Plan du chapitre : introduction a la récursivité

@ Définition et exemple de base
@ Définition - Vocabulaire
@ Premiers exemples de base
@ Analyse d'un exemple : la suite de Fibonnaci

© Intérét et limitation de la récursivité
@ Consommation et performance
o Facilité et lisibilité

© Programmation récursive de la dichotomie
@ Programmation itérative
@ Réécriture de la fonction
@ Performances en temps de la fonction

e FElToTy) G, 2P Vi

DT RTRSTTIAY: N PPl Définition - Vocabulaire

Notion de récursivité

Q Jusqu'a présent, lorsque nous avons écrit des fonctions elles étaient
constitués d'une suite d’instructions qui devaient étre exécutées a
I'appel de la fonction avec, souvent, une itération d'un certain
nombres d’entre elles 4 I'aide de boucles. Par exemple on peut ainsi
programmer le calcul du factoriel d'un entier :

e FElTiTy) G, 2P Y

DT RTRSTTIAY: N PPl Définition - Vocabulaire

Notion de récursivité

Q Jusqu'a présent, lorsque nous avons écrit des fonctions elles étaient
constitués d'une suite d’instructions qui devaient étre exécutées a
I'appel de la fonction avec, souvent, une itération d'un certain
nombres d’entre elles 4 I'aide de boucles. Par exemple on peut ainsi
programmer le calcul du factoriel d'un entier :

def factoriel_iteratif(n : int) -> int
#n : type int
condition : n>0

a =1

for k in range(n+1)
a = axk

return a

e FElTiTy) G, 2P Y

DT RTRSTTIAY: N PPl Définition - Vocabulaire

Notion de récursivité

Q Jusqu'a présent, lorsque nous avons écrit des fonctions elles étaient
constitués d'une suite d’instructions qui devaient étre exécutées a
I'appel de la fonction avec, souvent, une itération d'un certain
nombres d’entre elles 4 I'aide de boucles. Par exemple on peut ainsi
programmer le calcul du factoriel d'un entier :

def factoriel_iteratif(n : int) -> int
#n : type int
condition : n>0

a =1

for k in range(n+1)
a = axk

return a

Q@ Mais il serait possible aussi de penser au fait que :
(n+ 1) = (n+1) x n! et que donc, pour calculer le factoriel d'un
entier la fonction va "s'appeler elle méme" |

Q@ En informatique, on dit qu'une fonction est récursive si I'une des
instructions qu’'elle contient fait appel a la fonction elle-méme.

e FElToTy) G, 2P

2/15

DTS AW N PPl Premiers exemples de base

Premier exemple : |

Q@ Reprenons I'exemple de la fonction factorielle qui est
"naturellement" de ce type du fait que :

n! =nx (n—1)!
fonction pour n fonction pour n—1

Q@ On donne ci-dessous I'exemple d'une fonction calculant n! pour n
entier naturel

def factoriel_recursif(n:int)->int
cette condition assure que les
appels successifs vont s'arréter.
if n ==
return 1
else
la fonction wva renvoyer le
résultat d'un appel a elle méme
return n*factoriel_recursif(n-1)

e FElTeTy) G, 2P Sy

DTS AW N PPl Premiers exemples de base

Premier exemple : |l

@ On notera la présence dans cette fonction de la condition de
terminaison qui doit assurer que les appels a la fonction ne vont pas
continuer indéfiniment.

© Si on notre condition de terminaison n’est pas correcte (ou absente)
comme par exemple dans la fonction suivante :
def factoriel_recursif(n)
if n ==
return 1
else
la fonction wa renvoyer le
résultat d'un appel da elle méme
return n*factoriel_recursif (n-1)
factoriel_recursif(5)

Python répond :

RecursionError: maximum recursion depth exceeded in comparis

e FElTeTy) G, 2P YT

DTS AW N PPl Premiers exemples de base

A vous de joueur ...

Compléter la fonction suivante pour qu’elle calcule de maniére récursive
la somme des entiers naturels de 0 a n.

def somme_entier(n)
condition de termimnaison et retour
if
return
else
return

e FElTeTy) G, 2P W

Analyse d'un exemple : la suite de Fibonnaci
Suite de Fibonacci
On considére la suite dite de Finonaci définie par ug = 0,u; = 1 puis

pour n € N par :
Up4+2 = Unt+1 + Up.

