialisation

4 for k in range(n+1) :

5 s=s+k**2 # ou s+=k**2

6 return s

Enregistrez cette fonction dans un fichier, puis retournez dans la console, exécutez le
fichier et tapez les instructions suivantes :

☞ s = somme carre(7) ☞ s ☞ t = 7 ∗ 8 ∗ 15/6 ☞ t

Exercice 5: Ecrire une fonction sommeimpair(n) qui étant un entier n donné, renvoie la

valeur de

n
∑

k=0

(2k + 1).

Tester cette fonction avec quelques valeurs de n, puis conjecturer le résultat général.
Vérifier votre hypothèse.

Exercice 6: Ecrire une fonction sommegeo(n, x) qui étant donnés un entier n et un réel

x, renvoie la valeur de
n
∑

k=0

xk.

Tester cette fonction avec des grandes valeurs de n et différentes valeurs de x. Que peut-on
conjecturer sur les limites éventuelles de cette somme quand [n → +∞].
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Exercice 7: Ecrire une fonction factorielle(n) qui étant un entier n donné, renvoie la
valeur de n!.
Tester cette fonction avec quelques valeurs de n.

Exercice 8: Ecrire une fonction c = coeffbinome(n, p) qui étant donnés deux entiers n et

p, renvoie la valeur de

(

n

p

)

.

Que renvoie la fonction avec n = 10000 et p = 1? Puis avec n = 50000 et p = 1?
On peut mesurer le temps d’exécution d’un programme avec les instructions suivantes :
from time import perf counter
Dans la console :
☞ t1 = perf counter(); c = coeffbinome(100000, 1); t2 = perf counter(); print(t2 − t1)
Etes-vous capable de faire ce calcul de tête ? Améliorer alors la fonction en constatant

que :

(

n

p

)

=
n!

p!(n− p)!
=

n× (n− 1)× . . .× (n− p+ 1)

p× (p− 1)× . . .× 1
(

n

p

)

=
n− p+ 1

1
×

n− p+ 2

2
× . . .×

n− p+ p

p

Exercice 9: En utilisant la fonction donnant

(

n

k

)

écrite précédemment, écrire une fonc-

tion
sommebinome(n, a, b) qui étant donnés un entier n et deux réels a et b, renvoie la valeur

de

n
∑

k=0

(

n

k

)

akbn−k. Comparer le résultat obtenu avec la valeur de (a+ b)n.

Ecrire une fonction sommebinomepair(n) qui étant donnés un entier n, renvoie la valeur

de

n
∑

0≤2k≤n

(

n

2k

)

. Conjecturer le résultat général.

Exercice 10: Ecrire une fonction doubleproduit(n) qui étant un entier n donné, renvoie

la valeur de
∏

1≤i,j≤n

ij. Tester cette fonction avec quelques valeurs de n, puis conjecturer

le résultat général. Vérifier votre hypothèse.

III La suite de Syracuse

Exercice 11: L’algorithme de Syracuse consiste à itérer l’opération suivante : à un nombre
entier n, on associe n/2 si n est pair et 3n+ 1 si n est impair. On conjecture (on ne sait
toujours pas si c’est vrai) que quelque soit l’entier considéré initialement dans cet algo-
rithme, on arrive toujours à 1 après un certain nombre d’itérations. C’est en tout cas vrai
pour tous les entiers avec lesquels l’algorithme a été testé.
Notons qu’alors la suite devient périodique : 1, 4, 2, 1, 4, 2, 1, 4, 2, · · · .

a Ecrire une fonction recu(n, a) qui calcule et renvoie le n−ième terme de la suite de
Syracuse avec u0 = a ∈ N.

b Ecrire une fonction reculiste(n, a) qui calcule et renvoie la liste des n premiers termes
de la suite de Syracuse avec u0 = a ∈ N.

c Ecrire une fonction syracuse(a) qui calcule et renvoie le premier entier n tel que un = 1.

d Ecrire une fonction maxisyracuse(a) qui calcule et renvoie la valeur maximale atteinte
par la suite de Syracuse initialisée par u0 = a ∈ N.

e Ecrire une fonction longueursyracuse(n) qui calcule et renvoie l’entier a ≤ n pour lequel
la suite de Syracuse compte le plus grand nombre de termes avant 1.
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