
Lycée B. Franklin TP PYTHON - Algorithmes de tris et applications PTSI

Dans ce TP, nous verrons quelques méthodes de tris de listes ainsi que certaines applications.

I Algorithmes de tris

On cherche à créer un algorithme pour trier une liste de nombres, c’est-à-dire une
façon d’ordonner les valeurs d’une liste L dans l’ordre croissant. L’enjeu en général est de
le faire avec un temps d’exécution qui soit le plus court possible, c’est-à-dire en faisant le
moins d’opérations possibles. On commence par une fonction auxiliaire utilisé dans l’une
des méthodes de tris.

Exercice 1: Ecrire une fonction maximum(L) qui recherche l’élément maximum (maxi)
d’une liste L ainsi que sa place (maxind) dans la liste.
Cette fonction renverra maxi et maxind.
Comparer avec la fonction max de Python.

I.1 Tri par sélection :

trier une liste L, c’est échanger le plus grand élément de L avec l’élément à la dernière
place et recommencer sur la sous-liste formée par L modifiée auquel on a retiré le dernier
élément.

C’est la méthode de tri courante pour le tri manuel d’un petit nombre d’éléments,
employée par exemple pour trier un paquet de n copies : on cherche le plus grand élément
et on le place en queue de paquet en l’échangeant avec le dernier élément. Il ne reste plus
qu’à recommencer avec le paquet restant des n− 1 premières copies.

Description de l’algorithme :
k ← n− 1
Tant que k > 0

Déterminer l’indice, maxind, du plus grand élément parmi L[0] à L[k]
Permuter L[maxind] et L[k]
k ← k − 1

FinTantque

Pour déterminer maxind, il vous suffira d’exploiter la fonction maximum écrite ci-
dessus.

Exemple : Si L=[4, 5, 1, 2], l’algorithme va agir ainsi :

•k = 1, maxind = 1. On échange L[maxind] avec L[3], L devient [4, 2, 1, 5]

•k = 2, maxind = 0. On échange L[maxind] avec L[2], L devient [1, 2, 4, 5]

•k = 3, maxind = 1. On échange rien du tout, L était déjà trié.

Comprendre l’algorithme, puis écrire la fonction triselection(L) qui renvoie une
liste triée.
Tester son efficacité en l’utilisant dans le shell.
Installer temporairement dans la fonction suffisamment d’affichages intermédiaires pour
visualiser le processus de tri exploité.

I.2 Tri par insertion :

trier une liste L c’est insérer un à un les éléments en bonne place dans le tri des autres.

Le tri par insertion est la méthode naturellement employée lorsque le tri se fait au
fur et à mesure de la saisie des données, par exemple le tri de cartes à jouer qui sont
distribuées une à une . Si les k − 1 premières cartes en main sont déjà triées, il s’agit de
placer la k-ième. Il faut alors d’abord déterminer sa place parmi les k cartes puis faire
les décalages nécessaires à son placement.

Pour des données stockées dans une liste L à n éléments il s’agit, en commençant par
le deuxième élément, de considérer chaque élément comme la valeur que l’on souhaite
insérer. On regarde ensuite dans les éléments qui le précède celui qui est plus petit et on
décale les autres à partir de cet élément.
On obtient ainsi l’algorithme suivant :

T=[0, · · · , 0]
T[0]← L[0]
Pour k = 1 à n− 1

Element← L[k]
p← k − 1
Tant que p >= 0 et T [p] > Element

Décaler T[p] vers la droite
p← p− 1

FinTantque
Placer Element au bon endroit FinPour

Exemple : Si L=[4, 5, 1, 3], l’algorithme va agir ainsi :

•k = 1, alors Element=5 et comme L[1] >L[0], on laisse Element en place 1, T=[4, 5, 0, 0]

1/3



Lycée B. Franklin TP PYTHON - Algorithmes de tris et applications PTSI

•k = 2, alors Element=1, p = 1 et l’on va entrer deux fois dans la boucle tant que, si
bien que T devient T=[1, 4, 5, 0]

•k = 2, alors Element=3, p = 2 et l’on va entrer deux fois dans la boucle tant que
(3 < 5, 3 < 4, mais 3 > 1), si bien que T devient T=[1, 3, 4, 5] et le tableau est trié.

Comprendre l’algorithme, puis écrire la fonction triinsertion(L) qui renvoie une
liste triée.
Tester son efficacité en l’utilisant dans le shell.
Installer temporairement dans la fonction suffisamment d’affichages intermédiaires pour
visualiser le processus de tri exploité.

I.3 Tri par comptage :

on veut trier une liste L qui contient les nombres de 0 à p

L’idée est de compter le nombre d’occurrences de chaque nombre.

•On crée un tableau C de p+ 1 valeurs, initialisé avec des 0

•On traverse L et on compte le nombre de fois où chaque élément est présent en
incrémentant le tableau C à la place de l’élément

•Ensuite on balaie le tableau C et on copie autant de fois une valeur qu’elle apparait
dans C

Exemple : si L = [1, 5, 6, 5, 5, 6, 3], on peut compter :
0 1 2 3 4 5 6
0 1 0 1 0 3 2

On

a donc : C = [0, 1, 0, 1, 0, 3, 2] et on obtient le tableau trié : T = [1, 3, 5, 5, 5, 6, 6]

I.4 Tri par bulle :

Tant qu’il existe un couple d’éléments consécutifs qui n’est pas dans le bon ordre,
parcourir la liste en échangeant les éléments consécutifs qui ne sont pas dans le bon ordre.

