
Plan du chapitre : introduction à la récursivité

1 Dé�nition et exemple de base
Dé�nition - Vocabulaire
Premiers exemples de base
Analyse d'un exemple : la suite de Fibonnaci

2 Intérêt et limitation de la récursivité
Consommation et performance
Facilité et lisibilité

3 Programmation récursive de la dichotomie
Programmation itérative
Réécriture de la fonction
Performances en temps de la fonction

February 9, 2026 1 / 15

Dé�nition et exemple de base Dé�nition - Vocabulaire

Notion de récursivité

▶ Jusqu'à présent, lorsque nous avons écrit des fonctions elles étaient
constitués d'une suite d'instructions qui devaient être exécutées à
l'appel de la fonction avec, souvent, une itération d'un certain
nombres d'entre elles à l'aide de boucles. Par exemple on peut ainsi
programmer le calcul du factoriel d'un entier :

def factoriel_iteratif(n : int) -> int :

n : type int

condition : n>0

a = 1

for k in range(n+1) :

a = a*k

return a

▶ Mais il serait possible aussi de penser au fait que :
(n+ 1)! = (n+ 1)× n! et que donc, pour calculer le factoriel d'un
entier la fonction va "s'appeler elle même" !

▶ En informatique, on dit qu'une fonction est récursive si l'une des
instructions qu'elle contient fait appel à la fonction elle-même.

February 9, 2026 2 / 15

Dé�nition et exemple de base Dé�nition - Vocabulaire

Notion de récursivité

▶ Jusqu'à présent, lorsque nous avons écrit des fonctions elles étaient
constitués d'une suite d'instructions qui devaient être exécutées à
l'appel de la fonction avec, souvent, une itération d'un certain
nombres d'entre elles à l'aide de boucles. Par exemple on peut ainsi
programmer le calcul du factoriel d'un entier :

def factoriel_iteratif(n : int) -> int :

n : type int

condition : n>0

a = 1

for k in range(n+1) :

a = a*k

return a

▶ Mais il serait possible aussi de penser au fait que :
(n+ 1)! = (n+ 1)× n! et que donc, pour calculer le factoriel d'un
entier la fonction va "s'appeler elle même" !

▶ En informatique, on dit qu'une fonction est récursive si l'une des
instructions qu'elle contient fait appel à la fonction elle-même.

February 9, 2026 2 / 15

Dé�nition et exemple de base Dé�nition - Vocabulaire

Notion de récursivité

▶ Jusqu'à présent, lorsque nous avons écrit des fonctions elles étaient
constitués d'une suite d'instructions qui devaient être exécutées à
l'appel de la fonction avec, souvent, une itération d'un certain
nombres d'entre elles à l'aide de boucles. Par exemple on peut ainsi
programmer le calcul du factoriel d'un entier :

def factoriel_iteratif(n : int) -> int :

n : type int

condition : n>0

a = 1

for k in range(n+1) :

a = a*k

return a

▶ Mais il serait possible aussi de penser au fait que :
(n+ 1)! = (n+ 1)× n! et que donc, pour calculer le factoriel d'un
entier la fonction va "s'appeler elle même" !

▶ En informatique, on dit qu'une fonction est récursive si l'une des
instructions qu'elle contient fait appel à la fonction elle-même.

February 9, 2026 2 / 15

Dé�nition et exemple de base Premiers exemples de base

Premier exemple : I

▶ Reprenons l'exemple de la fonction factorielle qui est
"naturellement" de ce type du fait que :

n!
fonction pour n

= n× (n− 1)!
fonction pour n−1

▶ On donne ci-dessous l'exemple d'une fonction calculant n! pour n
entier naturel

def factoriel_recursif(n:int)->int :

cette condition assure que les

appels successifs vont s'arrêter.

if n == 0 :

return 1

else :

la fonction va renvoyer le

résultat d'un appel à elle même

return n*factoriel_recursif(n-1)

February 9, 2026 3 / 15

Dé�nition et exemple de base Premiers exemples de base

Premier exemple : II

▶ On notera la présence dans cette fonction de la condition de
terminaison qui doit assurer que les appels à la fonction ne vont pas
continuer indé�niment.