@ Ecrire une fonction itérative fibo_iter prenant en paramétre un
entier n et renvoyant la valeur du terme d'indice n de la suite de
Fibonacci

e FElTeTy) G, 2P

6/15

Analyse d'un exemple : la suite de Fibonnaci
Suite de Fibonacci

On considére la suite dite de Finonaci définie par ug = 0,u; = 1 puis
pour n € N par :
Up4+2 = Unt+1 + Up.

@ Ecrire une fonction itérative fibo_iter prenant en paramétre un
entier n et renvoyant la valeur du terme d'indice n de la suite de
Fibonacci
def fibo_iter(n : int)->int

ul,ul = 0,1 #les deuxr derniers termes connus

if n ==
return u0

if n== 1 :
return ul

for k in range(O,n-1) : # le terme d'indice n : n-1 opérat
ul,u0 = uO+ul,ul

return ul

e FElTeTy) G, 2P Y=

DETITTRTRSTI AN N PPl Analyse d'un exemple : la suite de Fibonnaci

Version Récursive

© Programmer une version récursive de cette fonction de la fonction
précédente . fibo_recur

e FElTiTy) G, 2P Y

DETITTRTRSTI AN N PPl Analyse d'un exemple : la suite de Fibonnaci

Version Récursive

© Programmer une version récursive de cette fonction de la fonction
précédente . fibo_recur
def fibo_recur(n:int)->int
if n ==
return 0
if n ==
return 1
return fibo_recur(n-1)+fibo_recur(n-2)

February 9, 2026 7/15

Analyse d'un exemple : la suite de Fibonnaci
Tests de temps

Q@ Pour faire des tests de temps d’exécution d'une série de commandes,
on peut employer le module time et sa fonction time ou sa fonction
perf_counter

tl = time.perf_counter()
commandel
commande?2

commande_finale
temps_execution = time.perf_coutner()-t1

e FElTeTy) G, 2P Y

Analyse d'un exemple : la suite de Fibonnaci
Tests de temps

Q@ Pour faire des tests de temps d’exécution d'une série de commandes,
on peut employer le module time et sa fonction time ou sa fonction
perf_counter

tl = time.perf_counter()
commandel
commande?2

commande_finale
temps_execution = time.perf_coutner()-t1
Q@ On donne les résultats suivants pour les temps de calculs du terme
d'indice 30 :
o temps en itératif : 2.5686999833851587e-05
e temps en récursif : 0.37368287299977965

e FElToTy) G, 2P

8/15

DETITTRTRSTI AN N PPl Analyse d'un exemple : la suite de Fibonnaci
Explication

Dresser sur papier un arbre représentant les appels successifs a la fonction
fibo_recur(6) lors de son exécution.

e FElToTy) G, 2P oY

DETITTRTRSTI AN N PPl Analyse d'un exemple : la suite de Fibonnaci

Explication

Dresser sur papier un arbre représentant les appels successifs a la fonction
fibo_recur(6) lors de son exécution.

e FElToTy) G, 2P oY

DETITTRTRSTI AN N PPl Analyse d'un exemple : la suite de Fibonnaci

Explication

Dresser sur papier un arbre représentant les appels successifs a la fonction
fibo_recur(6) lors de son exécution.

.... commentaires |
] February 9, 2026 9/15

DETITTRTRSTI AN N PPl Analyse d'un exemple : la suite de Fibonnaci

Explication

Dresser sur papier un arbre représentant les appels successifs a la fonction
fibo_recur(6) lors de son exécution.

.... commentaires |
] February 9, 2026 9/15

DETITTRTRSTI AN N PPl Analyse d'un exemple : la suite de Fibonnaci

Explication

Dresser sur papier un arbre représentant les appels successifs a la fonction
fibo_recur(6) lors de son exécution.

.... commentaires |
] February 9, 2026 9/15

TN T DY PRTSSTTEHY T Consommation et performance

Limitation de la pile d'appels

@ On a déja vu que les performance en temps n’étaient pas forcément
meilleures
© L'autre probléme est celui de la pile d'appel

e T Y

TN T DY PRTSSTTEHY T Consommation et performance

Limitation de la pile d'appels

@ On a déja vu que les performance en temps n’étaient pas forcément
meilleures
© L'autre probléme est celui de la pile d'appel
© Par exemple pour la fonction suivante qui calcule les termes d'une
suite arithmético-géométrique :
def suite(a,b,u,n)
if n ==
return u
else
on relance la fonction a partir
de la valeur suivante de la suite
mais en calculant un terme de moins
return suite(a,b,a*utb,n-1)
@ L'appel suivant : suite(-1,2,1,1000) engendre I'erreur suivante :
RecursionError: maximum recursion depth exceeded in comparis
© Qui signifie qu'on a dépassé le maximum d'appels successif de la
fonction elle méme : ce qu’on appelle la profondeur de la pile
d'appels.