Exemple :

3 4 8 1 7 2 9 5 liste de départ
3 4 1 7 2 8 5 9 8 et 9 se déplacent vers la droite
3 1 4 2 7 5 8 9 4, 7 et 8 remontent
1 3 2 4 5 7 8 9 3, 4 et 7 remontent
1 2 3 4 5 7 8 9 liste triée

On commence par parcourir la liste L en comparant deux par deux les éléments
successifs de L, si L[k] >L[k + 1] alors on permute ces deux éléments. Ainsi lorsque k

aura parcouru les valeurs de 1 à n− 1, L[n] contiendra le plus grand élément de L !
Il reste à réitérer le procédé sur L pour k allant de 1 à n− 2, puis de 1 à n− 3, etc...

Description de l’algorithme :
T← L # On duplique L
Pour j = 0 à n− 2

Pour k = 0 à n− 2− j

si T[k] > T[k + 1] alors
permuter T[k] et T[k + 1]

FinPour
FinPour

Comprendre l’algorithme, puis écrire la fonction tribulle(L) qui renvoie une liste
triée.
Tester son efficacité en l’utilisant dans le shell.
Installer temporairement dans la fonction suffisamment d’affichages intermédiaires pour
visualiser le processus de tri exploité.

Amélioration : Si L est déjà triée la boucle sur n s’exécute néanmoins ! Or il est
possible de détecter que la liste est finalement triée, en effet lors du parcours sur L il n’y
aura alors aucune permutation !

Installer dans tribulle une variable Stop, dite ” drapeau ”, de valeur 1 en début de
boucle sur n, et prenant la valeur 0 dès qu’une permutation est faite.
Modifier alors la boucle Pour sur j en boucle Tant que et rajouter une condition sur le
drapeau pour éviter de parcourir la boucle lorsque le tableau est trié.
Tester l’efficacité de cette modification.

On peut mesurer le temps d’exécution d’un programme avec les instructions suivantes :

from time import perf counter

from random import shuffle Dans le shell :
☞ L=list(range(1,10000))
☞ shuffle(L) ☞ t1=perf counter() ;T=tribulle(L) ;t2= perf counter() ;print(t2-t1)

Comparer avec la fonction sorted de numpy.

II Applications

II.1 Recherche dichotomique

Soit une liste L, contenant plusieurs éléments. On désire savoir à quel endroit se
trouve un élément particulier x dans L.
Lorsque l’on recherche un élément dans un tableau, si celui-ci est dans un ordre aléatoire,

2/3



Lycée B. Franklin TP PYTHON - Algorithmes de tris et applications PTSI

il faut examiner chaque élément.
Par contre, si le tableau est trié, on peut en tirer profit pour aller beaucoup plus vite :
c’est l’algorithme de recherche dichotomique qui fait l’objet de cet exercice.

Au démarrage, on cherche x dans toute la liste. Si on note n = len(L), alors l’intervalle
de recherche commence à l’indice debut = 0 et finit à l’indice fin = n-1.
L’idée est de diviser par deux l’intervalle de recherche, en regardant la valeur prise par
l’élément en milieu d’intervalle (d’indice milieu = (debut+fin)//2).
Pour trouver l’algorithme, posez-vous la question de ce qu’il faut faire pour définir le
nouvel intervalle de recherche si :

•x = L[milieu] ?

•x < L[milieu] ?

•x > L[milieu]

Exercice 2: Ecrire la fonction recherche tri(L,x) qui, étant donnée une liste L (triée)
et un élément x (nombre en général, mais on peut imaginer une lettre) renverra un indice
correspondant à la place de x s’il est effectivement dans la liste et False sinon.
Tester cette fonction avec des listes triées, par exemple w = list(range(1, 1000, 7)).
On pourra à ce propos écrire une fonction qui teste si une liste donnée L de réels est bien
ordonnée.

II.2 Calcul de la médiane

La médiane d’une liste est la valeur qui se trouve précisément au milieu de la liste,
une fois celle-ci triée (dans le cas où la liste est de longueur paire, la médiane est la
moyenne entre les deux valeurs du milieu de la liste). Par exemple :

•si L=[4, 5, 88, 74, 15, 2, 61], la médiane est 15.

•si L=[4, 5, 88, 74, 15, 2, 61, 23], la médiane est
15 + 23

2
= 19.

Exercice 3: Ecrire une fonction mediane(L) qui étant donnée une liste de nombres L
renvoie la médiane de cette liste.

Exercice 4: Ecrire une fonction medianeffectif (L,E) qui étant donnée une liste de
nombres L triée et une liste E correspondants aux effectifs de chaque modalité de L
renvoie la médiane de cette série statistique.
Comment faire si L n’est pas triée ?

3/3


	Algorithmes de tris
	Tri par sélection :
	Tri par insertion :
	Tri par comptage :
	Tri par bulle :

	Applications
	Recherche dichotomique
	Calcul de la médiane