▶ Si on notre condition de terminaison n'est pas correcte (ou absente)
comme par exemple dans la fonction suivante :

def factoriel_recursif(n) :

if n == 7 :

return 1

else :

la fonction va renvoyer le

résultat d'un appel à elle même

return n*factoriel_recursif(n-1)

factoriel_recursif(5)

Python répond :

RecursionError: maximum recursion depth exceeded in comparison

February 9, 2026 4 / 15

Dé�nition et exemple de base Premiers exemples de base

A vous de joueur ...

Compléter la fonction suivante pour qu'elle calcule de manière récursive
la somme des entiers naturels de 0 à n.

def somme_entier(n) :

condition de terminaison et retour

if :

return ...

else :

return

February 9, 2026 5 / 15

Dé�nition et exemple de base Analyse d'un exemple : la suite de Fibonnaci

Suite de Fibonacci

On considère la suite dite de Finonaci dé�nie par u0 = 0, u1 = 1 puis
pour n ∈ N par :

un+2 = un+1 + un.

1 Écrire une fonction itérative fibo_iter prenant en paramètre un
entier n et renvoyant la valeur du terme d'indice n de la suite de
Fibonacci

def fibo_iter(n : int)->int :

u0,u1 = 0,1 #les deux derniers termes connus

if n == 0 :

return u0

if n == 1 :

return u1

for k in range(0,n-1) : # le terme d'indice n : n-1 opérations ...

u1,u0 = u0+u1,u1

return u1

February 9, 2026 6 / 15

Dé�nition et exemple de base Analyse d'un exemple : la suite de Fibonnaci

Suite de Fibonacci

On considère la suite dite de Finonaci dé�nie par u0 = 0, u1 = 1 puis
pour n ∈ N par :

un+2 = un+1 + un.

1 Écrire une fonction itérative fibo_iter prenant en paramètre un
entier n et renvoyant la valeur du terme d'indice n de la suite de
Fibonacci

def fibo_iter(n : int)->int :

u0,u1 = 0,1 #les deux derniers termes connus

if n == 0 :

return u0

if n == 1 :

return u1

for k in range(0,n-1) : # le terme d'indice n : n-1 opérations ...

u1,u0 = u0+u1,u1

return u1

February 9, 2026 6 / 15

Dé�nition et exemple de base Analyse d'un exemple : la suite de Fibonnaci

Version Récursive

1 Programmer une version récursive de cette fonction de la fonction
précédente : fibo_recur

def fibo_recur(n:int)->int :

if n == 0 :

return 0

if n == 1 :

return 1

return fibo_recur(n-1)+fibo_recur(n-2)

February 9, 2026 7 / 15

Dé�nition et exemple de base Analyse d'un exemple : la suite de Fibonnaci

Version Récursive

1 Programmer une version récursive de cette fonction de la fonction
précédente : fibo_recur

def fibo_recur(n:int)->int :

if n == 0 :

return 0

if n == 1 :

return 1

return fibo_recur(n-1)+fibo_recur(n-2)

February 9, 2026 7 / 15

Dé�nition et exemple de base Analyse d'un exemple : la suite de Fibonnaci

Tests de temps

▶ Pour faire des tests de temps d'exécution d'une série de commandes,
on peut employer le module time et sa fonction time ou sa fonction
perf_counter

t1 = time.perf_counter()

commande1

commande2

...

commande_finale

temps_execution = time.perf_coutner()-t1

▶ On donne les résultats suivants pour les temps de calculs du terme
d'indice 30 :

temps en itératif : 2.5686999833851587e-05
temps en récursif : 0.37368287299977965

