
Lycée B. Franklin TP PYTHON - Représentations graphiques PTSI

I Représentation de courbes

I.1 Graphe point par point

Python fait du dessin point par point et les relie avec des segments de droite. Pour
obtenir une courbe lisse, il faut un nombre élevé de points, par contre pour une droite 2
suffisent !
Dans un premier temps, on importe les modules nécessaires : import numpy as np et
import matplotlib.pyplot as plt.

La fonction plt.plot() est la plus importante pour tracer des graphiques ! Elle prend
en argument deux listes de même taille :

plt.plot([x1, · · · , xn], [y1, · · · , yn])

produit l’affichage d’une ligne brisée reliant les points (x1, y1), (x2, y2), · · · , (xn, yn).
Pour voir cette courbe, on utilise l’instruction plt.show().
En clair la première liste est celle des abscisses et la seconde celle des ordonnées.

Exercice 1: Tapez les instructions suivantes :

☞ x = [−2, 1, 2, 4, 6] ☞ y = [4, 2,−3, 5, 2] ☞ plt.plot(x, y) ☞ plt.show()
☞ plt.plot([−1, 2, 5, 1, 4, 2, 3, 0]) ☞ plt.show()

Après avoir affiché un graphique, il faut fermer la fenêtre pour en faire un nouveau. Si
on enchâıne les instructions plot(...) sans les afficher, les graphiques vont se superposer en
changeant de couleur au moment de l’affichage. Si l’on ne précise pas de liste y, Python
considère que par défaut la première liste est [0, 1, · · · , n− 1].

Si l’on veut définir plusieurs figures, on peut les numéroter avec la commande suivante
plt.f igure(n) où n est le numéro de la figure.

Exercice 2: Tapez les instructions suivantes :

☞ plt.f igure(1) ☞ x = [1, 2, 6] ☞ y = [−4, 2,−1] ☞ plt.plot(x, y)☞ plt.show()
☞ plt.f igure(2) ☞ u = [−1, 3, 5] ☞ v = [0, 4, 0] ☞ plt.plot(u, v)☞ plt.show()

La commande plt.close() ferme la figure en cours, la commande plt.close(′all′) ferme
toutes les fenêtres.

I.2 Graphe d’une fonction

On commence par créer un tableau des abscisses avec au choix les deux commandes
suivantes :

x = np.arange(xmin, xmax, pas) ou x = np.linspace(xmin, xmax, nbpoints)

Avec la commande arange, on crée un tableau de nombres compris entre a (inclus)
et b (exclus) avec un pas de r, ie les nombres a, a + r, a + 2r, · · · en s’arrêtant à a + kr
tel que a+ kr < b inf a+ (k + 1)r
Avec la commande linspace, on crée un tableau de n nombres compris entre a (inclus)

et b (inclus) avec un pas de pas =
b− a

n− 1
, ie les nombres a, a+ pas, a+ 2 ∗ /pas, · · · , a+

(n− 1) ∗ pas = b.
Avec des valeurs entières, la fonction arange est similaire à la fonction range mais ren-
voie un tableau au lieu d’une liste.
Avec un pas non entier, il est conseillé d’utiliser la fonction linspace.
Par défaut, le nombre de points est égal à 50.

Exercice 3: Tapez les instructions suivantes :

☞ t1 = np.arange(1, 17, 2) ☞ t2 = np.arange(0.2, 4.5)
☞ t3 = np.linspace(1, 25, 12) ☞ t4 = np.linspace(−pi, pi)

On crée alors le tableau des ordonnées par l’instruction : y = f(x)

Pour créer le graphique de la fonction f , on utilise la fonction plot : plt.plot(x, y)

Exercice 4: Editez les instructions suivantes et testez-les :

1 x=np.arange(0,4*pi,0.01)

2 y1=np.sin(x)

3 y2=np.cos(x)

4 plt.plot(x,y1,’r’) # trace en rouge

5 plt.plot(x,y2)

6 plt.xlim(0,4*pi) ; plt.ylim(-1,1) # délimite le cadre

7 plt.xlabel(”Abscisses”)

8 plt.title(”Fonctions circulaires”)

9 plt.show()

1/2

Lycée B. Franklin TP PYTHON - Représentations graphiques PTSI

Exercice 5: Ecrire un code qui dessine la fonction exponentielle sur l’intervalle [−2, 2].
Sur le même graphe, on dessinera les fonctions polynômiales suivantes de degrés respectifs
0,1, 2 et 3 :

f0 : x 7→ 1, f1 : x 7→ 1 + x, f2 : x 7→ 1 + x+
x2

2
, f3 : x 7→ 1 + x+

x2

2
+

x3

6

Que peut-on constater au voisinage de 0 ?

La fonction plot possède des options, concernant la couleur, le style des points ou
des droites, en tapant help(plt.plot) dans le shell, vous pourrez faire des essais sur les
différentes possibilités offertes.
On peut par exemple placer plusieurs graphiques sur une même fenêtre avec la com-
mande plt.subplot (en français : sous-graphique). Dans plt.subplot on précise 3 chiffres :
le nombre de lignes, le nombre de colonnes et le numéro de la case qu’on ouvre.

Exercice 6: Editez les instructions suivantes et testez-les :

1 plt.close(’all’)

2 plt.figure(1)

3 x=np.linspace(0,1,100) # Création d’un tableau d’abscisses

4 plt.subplot(2,2,1) # on coupe la fenêtre en 4 : premier graphique

5 plt.plot([1,1],linewidth=10) # on force le trait

6 plt.xlim(0,1) ; plt.ylim(0,1)

7 plt.subplot(2,2,2) # Deuxième graphique

8 plt.plot(x,x,’ro’) # Un peu de couleur et des gros points

9 plt.subplot(2,2,3) # Troisième graphique

10 plt.plot(x,x**2,color=[0.8,0.1,0.7]) # on peut fabriquer la couleur que l’on
veut

11 plt.legend([”Carrée”],loc=0) # Légende

12 plt.subplot(2,2,4) # Dernier graphique

13 plt.plot(x,x**3,’g–’,linewidth=0.5)

14 plt.text(0.2,0.5,’Fonction $x\mapsto xˆ3$’) # on place du texte où l’on
veut, et même du code LaTeX

15 plt.show()

II Exercices :

Exercice 7: Créer une fonction monomes(N) qui représente les fonctions x : x 7→ xk pour
k = 1, · · · , n, si possible avec une légende.

Exercice 8: Exemple de suite récurrente : un+1 = f(un) avec f : I → I et u0 ∈ I (I
intervalle de R).

Créez une fonction recurrente(f,u0,N,a,b) qui produit la représentation en escalier de
la suite (un) :
Plus précisément cette fonction devra :

•tracer le graphe de f entre a et b.

•tracer la bissectrice d’équation y = x.

•tracer les deux axes (Ox) et (Oy) en noir.

•afficher une grille de graduation.

•tracer, avec une ligne continue et des marqueurs, l’escalier ou l’escargot représentant la
suite (un)

On peut que les points en question ont pour coordonnées successives :

(u0, u0), (u0, u1), (u1, u1), (u1, u2), · · · , (un−1, un−1), (un−1, un), (un, un)

On testera notre fonction avec les fonctions suivantes : f = cos, f(x) =
1

4
x2 +

3

4
, · · · .

2/2

	Représentation de courbes
	Graphe point par point
	Graphe d'une fonction

	Exercices :