Ama fAanrtian nraarammaa Aa mAanidra itarativa
February 9, 2026 10/ 15

Intérét et limitation de la récursivite [EEIHIRIR A

On traitera en TP des exemples plus soutenus trop longs a traiter ici.

Mais on peut souligner que dans certains cas, la récursivité donne
une programmation beaucoup plus facile a écrire.

Prenons par exemple le cas de la fonction de Ackerman qui est une
fonction définie sur les couples d’entiers naturels (m,n) par :

n+1 si o m=0
A(m,n) = A(m —1,1) si m>0 et n=0
Am—1,A(m,n—1)) si m>0 et n>0

La programmation récursive est trés naturelle :

e FElTeTy) G, 2P

11/15

Intérét et limitation de la récursivite [EEIHIRIR A

@ On traitera en TP des exemples plus soutenus trop longs a traiter ici.

@ Mais on peut souligner que dans certains cas, la récursivité donne
une programmation beaucoup plus facile a écrire.

@ Prenons par exemple le cas de la fonction de Ackerman qui est une
fonction définie sur les couples d’entiers naturels (m,n) par :

n+1 si o m=0
A(m,n) = A(m —1,1) si m>0 et n=0
Am—1,A(m,n—1)) si m>0 et n>0

Q La programmation récursive est trés naturelle :
def A(m,n)

if m ==
return n + 1

elif n == 0
return A(m-1,1)

else
return A(m-1,A(m,n-1))

] February 9, 2026 11/15

[L L R A CA I LI T T Programmation itérative

Dichotomie en itératif

@ Ecrire une fonction itérative qui prend en argument les bornes a,b
d'un intervalle une précision p et une fonction £, et qui renvoie une
valeur approché a p prés d'une solution de £ (x)=0 obtenue par
dichotomie sur l'intervalle [a,b].

@ Syntaxe dicho_iter(a,b,p,f)

e T Y

[L L R A CA I LI T T Programmation itérative

Dichotomie en itératif

@ Ecrire une fonction itérative qui prend en argument les bornes a,b
d'un intervalle une précision p et une fonction £, et qui renvoie une
valeur approché a p prés d'une solution de £ (x)=0 obtenue par
dichotomie sur l'intervalle [a,b].

@ Syntaxe dicho_iter(a,b,p,f)
def dicho_iter(a,b,p,f)

e T Y

[L L R A CA I LI T T Programmation itérative

Dichotomie en itératif

@ Ecrire une fonction itérative qui prend en argument les bornes a,b
d'un intervalle une précision p et une fonction £, et qui renvoie une
valeur approché a p prés d'une solution de £ (x)=0 obtenue par
dichotomie sur l'intervalle [a,b].

@ Syntaxe dicho_iter(a,b,p,f)
def dicho_iter(a,b,p,f)

while b-a> p :

e T Y

[L L R A CA I LI T T Programmation itérative

Dichotomie en itératif

@ Ecrire une fonction itérative qui prend en argument les bornes a,b
d'un intervalle une précision p et une fonction £, et qui renvoie une
valeur approché a p prés d'une solution de £ (x)=0 obtenue par
dichotomie sur l'intervalle [a,b].

@ Syntaxe dicho_iter(a,b,p,f)
def dicho_iter(a,b,p,f)

while b-a> p :
m = (atb)/2
val = f(m)*f(a)

e T Y

[L L R A CA I LI T T Programmation itérative

Dichotomie en itératif

@ Ecrire une fonction itérative qui prend en argument les bornes a,b
d'un intervalle une précision p et une fonction £, et qui renvoie une
valeur approché a p prés d'une solution de £ (x)=0 obtenue par
dichotomie sur l'intervalle [a,b].

@ Syntaxe dicho_iter(a,b,p,f)
def dicho_iter(a,b,p,f)

while b-a> p :
m = (atb)/2
val = f(m)*f(a)
if val <= 0 : # f(m) et f(a) de signes différents
b=m

e T Y

Dichotomie en itératif

@ Ecrire une fonction itérative qui prend en argument les bornes a,b
d'un intervalle une précision p et une fonction £, et qui renvoie une
valeur approché a p prés d'une solution de £ (x)=0 obtenue par
dichotomie sur l'intervalle [a,b].