February 9, 2026 8 / 15

Dé�nition et exemple de base Analyse d'un exemple : la suite de Fibonnaci

Tests de temps

▶ Pour faire des tests de temps d'exécution d'une série de commandes,
on peut employer le module time et sa fonction time ou sa fonction
perf_counter

t1 = time.perf_counter()

commande1

commande2

...

commande_finale

temps_execution = time.perf_coutner()-t1

▶ On donne les résultats suivants pour les temps de calculs du terme
d'indice 30 :

temps en itératif : 2.5686999833851587e-05
temps en récursif : 0.37368287299977965

February 9, 2026 8 / 15

Dé�nition et exemple de base Analyse d'un exemple : la suite de Fibonnaci

Explication :

Dresser sur papier un arbre représentant les appels successifs à la fonction
fibo_recur(6) lors de son exécution.

�bo(5)

�bo(4)

�bo(3)

�bo(2)

�bo(1) �bo(0)

�bo(1)

�bo(2)

�bo(1) �bo(0)

�bo(3)

�bo(2)

�bo(1) �bo(0)

�bo(1)

.... commentaires !

February 9, 2026 9 / 15

Dé�nition et exemple de base Analyse d'un exemple : la suite de Fibonnaci

Explication :

Dresser sur papier un arbre représentant les appels successifs à la fonction
fibo_recur(6) lors de son exécution.

�bo(5)

�bo(4)

�bo(3)

�bo(2)

�bo(1) �bo(0)

�bo(1)

�bo(2)

�bo(1) �bo(0)

�bo(3)

�bo(2)

�bo(1) �bo(0)

�bo(1)

.... commentaires !

February 9, 2026 9 / 15

Dé�nition et exemple de base Analyse d'un exemple : la suite de Fibonnaci

Explication :

Dresser sur papier un arbre représentant les appels successifs à la fonction
fibo_recur(6) lors de son exécution.

�bo(5)

�bo(4)

�bo(3)

�bo(2)

�bo(1) �bo(0)

�bo(1)

�bo(2)

�bo(1) �bo(0)

�bo(3)

�bo(2)

�bo(1) �bo(0)

�bo(1)

.... commentaires !
February 9, 2026 9 / 15

Dé�nition et exemple de base Analyse d'un exemple : la suite de Fibonnaci

Explication :

Dresser sur papier un arbre représentant les appels successifs à la fonction
fibo_recur(6) lors de son exécution.

�bo(5)

�bo(4)

�bo(3)

�bo(2)

�bo(1) �bo(0)

�bo(1)

�bo(2)

�bo(1) �bo(0)

�bo(3)

�bo(2)

�bo(1) �bo(0)

�bo(1)

.... commentaires !
February 9, 2026 9 / 15

Dé�nition et exemple de base Analyse d'un exemple : la suite de Fibonnaci

Explication :

Dresser sur papier un arbre représentant les appels successifs à la fonction
fibo_recur(6) lors de son exécution.

�bo(5)

�bo(4)

�bo(3)

�bo(2)

�bo(1) �bo(0)

�bo(1)

�bo(2)

�bo(1) �bo(0)

�bo(3)

�bo(2)

�bo(1) �bo(0)

�bo(1)

.... commentaires !
February 9, 2026 9 / 15

Intérêt et limitation de la récursivité Consommation et performance

Limitation de la pile d'appels

1 On a déjà vu que les performance en temps n'étaient pas forcément
meilleures

2 L'autre problème est celui de la pile d'appel

3 Par exemple pour la fonction suivante qui calcule les termes d'une
suite arithmético-géométrique :

def suite(a,b,u,n) :

if n == 0 :

return u

else :

on relance la fonction a partir

de la valeur suivante de la suite

mais en calculant un terme de moins

return suite(a,b,a*u+b,n-1)
4 L'appel suivant : suite(-1,2,1,1000) engendre l'erreur suivante :

RecursionError: maximum recursion depth exceeded in comparison
5 Qui signi�e qu'on a dépassé le maximum d'appels successif de la

fonction elle même : ce qu'on appelle la profondeur de la pile
d'appels.

6 Alors que que la même fonction programmée de manière itérative
calculerait le terme d'indice 2000 sans problème !

February 9, 2026 10 / 15

Intérêt et limitation de la récursivité Consommation et performance

Limitation de la pile d'appels

1 On a déjà vu que les performance en temps n'étaient pas forcément
meilleures

2 L'autre problème est celui de la pile d'appel
3 Par exemple pour la fonction suivante qui calcule les termes d'une

suite arithmético-géométrique :
def suite(a,b,u,n) :

if n == 0 :

return u

else :

on relance la fonction a partir

de la valeur suivante de la suite

mais en calculant un terme de moins

return suite(a,b,a*u+b,n-1)
4 L'appel suivant : suite(-1,2,1,1000) engendre l'erreur suivante :

RecursionError: maximum recursion depth exceeded in comparison
5 Qui signi�e qu'on a dépassé le maximum d'appels successif de la

fonction elle même : ce qu'on appelle la profondeur de la pile
d'appels.

6 Alors que que la même fonction programmée de manière itérative
calculerait le terme d'indice 2000 sans problème !

February 9, 2026 10 / 15

Intérêt et limitation de la récursivité Facilité et lisibilité

Intérêt

▶ On traitera en TP des exemples plus soutenus trop longs à traiter ici.
▶ Mais on peut souligner que dans certains cas, la récursivité donne

une programmation beaucoup plus facile à écrire.
▶ Prenons par exemple le cas de la fonction de Ackerman qui est une

fonction dé�nie sur les couples d'entiers naturels (m,n) par :

A(m,n) =

 n+ 1 si m = 0
A(m− 1, 1) si m > 0 et n = 0

A(m− 1, A(m,n− 1)) si m > 0 et n > 0

▶ La programmation récursive est très naturelle :

def A(m,n) :

if m == 0 :

return n + 1

elif n == 0 :

return A(m-1,1)

else :

return A(m-1,A(m,n-1))

February 9, 2026 11 / 15

Intérêt et limitation de la récursivité Facilité et lisibilité

Intérêt

▶ On traitera en TP des exemples plus soutenus trop longs à traiter ici.
▶ Mais on peut souligner que dans certains cas, la récursivité donne

une programmation beaucoup plus facile à écrire.
▶ Prenons par exemple le cas de la fonction de Ackerman qui est une

fonction dé�nie sur les couples d'entiers naturels (m,n) par :

A(m,n) =

 n+ 1 si m = 0
A(m− 1, 1) si m > 0 et n = 0

A(m− 1, A(m,n− 1)) si m > 0 et n > 0

▶ La programmation récursive est très naturelle :
def A(m,n) :

if m == 0 :

return n + 1

elif n == 0 :

return A(m-1,1)

else :

return A(m-1,A(m,n-1))

February 9, 2026 11 / 15

Programmation récursive de la dichotomie Programmation itérative

Dichotomie en itératif

▶ Écrire une fonction itérative qui prend en argument les bornes a,b
d'un intervalle une précision p et une fonction f, et qui renvoie une
valeur approché à p près d'une solution de f(x)=0 obtenue par
dichotomie sur l'intervalle [a,b].

▶ Syntaxe dicho_iter(a,b,p,f)

def dicho_iter(a,b,p,f) :

while b-a> p :

m = (a+b)/2

val = f(m)*f(a)

if val <= 0 : # f(m) et f(a) de signes différents

b = m

else : # f(m) et f(a) de même signe

donc f(m) de signe différent de f(b)

a = m # du coup on a encore f(a)*f(b)<= 0

return xmin

February 9, 2026 12 / 15

Programmation récursive de la dichotomie Programmation itérative

Dichotomie en itératif

▶ Écrire une fonction itérative qui prend en argument les bornes a,b
d'un intervalle une précision p et une fonction f, et qui renvoie une
valeur approché à p près d'une solution de f(x)=0 obtenue par
dichotomie sur l'intervalle [a,b].