@ Syntaxe dicho_iter(a,b,p,f)
def dicho_iter(a,b,p,f)

while b-a> p :

m = (atb)/2

val = f(m)*f(a)

if val <= 0 : # f(m) et f(a) de signes différents
b=m

else : # f(m) et f(a) de méme signe

donc f(m) de signe différent de f(b)
a=m # du coup on a encore f(a)*f(b)<= 0

e T Y

Dichotomie en itératif

@ Ecrire une fonction itérative qui prend en argument les bornes a,b
d'un intervalle une précision p et une fonction £, et qui renvoie une
valeur approché a p prés d'une solution de £ (x)=0 obtenue par
dichotomie sur l'intervalle [a,b].

@ Syntaxe dicho_iter(a,b,p,f)
def dicho_iter(a,b,p,f)

while b-a> p :

m = (atb)/2

val = f(m)*f(a)

if val <= 0 : # f(m) et f(a) de signes différents
b=m

else : # f(m) et f(a) de méme signe

donc f(m) de signe différent de f(b)
a=m # du coup on a encore f(a)*f(b)<= 0

return xmin

e T Y

Programmation récursive de la dichotomie I ITICN: CRCRCLEIEL]

Version récursive

Q@ Mais en fait cette méthode de dichotomie est récursive dans le sens
ou on la recommence a chaque étape sur un nouvel intervalle plus
petit

@ Programmer une version récursive de la méthode de dichotomie.

e T Y

Programmation récursive de la dichotomie I ITICN: CRCRCLEIEL]

Version récursive

Q@ Mais en fait cette méthode de dichotomie est récursive dans le sens
ou on la recommence a chaque étape sur un nouvel intervalle plus

petit
@ Programmer une version récursive de la méthode de dichotomie.
© Cela donne :

def dichotomie(a,b,p,f)

e T Y

Programmation récursive de la dichotomie I ITICN: CRCRCLEIEL]

Version récursive

Q@ Mais en fait cette méthode de dichotomie est récursive dans le sens
ou on la recommence a chaque étape sur un nouvel intervalle plus
petit

@ Programmer une version récursive de la méthode de dichotomie.

Q Cela donne :
def dichotomie(a,b,p,f)
condition de terminaison :

l'écart entre a et b est inférieur
a la précision p demandée.

e T Y

Programmation récursive de la dichotomie I ITICN: CRCRCLEIEL]

Version récursive

Q@ Mais en fait cette méthode de dichotomie est récursive dans le sens
ou on la recommence a chaque étape sur un nouvel intervalle plus
petit

@ Programmer une version récursive de la méthode de dichotomie.

Q Cela donne :
def dichotomie(a,b,p,f)
condition de terminaison :
l'écart entre a et b est inférieur
a la précision p demandée.
if (b-a) <= p :
return a,b

e T Y

Programmation récursive de la dichotomie I ITICN: CRCRCLEIEL]

Version récursive

Q@ Mais en fait cette méthode de dichotomie est récursive dans le sens
ou on la recommence a chaque étape sur un nouvel intervalle plus
petit

@ Programmer une version récursive de la méthode de dichotomie.

Q Cela donne :
def dichotomie(a,b,p,f)
condition de terminaison :
l'écart entre a et b est inférieur
a la précision p demandée.
if (b-a) <= p :
return a,b
elif f(a)*f((a+b)/2)< O :
return dichotomie(a, (atb)/2,p,f)

e T Y

Programmation récursive de la dichotomie I ITICN: CRCRCLEIEL]

Version récursive

Q@ Mais en fait cette méthode de dichotomie est récursive dans le sens
ou on la recommence a chaque étape sur un nouvel intervalle plus
petit

@ Programmer une version récursive de la méthode de dichotomie.

Q Cela donne :
def dichotomie(a,b,p,f)
condition de terminaison :
l'écart entre a et b est inférieur
a la précision p demandée.
if (b-a) <= p :
return a,b
elif f(a)*f((a+b)/2)< O :
return dichotomie(a, (atb)/2,p,f)
else
return dichotomie((at+b)/2,b,p,f)

e T Y

L L T R L K CR O (LS T Performances en temps de la fonction

Mesures de temps d'exécutions

Q@ Test fait sur ma machine pour 10000 répétition de la fonction
précédente avec une précision demandée en 2719 et avec la fonction :

x— x?— 2.

@ O Temps avec la fonction écrite sous forme récursive :
0.0759272575378418.
@ Temps avec la fonction écrite sous forme itérative :
0.05460977554321289.
Q Sur cet exemple il y aurait plutét une perte de performance en
temps.