▶ Syntaxe dicho_iter(a,b,p,f)
def dicho_iter(a,b,p,f) :

while b-a> p :

m = (a+b)/2

val = f(m)*f(a)

if val <= 0 : # f(m) et f(a) de signes différents

b = m

else : # f(m) et f(a) de même signe

donc f(m) de signe différent de f(b)

a = m # du coup on a encore f(a)*f(b)<= 0

return xmin

February 9, 2026 12 / 15

Programmation récursive de la dichotomie Programmation itérative

Dichotomie en itératif

▶ Écrire une fonction itérative qui prend en argument les bornes a,b
d'un intervalle une précision p et une fonction f, et qui renvoie une
valeur approché à p près d'une solution de f(x)=0 obtenue par
dichotomie sur l'intervalle [a,b].

▶ Syntaxe dicho_iter(a,b,p,f)
def dicho_iter(a,b,p,f) :

while b-a> p :

m = (a+b)/2

val = f(m)*f(a)

if val <= 0 : # f(m) et f(a) de signes différents

b = m

else : # f(m) et f(a) de même signe

donc f(m) de signe différent de f(b)

a = m # du coup on a encore f(a)*f(b)<= 0

return xmin

February 9, 2026 12 / 15

Programmation récursive de la dichotomie Programmation itérative

Dichotomie en itératif

▶ Écrire une fonction itérative qui prend en argument les bornes a,b
d'un intervalle une précision p et une fonction f, et qui renvoie une
valeur approché à p près d'une solution de f(x)=0 obtenue par
dichotomie sur l'intervalle [a,b].

▶ Syntaxe dicho_iter(a,b,p,f)
def dicho_iter(a,b,p,f) :

while b-a> p :

m = (a+b)/2

val = f(m)*f(a)

if val <= 0 : # f(m) et f(a) de signes différents

b = m

else : # f(m) et f(a) de même signe

donc f(m) de signe différent de f(b)

a = m # du coup on a encore f(a)*f(b)<= 0

return xmin

February 9, 2026 12 / 15

Programmation récursive de la dichotomie Programmation itérative

Dichotomie en itératif

▶ Écrire une fonction itérative qui prend en argument les bornes a,b
d'un intervalle une précision p et une fonction f, et qui renvoie une
valeur approché à p près d'une solution de f(x)=0 obtenue par
dichotomie sur l'intervalle [a,b].

▶ Syntaxe dicho_iter(a,b,p,f)
def dicho_iter(a,b,p,f) :

while b-a> p :

m = (a+b)/2

val = f(m)*f(a)

if val <= 0 : # f(m) et f(a) de signes différents

b = m

else : # f(m) et f(a) de même signe

donc f(m) de signe différent de f(b)

a = m # du coup on a encore f(a)*f(b)<= 0

return xmin

February 9, 2026 12 / 15

Programmation récursive de la dichotomie Programmation itérative

Dichotomie en itératif

▶ Écrire une fonction itérative qui prend en argument les bornes a,b
d'un intervalle une précision p et une fonction f, et qui renvoie une
valeur approché à p près d'une solution de f(x)=0 obtenue par
dichotomie sur l'intervalle [a,b].

▶ Syntaxe dicho_iter(a,b,p,f)
def dicho_iter(a,b,p,f) :

while b-a> p :

m = (a+b)/2

val = f(m)*f(a)

if val <= 0 : # f(m) et f(a) de signes différents

b = m

else : # f(m) et f(a) de même signe

donc f(m) de signe différent de f(b)

a = m # du coup on a encore f(a)*f(b)<= 0

return xmin

February 9, 2026 12 / 15

Programmation récursive de la dichotomie Programmation itérative

Dichotomie en itératif

▶ Écrire une fonction itérative qui prend en argument les bornes a,b
d'un intervalle une précision p et une fonction f, et qui renvoie une
valeur approché à p près d'une solution de f(x)=0 obtenue par
dichotomie sur l'intervalle [a,b].

▶ Syntaxe dicho_iter(a,b,p,f)
def dicho_iter(a,b,p,f) :

while b-a> p :

m = (a+b)/2

val = f(m)*f(a)

if val <= 0 : # f(m) et f(a) de signes différents

b = m

else : # f(m) et f(a) de même signe

donc f(m) de signe différent de f(b)

a = m # du coup on a encore f(a)*f(b)<= 0

return xmin

February 9, 2026 12 / 15

Programmation récursive de la dichotomie Réécriture de la fonction

Version récursive

▶ Mais en fait cette méthode de dichotomie est récursive dans le sens
où on la recommence à chaque étape sur un nouvel intervalle plus
petit

▶ Programmer une version récursive de la méthode de dichotomie.

▶ Cela donne :
def dichotomie(a,b,p,f) :

condition de terminaison :

l'écart entre a et b est inférieur

à la précision p demandée.

if (b-a) <= p :

return a,b

elif f(a)*f((a+b)/2)< 0 :

return dichotomie(a,(a+b)/2,p,f)

else :

return dichotomie((a+b)/2,b,p,f)

February 9, 2026 13 / 15

Programmation récursive de la dichotomie Réécriture de la fonction

Version récursive

▶ Mais en fait cette méthode de dichotomie est récursive dans le sens
où on la recommence à chaque étape sur un nouvel intervalle plus
petit

▶ Programmer une version récursive de la méthode de dichotomie.
▶ Cela donne :

def dichotomie(a,b,p,f) :

condition de terminaison :

l'écart entre a et b est inférieur

à la précision p demandée.

if (b-a) <= p :

return a,b

elif f(a)*f((a+b)/2)< 0 :

return dichotomie(a,(a+b)/2,p,f)

else :

return dichotomie((a+b)/2,b,p,f)

February 9, 2026 13 / 15

Programmation récursive de la dichotomie Réécriture de la fonction

Version récursive

▶ Mais en fait cette méthode de dichotomie est récursive dans le sens
où on la recommence à chaque étape sur un nouvel intervalle plus
petit

▶ Programmer une version récursive de la méthode de dichotomie.
▶ Cela donne :

def dichotomie(a,b,p,f) :

condition de terminaison :

l'écart entre a et b est inférieur

à la précision p demandée.

if (b-a) <= p :

return a,b

elif f(a)*f((a+b)/2)< 0 :

return dichotomie(a,(a+b)/2,p,f)

else :

return dichotomie((a+b)/2,b,p,f)

February 9, 2026 13 / 15

Programmation récursive de la dichotomie Réécriture de la fonction

Version récursive

▶ Mais en fait cette méthode de dichotomie est récursive dans le sens
où on la recommence à chaque étape sur un nouvel intervalle plus
petit

▶ Programmer une version récursive de la méthode de dichotomie.
▶ Cela donne :

def dichotomie(a,b,p,f) :

condition de terminaison :

l'écart entre a et b est inférieur

à la précision p demandée.

if (b-a) <= p :

return a,b

elif f(a)*f((a+b)/2)< 0 :

return dichotomie(a,(a+b)/2,p,f)

else :

return dichotomie((a+b)/2,b,p,f)

February 9, 2026 13 / 15

Programmation récursive de la dichotomie Réécriture de la fonction

Version récursive

▶ Mais en fait cette méthode de dichotomie est récursive dans le sens
où on la recommence à chaque étape sur un nouvel intervalle plus
petit

▶ Programmer une version récursive de la méthode de dichotomie.
▶ Cela donne :

def dichotomie(a,b,p,f) :

condition de terminaison :

l'écart entre a et b est inférieur

à la précision p demandée.