Q@ Mais ce n'est pas une question de nombre théorique d'opérations car
il reste en : constante xk pour une précision de 27%. (on le
démontrera précisément plus tard).

e T

Performances en temps de la fonction
Retour sur le probléme des calculs inutiles

o Ecrire une version récursive du calcul des termes de la suite de
Fibonacci mais cette fois en ajoutant dans votre fonction la
mémorisation des éléments déja calculés dans une liste ... et en
faisant un retour directement si I'élément demandé est déja dans la
liste !

e T Y

Performances en temps de la fonction
Retour sur le probléme des calculs inutiles

o Ecrire une version récursive du calcul des termes de la suite de
Fibonacci mais cette fois en ajoutant dans votre fonction la
mémorisation des éléments déja calculés dans une liste ... et en
faisant un retour directement si I'élément demandé est déja dans la
liste !

o La fonction aura la syntaxe : fibo_recur(n,memo = None) et elle
renverra les résultats calculés dans la liste memo
def fibo(n, memo=None) :

e T Y

L L T R L K CR O (LS T Performances en temps de la fonction

Retour sur le probléme des calculs inutiles

o Ecrire une version récursive du calcul des termes de la suite de
Fibonacci mais cette fois en ajoutant dans votre fonction la
mémorisation des éléments déja calculés dans une liste ... et en
faisant un retour directement si I'élément demandé est déja dans la
liste !

o La fonction aura la syntaxe : fibo_recur(n,memo = None) et elle
renverra les résultats calculés dans la liste memo
def fibo(n, memo=None) :

Création de la liste de mémorisation une seule fois

if memo is Nome:
memo = [0, 1] + [None] * (n - 1)

e T Y

L L T R L K CR O (LS T Performances en temps de la fonction

Retour sur le probléme des calculs inutiles

o Ecrire une version récursive du calcul des termes de la suite de
Fibonacci mais cette fois en ajoutant dans votre fonction la
mémorisation des éléments déja calculés dans une liste ... et en
faisant un retour directement si I'élément demandé est déja dans la
liste !

o La fonction aura la syntaxe : fibo_recur(n,memo = None) et elle
renverra les résultats calculés dans la liste memo
def fibo(n, memo=None) :

Création de la liste de mémorisation une seule fois
if memo is None:
memo = [0, 1] + [None] * (n - 1)
851 la valeur est déja calculée, on la renvoie
if memo[n] is not None:
return memo [n]

e T Y

L L T R L K CR O (LS T Performances en temps de la fonction

Retour sur le probléme des calculs inutiles

o Ecrire une version récursive du calcul des termes de la suite de
Fibonacci mais cette fois en ajoutant dans votre fonction la
mémorisation des éléments déja calculés dans une liste ... et en
faisant un retour directement si I'élément demandé est déja dans la
liste !

o La fonction aura la syntaxe : fibo_recur(n,memo = None) et elle
renverra les résultats calculés dans la liste memo
def fibo(n, memo=None) :

Création de la liste de mémorisation une seule fois
if memo is None:
memo = [0, 1] + [None] * (n - 1)
851 la valeur est déja calculée, on la renvoie
if memo[n] is not None:
return memo [n]
Sinon on calcule et on stocke dans memo
memo [n] = fibo(n-2, memo) + fibo(n-1, memo)
return memo [n]

e T Y

L L T R L K CR O (LS T Performances en temps de la fonction

Retour sur le probléme des calculs inutiles

o Ecrire une version récursive du calcul des termes de la suite de
Fibonacci mais cette fois en ajoutant dans votre fonction la
mémorisation des éléments déja calculés dans une liste ... et en
faisant un retour directement si I'élément demandé est déja dans la
liste !

o La fonction aura la syntaxe : fibo_recur(n,memo = None) et elle
renverra les résultats calculés dans la liste memo
def fibo(n, memo=None) :

Création de la liste de mémorisation une seule fois
if memo is None:
memo = [0, 1] + [None] * (n - 1)
851 la valeur est déja calculée, on la renvoie
if memo[n] is not None:
return memo [n]
Sinon on calcule et on stocke dans memo
memo [n] = fibo(n-2, memo) + fibo(n-1, memo)
return memo [n]
Ezemple d'utilisation
print (£ibo (35))

e T Y

	Définition et exemple de base
	Définition - Vocabulaire
	Premiers exemples de base
	Analyse d'un exemple : la suite de Fibonnaci

	Intérêt et limitation de la récursivité
	Consommation et performance
	Facilité et lisibilité

	Programmation récursive de la dichotomie
	Programmation itérative
	Réécriture de la fonction
	Performances en temps de la fonction