if (b-a) <= p :

return a,b

elif f(a)*f((a+b)/2)< 0 :

return dichotomie(a,(a+b)/2,p,f)

else :

return dichotomie((a+b)/2,b,p,f)

February 9, 2026 13 / 15

Programmation récursive de la dichotomie Réécriture de la fonction

Version récursive

▶ Mais en fait cette méthode de dichotomie est récursive dans le sens
où on la recommence à chaque étape sur un nouvel intervalle plus
petit

▶ Programmer une version récursive de la méthode de dichotomie.
▶ Cela donne :

def dichotomie(a,b,p,f) :

condition de terminaison :

l'écart entre a et b est inférieur

à la précision p demandée.

if (b-a) <= p :

return a,b

elif f(a)*f((a+b)/2)< 0 :

return dichotomie(a,(a+b)/2,p,f)

else :

return dichotomie((a+b)/2,b,p,f)

February 9, 2026 13 / 15

Programmation récursive de la dichotomie Performances en temps de la fonction

Mesures de temps d'exécutions

▶ Test fait sur ma machine pour 10000 répétition de la fonction
précédente avec une précision demandée en 2−10 et avec la fonction :

x 7→ x2 − 2.

▶ ▶ Temps avec la fonction écrite sous forme récursive :
0.0759272575378418.

▶ Temps avec la fonction écrite sous forme itérative :
0.05460977554321289.

▶ Sur cet exemple il y aurait plutôt une perte de performance en
temps.

▶ Mais ce n'est pas une question de nombre théorique d'opérations car
il reste en : constante ×k pour une précision de 2−k. (on le
démontrera précisément plus tard).

February 9, 2026 14 / 15

Programmation récursive de la dichotomie Performances en temps de la fonction

Retour sur le problème des calculs inutiles

Écrire une version récursive du calcul des termes de la suite de
Fibonacci mais cette fois en ajoutant dans votre fonction la
mémorisation des éléments déjà calculés dans une liste ... et en
faisant un retour directement si l'élément demandé est déjà dans la
liste !

La fonction aura la syntaxe : fibo_recur(n,memo = None) et elle
renverra les résultats calculés dans la liste memo
def fibo(n, memo=None):

Création de la liste de mémorisation une seule fois

if memo is None:

memo = [0, 1] + [None] * (n - 1)

Si la valeur est déjà calculée, on la renvoie

if memo[n] is not None:

return memo[n]

Sinon on calcule et on stocke dans memo

memo[n] = fibo(n-2, memo) + fibo(n-1, memo)

return memo[n]

Exemple d'utilisation

print(fibo(35))

February 9, 2026 15 / 15

Programmation récursive de la dichotomie Performances en temps de la fonction

Retour sur le problème des calculs inutiles

Écrire une version récursive du calcul des termes de la suite de
Fibonacci mais cette fois en ajoutant dans votre fonction la
mémorisation des éléments déjà calculés dans une liste ... et en
faisant un retour directement si l'élément demandé est déjà dans la
liste !
La fonction aura la syntaxe : fibo_recur(n,memo = None) et elle
renverra les résultats calculés dans la liste memo
def fibo(n, memo=None):

Création de la liste de mémorisation une seule fois

if memo is None:

memo = [0, 1] + [None] * (n - 1)

Si la valeur est déjà calculée, on la renvoie

if memo[n] is not None:

return memo[n]

Sinon on calcule et on stocke dans memo

memo[n] = fibo(n-2, memo) + fibo(n-1, memo)

return memo[n]

Exemple d'utilisation

print(fibo(35))

February 9, 2026 15 / 15

Programmation récursive de la dichotomie Performances en temps de la fonction

Retour sur le problème des calculs inutiles

Écrire une version récursive du calcul des termes de la suite de
Fibonacci mais cette fois en ajoutant dans votre fonction la
mémorisation des éléments déjà calculés dans une liste ... et en
faisant un retour directement si l'élément demandé est déjà dans la
liste !
La fonction aura la syntaxe : fibo_recur(n,memo = None) et elle
renverra les résultats calculés dans la liste memo
def fibo(n, memo=None):

Création de la liste de mémorisation une seule fois

if memo is None:

memo = [0, 1] + [None] * (n - 1)

Si la valeur est déjà calculée, on la renvoie

if memo[n] is not None:

return memo[n]

Sinon on calcule et on stocke dans memo

memo[n] = fibo(n-2, memo) + fibo(n-1, memo)

return memo[n]

Exemple d'utilisation

print(fibo(35))

February 9, 2026 15 / 15

Programmation récursive de la dichotomie Performances en temps de la fonction

Retour sur le problème des calculs inutiles

Écrire une version récursive du calcul des termes de la suite de
Fibonacci mais cette fois en ajoutant dans votre fonction la
mémorisation des éléments déjà calculés dans une liste ... et en
faisant un retour directement si l'élément demandé est déjà dans la
liste !
La fonction aura la syntaxe : fibo_recur(n,memo = None) et elle
renverra les résultats calculés dans la liste memo
def fibo(n, memo=None):

Création de la liste de mémorisation une seule fois

if memo is None:

memo = [0, 1] + [None] * (n - 1)

Si la valeur est déjà calculée, on la renvoie

if memo[n] is not None:

return memo[n]

Sinon on calcule et on stocke dans memo

memo[n] = fibo(n-2, memo) + fibo(n-1, memo)

return memo[n]

Exemple d'utilisation

print(fibo(35))

February 9, 2026 15 / 15

Programmation récursive de la dichotomie Performances en temps de la fonction

Retour sur le problème des calculs inutiles

Écrire une version récursive du calcul des termes de la suite de
Fibonacci mais cette fois en ajoutant dans votre fonction la
mémorisation des éléments déjà calculés dans une liste ... et en
faisant un retour directement si l'élément demandé est déjà dans la
liste !
La fonction aura la syntaxe : fibo_recur(n,memo = None) et elle
renverra les résultats calculés dans la liste memo
def fibo(n, memo=None):

Création de la liste de mémorisation une seule fois

if memo is None:

memo = [0, 1] + [None] * (n - 1)

Si la valeur est déjà calculée, on la renvoie

if memo[n] is not None:

return memo[n]

Sinon on calcule et on stocke dans memo

memo[n] = fibo(n-2, memo) + fibo(n-1, memo)

return memo[n]

Exemple d'utilisation

print(fibo(35))

February 9, 2026 15 / 15

Programmation récursive de la dichotomie Performances en temps de la fonction

Retour sur le problème des calculs inutiles

Écrire une version récursive du calcul des termes de la suite de
Fibonacci mais cette fois en ajoutant dans votre fonction la
mémorisation des éléments déjà calculés dans une liste ... et en
faisant un retour directement si l'élément demandé est déjà dans la
liste !
La fonction aura la syntaxe : fibo_recur(n,memo = None) et elle
renverra les résultats calculés dans la liste memo
def fibo(n, memo=None):

Création de la liste de mémorisation une seule fois

if memo is None:

memo = [0, 1] + [None] * (n - 1)

Si la valeur est déjà calculée, on la renvoie

if memo[n] is not None:

return memo[n]

Sinon on calcule et on stocke dans memo

memo[n] = fibo(n-2, memo) + fibo(n-1, memo)

return memo[n]

Exemple d'utilisation

print(fibo(35))

February 9, 2026 15 / 15

	Définition et exemple de base
	Définition - Vocabulaire
	Premiers exemples de base
	Analyse d'un exemple : la suite de Fibonnaci

	Intérêt et limitation de la récursivité
	Consommation et performance
	Facilité et lisibilité

	Programmation récursive de la dichotomie
	Programmation itérative
	Réécriture de la fonction
	Performances en temps de la fonction

